Total Catalytic Oxidation of Ethanol over MnCoAl Mixed Oxides Derived from Layered Double Hydroxides: Effect of the Metal Ratio and the Synthesis Atmosphere Conditions
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. Catalytic Activity
2.2.1. Catalytic Oxidation of Ethanol over MnxCo(6−x)Al2–O Catalysts
2.2.2. Effect of the Synthesis and Heat Treatment Atmosphere
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Catalysts Characterization
3.3. Catalytic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, J.; Koppmann, R. Volatile Organic Compounds in the Atmosphere: An Overview. In Volatile Organic Compounds in the Atmosphere; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 1–32. ISBN 978-0-470-98865-7. [Google Scholar]
- Khan, F.I.; Ghoshal, A.K. Removal of Volatile Organic Compounds from Polluted Air. J. Loss Prev. Process. Ind. 2000, 13, 527–545. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Derwent, R.G.; Wallington, T.J. Photochemical Ozone Creation Potentials for Volatile Organic Compounds: Rationalization and Estimation. Atmos. Environ. 2017, 163, 128–137. [Google Scholar] [CrossRef]
- Kuśtrowski, P.; Rokicińska, A.; Kondratowicz, T. Chapter Nine—Abatement of Volatile Organic Compounds Emission as a Target for Various Human Activities Including Energy Production. In Advances in Inorganic Chemistry; van Eldik, R., Macyk, W., Eds.; Materials for Sustainable Energy; Academic Press: Cambridge, MA, USA, 2018; Volume 72, pp. 385–419. [Google Scholar]
- Liu, Y.; Deng, J.; Xie, S.; Wang, Z.; Dai, H. Catalytic Removal of Volatile Organic Compounds Using Ordered Porous Transition Metal Oxide and Supported Noble Metal Catalysts. Chin. J. Catal. 2016, 37, 1193–1205. [Google Scholar] [CrossRef]
- Liotta, L.F. Catalytic Oxidation of Volatile Organic Compounds on Supported Noble Metals. Appl. Catal. B Environ. 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Campesi, M.A.; Mariani, N.J.; Pramparo, M.C.; Barbero, B.P.; Cadús, L.E.; Martínez, O.M.; Barreto, G.F. Combustion of Volatile Organic Compounds on a MnCu Catalyst: A Kinetic Study. Catal. Today 2011, 176, 225–228. [Google Scholar] [CrossRef]
- Bezerra, D. Influence of the Preparation Method on the Structural Properties of Mixed Metal Oxides. Sci. Technol. Mater. 2018, 30, 166–173. [Google Scholar] [CrossRef]
- Debecker, D.P.; Gaigneaux, E.M.; Busca, G. Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chem. Eur. J. 2009, 15, 3920–3935. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of Layered Double Hydroxides Containing Mg2+, Zn2+, Ca2+ and Al3+ Layer Cations by Co-Precipitation Methods—A Review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Jijoe, P.S.; Yashas, S.R.; Shivaraju, H.P. Fundamentals, Synthesis, Characterization and Environmental Applications of Layered Double Hydroxides: A Review. Environ. Chem. Lett. 2021, 19, 2643–2661. [Google Scholar] [CrossRef]
- Mitran, G.; Chen, S.; Seo, D.-K. Role of Oxygen Vacancies and Mn4+/Mn3+ Ratio in Oxidation and Dry Reforming over Cobalt-Manganese Spinel Oxides. Mol. Catal. 2020, 483, 110704. [Google Scholar] [CrossRef]
