Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Characterization of Various CuO/NiO Composites
2.2. Electrochemical Sensing of Urea Using Various Composites of CuO/NiO
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of CuO/NiO Composites Using Banana Juice with Hydrothermal Method
3.3. Fabrication of Non-Enzymatic Sensing Electrode Using CuO/NiO Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Häberle, J.; Boddaert, N.; Burlina, A.; Chakrapani, A.; Dixon, M.; Huemer, M.; Karall, D.; Martinelli, D.; Crespo, P.S.; Santer, R. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J. Rare Dis. 2012, 7, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Botewad, S.N.; Gaikwad, D.K.; Girhe, N.B.; Thorat, H.N.; Pawar, P.P. Urea biosensors: A comprehensive review. Biotechnol. Appl. Biochem. 2023, 70, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Ezhilan, M.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Babu, K.J.; Krishnan, U.M.; Rayappan, J.B.B. Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sens. Actuators B Chem. 2017, 238, 1283–1292. [Google Scholar] [CrossRef]
- Rahmanian, R.; Mozaffari, S.A. Electrochemical fabrication of ZnO-polyvinyl alcohol nanostructured hybrid film for application to urea biosensor. Sens. Actuators B Chem. 2015, 207, 772–781. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Srivastava, S.; Narayanan, T.N.; Mahlotra, B.D.; Vajtai, R.; Ajayan, P.M.; Srivastava, A. Functionalized multilayered graphene platform for urea sensor. ACS Nano 2012, 6, 168–175. [Google Scholar] [CrossRef]
- Sharma, A.; Rawat, K.; Bohidar, H.; Solanki, P.R. Studies on clay-gelatin nanocomposite as urea sensor. Appl. Clay Sci. 2017, 146, 297–305. [Google Scholar] [CrossRef]
- Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring: A review. J. Pharm. Biomed. Anal. 1999, 19, 47–53. [Google Scholar] [CrossRef]
- Ismail, K.M.; Hassan, S.S.; Medany, S.S.; Hefnawy, M.A. A facile sonochemical synthesis of the Zn-based metal–organic framework for electrochemical sensing of paracetamol. Mater. Adv. 2024, 5, 5870–5884. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.S.; Lou, X.W.; Wang, Z.; Madhavi, S. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2. [Google Scholar] [CrossRef]
- Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq. 2019, 278, 672–676. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.; Liu, Y.; Li, J.; Cui, H. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 2019, 30, 861–868. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, J.; Kaur, G.; Kumar, S.; Kukkar, D.; Rawat, M. CTAB assisted co-precipitation synthesis of NiO nanoparticles and their efficient potential towards the removal of industrial dyes. Micro Nano Lett. 2019, 14, 856–859. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, Z.; Wei, Z.; Xu, L.; Gui, Y.; Chen, W. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 sensing. Front. Chem. 2018, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Zorkipli, N.N.M.; Kaus, N.H.M.; Mohamad, A.A. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 2016, 19, 626–631. [Google Scholar] [CrossRef]
- Sohail, I.; Hussain, Z.; Khan, A.N.; Yaqoob, K. Synthesis and characterization of electrodeposited NiO thin film on electrode grade carbon plate for supercapacitor applications. Mater. Res. Express 2017, 4, 116412. [Google Scholar] [CrossRef]
- Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; Kennedy, L.J. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B Biol. 2016, 164, 352–360. [Google Scholar] [CrossRef]
- Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B Biol. 2018, 180, 39–50. [Google Scholar] [CrossRef]
- Jha, S.N.; Jaiswal, P.; Borah, A.; Gautam, A.K.; Srivastava, N. Detection and Quantification of Urea in Milk Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Food Bioprocess Technol. 2015, 8, 926–933. [Google Scholar] [CrossRef]
- Boggs, B.K.; King, R.L.; Botte, G.G. Urea electrolysis: Direct hydrogen production from urine. RSC Adv. 2009, 32, 4859–4861. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.-Q.; Yu, K.-X.; Gong, Y.-X. Rapid and quantitative determination of urea in milk by reaction headspace gas chromatography. Microchem. J. 2019, 147, 838–841. [Google Scholar] [CrossRef]
- Nie, F.; Wang, N.; Xu, P.; Zheng, J. Determination of urea in milk based on N-bromosuccinimide–dichlorofluorescein postchemiluminescence method. J. Food Drug Anal. 2017, 25, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.J.; Luo, C.H.; Lin, J.L.; Chou, S.H.; Chen, P.H.; Syu, M.J.; Kuo, S.H.; Lai, S.C. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations. Sensors 2016, 16, 474. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, G.; Higgs, K. Rapid detection of economic adulterants in fresh milk by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1288, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.-H.; Hong, G.-L.; Lin, F.-L.; Liu, A.-L.; Xia, X.-H.; Chen, W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 915, 74–80. [Google Scholar] [CrossRef]
- Chowdhury, S.; Nugraha, A.S.; O’May, R.; Wang, X.; Cheng, P.; Xin, R.; Osman, S.M.; Hossain, M.S.; Yamauchi, Y.; Masud, M.K. Bimetallic metal-organic framework-derived porous one-dimensional carbon materials for electrochemical sensing of dopamine. Chem. Eng. J. 2024, 492, 152124. [Google Scholar] [CrossRef]
- The Nutrition Source. Available online: https://nutritionsource.hsph.harvard.edu/food-features/bananas/#:~:text=Source%20Of&text=One%20serving%2C%20or%20one%20medium,fiber%2C%20and%20450%20mg%20potassium (accessed on 24 September 2024).
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits—A review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef]
- Kaimal, R.; Dube, A.; Al Souwaileh, A.; Wu, J.J.; Anandan, S. A copper metal–organic framework-based electrochemical sensor for identification of glutathione in pharmaceutical samples. Analyst 2024, 149, 947–957. [Google Scholar] [CrossRef]
- Radhakrishnan, A.A.; Beena, B.B. Structural and optical absorption analysis of CuO nanoparticles. Indian J. Adv. Chem. Sci 2014, 2, 158–161. [Google Scholar]
- Bayat, M.; Zargar, M.; Astarkhanova, T.; Pakina, E.; Ladan, S.; Lyashko, M.; Shkurkin, S.I. Facile biogenic synthesis and characterization of seven metal-based nanoparticles conjugated with phytochemical bioactives using fragaria ananassa leaf extract. Molecules 2021, 26, 3025. [Google Scholar] [CrossRef]
- Wan, Y.; Liang, Q.; Cong, T.; Wang, X.; Tao, Y.; Sun, M.; Li, Z.; Xu, S. Novel catalyst of zinc tetraamino-phthalocyanine supported by multi-walled carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Adv. 2015, 5, 66286–66293. [Google Scholar] [CrossRef]
- Prakash, I.; Muralidharan, P.; Nallamuthu, N.; Venkateswarlu, M.; Satyanarayana, N. Preparation and characterization of nanocrystallite size cuprous oxide. Mater. Res. Bull. 2007, 42, 1619–1624. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Z.; Tao, S. Urea-based fuel cells and electrocatalysts for urea oxidation. Energy Technol. 2016, 4, 1329–1337. [Google Scholar] [CrossRef]