- Bastos, S.S.T.; Órfão, J.J.M.; Freitas, M.M.A.; Pereira, M.F.R.; Figueiredo, J.L. Manganese Oxide Catalysts Synthesized by Exotemplating for the Total Oxidation of Ethanol. Appl. Catal. B Environ. 2009, 93, 30–37. [Google Scholar] [CrossRef]
- Ludvíková, J.; Jirátová, K.; Klempa, J.; Boehmová, V.; Obalová, L. Titania Supported Co–Mn–Al Oxide Catalysts in Total Oxidation of Ethanol. Catal. Today 2012, 179, 164–169. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. The Role of Lattice Oxygen on the Activity of Manganese Oxides towards the Oxidation of Volatile Organic Compounds. Appl. Catal. B Environ. 2010, 99, 353–363. [Google Scholar] [CrossRef]
- Dissanayake, S.; Wasalathanthri, N.; Shirazi Amin, A.; He, J.; Poges, S.; Rathnayake, D.; Suib, S.L. Mesoporous Co3O4 Catalysts for VOC Elimination: Oxidation of 2-Propanol. Appl. Catal. Gen. 2020, 590, 117366. [Google Scholar] [CrossRef]
- Castaño, M.; Molina, R.; Moreno, S. Cooperative Effect of the Co–Mn Mixed Oxides for the Catalytic Oxidation of VOCs: Influence of the Synthesis Method. Appl. Catal. Gen. 2015, 492, 48–59. [Google Scholar] [CrossRef]
- Aguilera, D.A.; Perez, A.; Molina, R.; Moreno, S. Cu–Mn and Co–Mn Catalysts Synthesized from Hydrotalcites and Their Use in the Oxidation of VOCs. Appl. Catal. B Environ. 2011, 104, 144–150. [Google Scholar] [CrossRef]
- Kovanda, F.; Rojka, T.; Dobešová, J.; Machovič, V.; Bezdička, P.; Obalová, L.; Jirátová, K.; Grygar, T. Mixed Oxides Obtained from Co and Mn Containing Layered Double Hydroxides: Preparation, Characterization, and Catalytic Properties. J. Solid State Chem. 2006, 179, 812–823. [Google Scholar] [CrossRef]
- Kovanda, F.; Jirátová, K.; Ludvíková, J.; Raabová, H. Co–Mn–Al Mixed Oxides on Anodized Aluminum Supports and Their Use as Catalysts in the Total Oxidation of Ethanol. Appl. Catal. Gen. 2013, 464–465, 181–190. [Google Scholar] [CrossRef]
- El Khawaja, R.; Rochard, G.; Genty, E.; Poupin, C.; Siffert, S.; Cousin, R. Optimization of Mn-Mg-Al Mixed Oxides Composition on Their Activity towards the Total Oxidation of Aromatic and Oxygenated VOCs. Eur. J. Inorg. Chem. 2023, 26, e202300213. [Google Scholar] [CrossRef]
- Tian, Z.-Y.; Ngamou, P.; Vannier, V.; Kohse-Höinghaus, K. Catalytic Oxidation of VOCs over Mixed Co-Mn Oxides. Appl. Catal. B Environ. 2012, 117–118, 125–134. [Google Scholar] [CrossRef]
- Gennequin, C.; Siffert, S.; Cousin, R.; Aboukaïs, A. Co–Mg–Al Hydrotalcite Precursors for Catalytic Total Oxidation of Volatile Organic Compounds. Top. Catal. 2009, 52, 482–491. [Google Scholar] [CrossRef]
- Obalová, L.; Pacultová, K.; Balabánová, J.; Jirátová, K.; Bastl, Z.; Valášková, M.; Lacný, Z.; Kovanda, F. Effect of Mn/Al Ratio in Co–Mn–Al Mixed Oxide Catalysts Prepared from Hydrotalcite-like Precursors on Catalytic Decomposition of N2O. Catal. Today 2007, 119, 233–238. [Google Scholar] [CrossRef]
- Klyushina, A.; Pacultová, K.; Karásková, K.; Jirátová, K.; Ritz, M.; Fridrichová, D.; Volodarskaja, A.; Obalová, L. Effect of Preparation Method on Catalytic Properties of Co-Mn-Al Mixed Oxides for N2O Decomposition. J. Mol. Catal. Chem. 2016, 425, 237–247. [Google Scholar] [CrossRef]
- Jeong, D.; Jin, K.; Jerng, S.E.; Seo, H.; Kim, D.; Nahm, S.H.; Kim, S.H.; Nam, K.T. Mn5O8 Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH. ACS Catal. 2015, 5, 4624–4628. [Google Scholar] [CrossRef]
- Tang, W.; Wu, X.; Li, S.; Li, W.; Chen, Y. Porous Mn–Co Mixed Oxide Nanorod as a Novel Catalyst with Enhanced Catalytic Activity for Removal of VOCs. Catal. Commun. 2014, 56, 134–138. [Google Scholar] [CrossRef]
- Aisawa, S.; Hirahara, H.; Uchiyama, H.; Takahashi, S.; Narita, E. Synthesis and Thermal Decomposition of Mn–Al Layered Double Hydroxides. J. Solid State Chem. 2002, 167, 152–159. [Google Scholar] [CrossRef]
- Mo, S.; Li, S.; Li, W.; Li, J.; Chen, J.; Chen, Y. Excellent Low Temperature Performance for Total Benzene Oxidation over Mesoporous CoMnAl Composited Oxides from Hydrotalcites. J. Mater. Chem. A 2016, 4, 8113–8122. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, L.; Zhao, Z.; Zhang, Y.; Zhang, Z.; Lu, G.; Guo, Y.; Guo, Y. Low-Temperature CO Oxidation over Co3O4-Based Catalysts: Significant Promoting Effect of Bi2O3 on Co3O4 Catalyst. Appl. Catal. B Environ. 2014, 146, 43–49. [Google Scholar] [CrossRef]
- Boyero Macstre, J.; Fernández López, E.; Gallardo-Amores, J.M.; Ruano Casero, R.; Sánchez Escribano, V.; Pérez Bernal, E. Influence of Tile Synthesis Parameters on the Structural and Textural Properties of Precipitated Manganese Oxides. Int. J. Inorg. Mater. 2001, 3, 889–899. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Liu, J.; Zhou, B.; Guo, M.; Liu, L. Catalytic Degradation of Toluene over MnO2/LaMnO3: Effect of Phase Type of MnO2 on Activity. Catalysts 2022, 12, 1666. [Google Scholar] [CrossRef]
- Li, G.; Li, N.; Sun, Y.; Qu, Y.; Jiang, Z.; Zhao, Z.; Zhang, Z.; Cheng, J.; Hao, Z. Efficient Defect Engineering in Co-Mn Binary Oxides for Low-Temperature Propane Oxidation. Appl. Catal. B Environ. 2021, 282, 119512. [Google Scholar] [CrossRef]
- Bulavchenko, O.A.; Gerasimov, E.Y.; Afonasenko, T.N. Reduction of Double Manganese–Cobalt Oxides: In Situ XRD and TPR Study. Dalton Trans. 2018, 47, 17153–17159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, H.; Qu, Z. Synergistic Effects in Mn-Co Mixed Oxide Supported on Cordierite Honeycomb for Catalytic Deep Oxidation of VOCs. J. Environ. Sci. 2022, 112, 231–243. [Google Scholar] [CrossRef]
- Shah, P.M.; Bailey, L.A.; Taylor, S.H. The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation. Catalysts 2023, 13, 114. [Google Scholar] [CrossRef]
- Zlatanova, Z.; Marinova, D.; Kukeva, R.; Mihaylov, L.; Nihtianova, D.; Stoyanova, R. Layered Manganese Oxide Mn5O8 as a Structural Matrix for Fast Lithium and Magnesium Intercalation. J. Alloys Compd. 2021, 851, 156706. [Google Scholar] [CrossRef]
- Ren, Y.; Qu, Z.; Wang, H.; Zhao, A. Acid-Etched Spinel CoMn2O4 with Highly Active Surface Lattice Oxygen Species for Significant Improvement of Catalytic Performance of VOCs Oxidation. Chem. Eng. J. 2023, 463, 142316. [Google Scholar] [CrossRef]
- Morales, M.R.; Yeste, M.P.; Vidal, H.; Gatica, J.M.; Cadus, L.E. Insights on the Combustion Mechanism of Ethanol and N-Hexane in Honeycomb Monolithic Type Catalysts: Influence of the Amount and Nature of Mn-Cu Mixed Oxide. Fuel 2017, 208, 637–646. [Google Scholar] [CrossRef]