- Ma, L.; Lin, Y.; Wang, Y.; Li, J.; Wang, E.; Qiu, M.; Yu, Y. Aligned 2-D nanosheet Cu2O film: Oriented deposition on Cu foil and its photoelectrochemical property. J. Phys. Chem. C 2008, 112, 18916–18922. [Google Scholar] [CrossRef]
- Xu, W.; Lan, R.; Du, D.; Humphreys, J.; Walker, M.; Wu, Z.; Wang, H.; Tao, S. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 2017, 218, 470–479. [Google Scholar] [CrossRef]
- Rostami, H.; Rostami, A.A.; Omrani, A. An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim. Acta 2016, 194, 431–440. [Google Scholar] [CrossRef]
- Anantharaj, S.; Sugime, H.; Noda, S. Ultrafast growth of a Cu(OH)2–CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 27327–27338. [Google Scholar] [CrossRef] [PubMed]
- Hefnawy, M.A.; Fadlallah, S.A.; El-Sherif, R.M.; Medany, S.S. Synergistic effect of Cu-doped NiO for enhancing urea electrooxidation: Comparative electrochemical and DFT studies. J. Alloys Compd. 2022, 896, 162857. [Google Scholar] [CrossRef]
- Parveen, M.; Tahira, A.; Mahar, I.A.; Bhatti, M.A.; Dawi, E.; Nafady, A.; Alshammari, R.H.; Vigolo, B.; Qi, K.; Ibupoto, Z.H. Green structure orienting and reducing agents of wheat peel extract induced abundant surface oxygen vacancies and transformed the nanoflake morphology of NiO into a plate-like shape with enhanced non-enzymatic urea sensing application. RSC Adv. 2023, 13, 34122–34135. [Google Scholar] [CrossRef]
- Amin, S.; Tahira, A.; Solangi, A.; Beni, V.; Morante, J.R.; Liu, X.; Falhman, M.; Mazzaro, R.; Ibupoto, Z.H.; Vomiero, A. A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles. RSC Adv. 2019, 9, 14443–14451. [Google Scholar] [CrossRef]
- Mangrio, S.; Tahira, A.; Chang, A.S.; Mahar, I.A.; Markhand, M.; Shah, A.A.; Medany, S.S.; Nafady, A.; Dawi, E.A.; Saleem, L.M. Advanced Urea Precursors Driven NiCo2O4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. Biosensors 2023, 13, 444. [Google Scholar] [CrossRef]
- Naz, I.; Tahira, A.; Shah, A.A.; Bhatti, M.A.; Mahar, I.A.; Markhand, M.P.; Mastoi, G.M.; Nafady, A.; Medany, S.S.; Dawi, E.A. Green Synthesis of NiO Nanoflakes Using Bitter Gourd Peel, and Their Electrochemical Urea Sensing Application. Micromachines 2023, 14, 677. [Google Scholar] [CrossRef] [PubMed]
- Farithkhan, A.; John, S.A. Three-Dimensional Coral-Like NiFe-Layered Double Hydroxides on Biomass-Derived Nitrogen-Doped Carbonized Wood as a Sensitive Probe for Nonenzymatic Urea Determination. ACS Sustain. Chem. Eng. 2022, 10, 6952–6962. [Google Scholar] [CrossRef]
- Salarizadeh, N.; Habibi-Rezaei, M.; Zargar, S.J. NiO–MoO3 nanocomposite: A sensitive non-enzymatic sensor for glucose and urea monitoring. Mater. Chem. Phys. 2022, 281, 125870. [Google Scholar] [CrossRef]
- Mangrio, S.; Tahira, A.; Mahar, I.A.; Parveen, M.; Hullio, A.A.; Solangi, D.A.; Khawaja, A.; Bhatti, M.A.; Ibupoto, Z.A.; Mallah, A.B. Electrochemical non-enzymatic urea sensing using polyvinylpyrrolidine derived highly electrocatalytic NiCo2O4 nanowires. J. Nanopart. Res. 2023, 25, 195. [Google Scholar] [CrossRef]
- Anil, A.G.; Naik, T.S.K.; Subramanian, S.; Ramamurthy, P.C. A novel non-enzymatic urea sensor based on the nickel complex of a benzimidazoyl pyridine derivative. J. Electroanal. Chem. 2021, 883, 115062. [Google Scholar] [CrossRef]