- Doornkamp, C.; Ponec, V. The Universal Character of the Mars and Van Krevelen Mechanism. J. Mol. Catal. Chem. 2000, 162, 19–32. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, Y.; Zuo, J.; Feng, X.; Wang, X.; Zhang, T.; Zhang, K.; Jiang, L. Insights into the High Performance of Mn-Co Oxides Derived from Metal-Organic Frameworks for Total Toluene Oxidation. J. Hazard. Mater. 2018, 349, 119–127. [Google Scholar] [CrossRef]
- Bratan, V.; Vasile, A.; Chesler, P.; Hornoiu, C. Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts 2022, 12, 1134. [Google Scholar] [CrossRef]
- Rajesh, H.; Ozkan, U.S. Complete Oxidation of Ethanol, Acetaldehyde and Ethanol/Methanol Mixtures over Copper Oxide and Copper-Chromium Oxide Catalysts. Ind. Eng. Chem. Res. 1993, 32, 1622–1630. [Google Scholar] [CrossRef]
- Jirátová, K.; Kovanda, F.; Ludvíková, J.; Balabánová, J.; Klempa, J. Total Oxidation of Ethanol over Layered Double Hydroxide-Related Mixed Oxide Catalysts: Effect of Cation Composition. Catal. Today 2016, 277, 61–67. [Google Scholar] [CrossRef]
- Jirátová, K.; Mikulová, J.; Klempa, J.; Grygar, T.; Bastl, Z.; Kovanda, F. Modification of Co–Mn–Al Mixed Oxide with Potassium and Its Effect on Deep Oxidation of VOC. Appl. Catal. Gen. 2009, 361, 106–116. [Google Scholar] [CrossRef]
- Morales, M.R.; Barbero, B.P.; Cadús, L.E. Evaluation and Characterization of Mn–Cu Mixed Oxide Catalysts for Ethanol Total Oxidation: Influence of Copper Content. Fuel 2008, 87, 1177–1186. [Google Scholar] [CrossRef]
- Aguero, F.N.; Barbero, B.P.; Gambaro, L.; Cadús, L.E. Catalytic Combustion of Volatile Organic Compounds in Binary Mixtures over MnOx/Al2O3 Catalyst. Appl. Catal. B Environ. 2009, 91, 108–112. [Google Scholar] [CrossRef]
- Li, X.; Zheng, J.; Liu, S.; Zhu, T. A Novel Wormhole-like Mesoporous Hybrid MnCoOx Catalyst for Improved Ethanol Catalytic Oxidation. J. Colloid Interface Sci. 2019, 555, 667–675. [Google Scholar] [CrossRef]
Samples | LDH | MnCO3 | Mn(OH)2 | Mn2O3 | Mn3O4 |
---|---|---|---|---|---|
Co6Al2–LDH | 100 | - | - | - | - |
MnCo5Al2–LDH | 99.4 | 0.2 | 0.4 | - | - |
Mn3Co3Al2–LDH | 82.5 | 17 | 0.5 | - | - |
Mn5CoAl2–LDH | 53.4 | 44.9 | - | 1.7 | - |
Mn6Al2–LDH | 16.9 | 48.5 | - | 0.2 | 34.4 |
Samples | Mn2CoO4 | Al2CoO4 | MnAl2O4 | Mn2O3 | Mn3O4 | Mn5O8 | MnO2 | Co3O4 |
---|---|---|---|---|---|---|---|---|
Co6Al2–O | - | 4.6 | - | - | - | - | - | 95.4 |
MnCo5Al2–O | 1.3 | 48.5 | 11.5 | 0.2 | 1.5 | 1.6 | - | 35.5 |
Mn3Co3Al2–O | 7.4 | 62.8 | 3 | - | - | 1 | 3 | 25.8 |
Mn5CoAl2–O | 15.5 | 26.5 | - | - | 13.5 | 34.1 | 10.4 | - |
Mn6Al2–O | - | - | 27.7 | 7.6 | 39.1 | 24.7 | 1 | - |
Samples | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
Co6Al2–O | 110 | 0.675 | 20.04 |
MnCo5Al2–O | 154 | 0.441 | 10.24 |
Mn3Co3Al2–O | 167 | 0.419 | 10.16 |
Mn5CoAl2–O | 171 | 0.373 | 8.84 |
Mn6Al2–O | 103 | 0.175 | 8.78 |
Samples | Hydrogen Consumption at T < 500 °C (umol/g) |
---|---|
Co6Al2–O | 3620 |
MnCo5Al2–O | 3763 |
Mn3Co3Al2–O | 4800 |
Mn5CoAl2–O | 6110 |
Mn6Al2–O | 5660 |
Samples | T20 (°C) | T50 (°C) | T100 (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ethanol Conversion | CO2 Yield | ∆T20 | Ethanol Conversion | CO2 Yield | ∆T50 | Ethanol Conversion | CO2 Yield | ∆T100 | |