- Mishra, S.R.; Gadore, V.; Verma, R.; Singh, K.R.; Singh, J.; Ahmaruzzaman, M. In2S3 incorporated into CO32−@ Ni/Fe/Zn trimetallic LDH as a bi-functional novel nanomaterial for enzymatic urea sensing and removal of sulfur-containing pharmaceutical from aqueous streams. Chem. Eng. J. 2023, 475, 146207. [Google Scholar] [CrossRef]
- Ashakirin, S.N.; Haniff, M.A.S.M.; Zaid, M.H.M.; Razipwee, M.F.M.; Mahmoudi, E. Urease immobilized electrodeposited silver reduce graphene oxide modified screen-printed carbon electrode for highly urea detection. Measurement 2022, 196, 111058. [Google Scholar] [CrossRef]
- Wahab, R.; Khan, F.; Alam, M.; Ahmad, J.; Al-Khedhairy, A.A. Aluminum oxide quantum dots (Al2O3): An immediate sensing aptitude for the detection of urea. Inorg. Chem. Commun. 2023, 147, 110238. [Google Scholar] [CrossRef]
Experiment | Volume of Extract in μL | Concentration in (mM) | Signal |
---|---|---|---|
1 | 5 μL | 10 | 1.47 × 10−4 |
2 | 10 μL | 15 | 1.67 × 10−4 |
3 | 15 μL | 17 | 1.73 × 10−4 |
Experiment | Volume of Extract in μL | Concentration in (mM) | Signal |
---|---|---|---|
1 | 5 μL | 0.1 | 7.2 × 10−5 |
2 | 10 μL | 0.5 | 7.77 × 10−5 |
3 | 15 μL | 1 | 8.18 × 10−5 |
Experiment | Volume of Extract in μL | Concentration in (mM) | Signal |
---|---|---|---|
1 | 5 μL | 8 | 1.39 × 10−4 |
2 | 7 μL | 9 | 1.43 × 10−4 |
3 | 9 μL | 11 | 1.51 × 10−4 |
Experiment | Volume of Extract in μL | Concentration in (mM) | Signal |
---|---|---|---|
1 | 10 μL | 0.1 | 7.24 × 10−5 |
2 | 15 μL | 2 | 9.19 × 10−5 |
3 | 20 μL | 3.5 | 1.06 × 10−4 |
Electrode Material | Linear Range (mM) | LOD | Reference |
---|---|---|---|
NiO Nanoplates | 0.1 mM to 13 mM | 0.003 mM | [39] |
NiCo2O4 nanoneedles | 0.01 mM to 5 mM | 1 μM | [40] |
NiCo2O4 | 0.1 mM to 10 mM | 0.006 mM | [41] |
NiO Nanoflakes | 1 mM to 9 mM | 0.02 mM | [42] |
NF-LDH | 0.5 mM to 8 mM | 0.114 mM | [43] |
NiO–MoO3 | 1 mM to 10 mM | 0.86 μM | [44] |
NiCo2O4 Nanowires | 1 mM to 16 mM | 0.01 mM | [45] |
NiBzimpy/MCPE | 0.01 mM to 0.1 mM | 1.5 μM | [46] |
In2S3/LDH/ITO@urease | 1 μM to 240 μM | 0.246 μM | [47] |
Urease@AgrGO/SPCE | 0.001 mM to 10 mM | 0.162 μM | [48] |
γ-Al2O3QDs | 3.56 μM to 16.52 μM | 0.110 μM | [49] |
CuO/NiO | 0.1 mM to 17 mM | 0.00 4 mM | Present Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, I.; Tahira, A.; Mallah, A.B.; Mahar, I.A.; Hayat, A.; Shah, A.A.; Dawi, E.; AbdElKader, A.; Saleem, L.; Ibrahim, R.M.; et al. Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media. Catalysts 2024, 14, 669. https://doi.org/10.3390/catal14100669
Naz I, Tahira A, Mallah AB, Mahar IA, Hayat A, Shah AA, Dawi E, AbdElKader A, Saleem L, Ibrahim RM, et al. Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media. Catalysts. 2024; 14(10):669. https://doi.org/10.3390/catal14100669
Chicago/Turabian StyleNaz, Irum, Aneela Tahira, Arfana Begum Mallah, Ihsan Ali Mahar, Asma Hayat, Aqeel Ahmed Shah, Elmuez Dawi, Atef AbdElKader, Lama Saleem, Rafat M. Ibrahim, and et al. 2024. "Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media" Catalysts 14, no. 10: 669. https://doi.org/10.3390/catal14100669
APA StyleNaz, I., Tahira, A., Mallah, A. B., Mahar, I. A., Hayat, A., Shah, A. A., Dawi, E., AbdElKader, A., Saleem, L., Ibrahim, R. M., & Ibupoto, Z. H. (2024). Utilization of Banana Juice Biomass Waste to Activate CuO/NiO Composites for Electrocatalytic Oxidation of Urea in Alkaline Media. Catalysts, 14(10), 669. https://doi.org/10.3390/catal14100669