Co6Al2–O | 150 | 190 | 40 | 168 | 192 | 24 | 200 | 220 | 20 |
MnCo5Al2–O | 123 | 160 | 37 | 145 | 170 | 25 | 186 | 210 | 24 |
Mn3Co3Al2–O | 120 | 150 | 30 | 138 | 160 | 22 | 156 | 179 | 23 |
Mn5CoAl2–O | 110 | 135 | 25 | 127 | 140 | 13 | 152 | 160 | 8 |
Mn6Al2–O | 112 | 150 | 38 | 135 | 155 | 20 | 162 | 174 | 12 |
Textural Properties | Phases Percentage Obtained from XRD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Samples | SBET (m2/g) | Mn2CoO4 | Al2CoO4 | Mn5O8 | Mn3O4 | Mn2O3 | MnO2 | Co3O4 | MnO | MnAl2O4 |
Mn6Al2–O | 103 | - | - | 24.7 | 39.1 | 7.6 | 1 | - | - | 27.7 |
Mn6Al2–N2–O | 146 | - | - | 48.9 | 0.8 | 25.2 | 25 | - | - | - |
Mn6Al2–N2–N2 | 65 | - | - | - | 33.3 | - | - | - | 40.3 | 26.3 |
Mn5CoAl2–O | 171 | 15.5 | 26.5 | 34.1 | 13.5 | - | 10.4 | - | - | - |
Mn5CoAl2–N2–O | 189 | 46.9 | 31.6 | 0.5 | - | 3.3 | 16.7 | - | 1 | |
Mn5CoAl2–N2–N2 | 114 | 5.7 | 21.6 | 0.8 | 26.7 | 1 | 1 | 2.3 | 39 | 1.8 |
Samples | LDH | MnCO3 | Mn(OH)2 | Mn2O3 | Mn3O4 |
---|---|---|---|---|---|
Mn6Al2–LDH | 16.9 | 48.5 | - | 0.2 | 34.4 |
Mn6Al2–N2–LDH | 54.2 | 43 | - | 2.6 | 0.2 |
Mn5CoAl2–LDH | 53.4 | 44.9 | - | 1.7 | - |
Mn5CoAl2–N2–LDH | 62 | 35.4 | - | 2.6 | - |
Catalyst | Experimental Conditions | Catalytic Results | |||||
---|---|---|---|---|---|---|---|
Catalyst Mass (mg) | [Ethanol] (ppm) | Flow Rate (mL/min) | SBET (m2/g) | T50 (°C) | T100 (°C) | References | |
Cu–Co–Mn | 100 | 750 | 33 | 62 | 105 | 173 | [44] |
Co4MnAl | 750 | 530 | 125 | 93 | 155 | 192 | [45] |
Mn9Cu1 | 300 | 1000 | 100 | 30 | 125 | 185 | [46] |
MnOx/Al2O3 | 300 | 500 | 100 | 103 | 200 | 240 | [47] |
CoMn0.5 | 200 | 100 | 200 | 249 | 198 | 252 | [18] |
Mn4Mg2Al2–O | 100 | 1000 | 100 | 108 | 156 | 210 | [21] |
Mn1Co1 | 100 | 300 | 100 | 208 | 80 | 120 | [48] |
Mn5CoAl2–O | 100 | 1000 | 100 | 171 | 140 | 160 | This work |
Mn6Al2–N2–O | 100 | 1000 | 100 | 146 | 142 | 152 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tannous, M.; Bounoukta, C.E.; Siffert, S.; Poupin, C.; Cousin, R. Total Catalytic Oxidation of Ethanol over MnCoAl Mixed Oxides Derived from Layered Double Hydroxides: Effect of the Metal Ratio and the Synthesis Atmosphere Conditions. Catalysts 2023, 13, 1316. https://doi.org/10.3390/catal13091316
Tannous M, Bounoukta CE, Siffert S, Poupin C, Cousin R. Total Catalytic Oxidation of Ethanol over MnCoAl Mixed Oxides Derived from Layered Double Hydroxides: Effect of the Metal Ratio and the Synthesis Atmosphere Conditions. Catalysts. 2023; 13(9):1316. https://doi.org/10.3390/catal13091316
Chicago/Turabian StyleTannous, Mariebelle, Charf Eddine Bounoukta, Stéphane Siffert, Christophe Poupin, and Renaud Cousin. 2023. "Total Catalytic Oxidation of Ethanol over MnCoAl Mixed Oxides Derived from Layered Double Hydroxides: Effect of the Metal Ratio and the Synthesis Atmosphere Conditions" Catalysts 13, no. 9: 1316. https://doi.org/10.3390/catal13091316
APA StyleTannous, M., Bounoukta, C. E., Siffert, S., Poupin, C., & Cousin, R. (2023). Total Catalytic Oxidation of Ethanol over MnCoAl Mixed Oxides Derived from Layered Double Hydroxides: Effect of the Metal Ratio and the Synthesis Atmosphere Conditions. Catalysts, 13(9), 1316. https://doi.org/10.3390/catal13091316