Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enhancement of the Endogenous Enzyme Expression to Achieve Citric Acid Production from Acetate
2.2. Manipulation of Multiple Enzymes to Construct Itaconic Acid Synthesis Pathway
2.3. Achieving Itaconic Acid Production from Acetate by the Engineered Strain
2.4. Down-Regulation of Fatty Acid Synthase in Acetyl-CoA Competitive Pathway to Promote the Synthesis of Target Products
3. Materials and Methods
3.1. Strains and Culture Conditions
3.2. Plasmid Construction and Transformation
3.3. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, H.; Yang, J.E.; Ha, J.Y.; Chae, T.U.; Shin, J.H.; Gustavsson, M.; Lee, S.Y. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2015, 36, 73–84. [Google Scholar] [CrossRef]
- Seo, S.W.; Yang, J.; Min, B.E.; Jang, S.; Lim, J.H.; Lim, H.G.; Kim, S.C.; Kim, S.Y.; Jeong, J.H.; Jung, G.Y. Synthetic biology: Tools to design microbes for the production of chemicals and fuels. Biotechnol. Adv. 2013, 31, 811–817. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Zhang, R.; Ning, Y.; Yu, Y.; Xu, P.; Deng, L.; Wang, F. Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol. Adv. 2023, 62, 108076. [Google Scholar] [CrossRef]
- Lende, S.V.; Karemore, H.; Umekar, M.J. Review on production of citric acid by fermentation technology. GSC Biol. Pharm. Sci. 2021, 17, 085–093. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, H.; Ning, Y.; Yu, Y.; Deng, L.; Wang, F. Recent Advances on the Production of Itaconic Acid via the Fermentation and Metabolic Engineering. Fermentation 2023, 9, 71. [Google Scholar] [CrossRef]
- Saha, B.C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J. Ind. Microbiol. Biotechnol. 2017, 44, 303–315. [Google Scholar] [CrossRef]
- Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009, 84, 597–606. [Google Scholar] [CrossRef]
- Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015, 28, 223–239. [Google Scholar]
- Behera, B.C. Citric acid from Aspergillus niger: A comprehensive overview. Crit. Rev. Microbiol. 2020, 46, 727–749. [Google Scholar] [CrossRef]
- Jeon, H.G.; Cheong, D.E.; Han, Y.; Song, J.J.; Choi, J.H. Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5′-coding region variant of the cadA gene. Biotechnol. Bioeng. 2016, 113, 1504–1510. [Google Scholar] [CrossRef]
- Park, Y.-K.; Ledesma-Amaro, R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol. 2023, 41, 242–254. [Google Scholar] [CrossRef]
- Liu, H.; Marsafari, M.; Wang, F.; Deng, L.; Xu, P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab. Eng. 2019, 56, 60–68. [Google Scholar] [CrossRef]
- Yuzbasheva, E.Y.; Agrimi, G.; Yuzbashev, T.V.; Scarcia, P.; Vinogradova, E.B.; Palmieri, L.; Shutov, A.V.; Kosikhina, I.M.; Palmieri, F.; Sineoky, S.P. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid. Metab. Eng. 2019, 54, 264–274. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Fatykhova, A.R.; Dedyukhina, E.G.; Anastassiadis, S.G.; Golovchenko, N.P.; Morgunov, I.G. Food Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Technol. Biotechnol. 2011, 49, 65–74. [Google Scholar]
- Blazeck, J.; Hill, A.; Jamoussi, M.; Pan, A.; Miller, J.; Alper, H.S. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab. Eng. 2015, 32, 66–73. [Google Scholar] [CrossRef]
- Novak, K.; Pflügl, S. Towards biobased industry: Acetate as a promising feedstock to enhance the potential of microbial cell factories. FEMS Microbiol. Lett. 2018, 365, fny226. [Google Scholar] [CrossRef]
- Kumar, V.; Ashok, S.; Park, S. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 2013, 31, 945–961. [Google Scholar] [CrossRef]
- Kumar, V.; Park, S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol. Adv. 2018, 36, 150–167. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Kim, Y.; Lama, S.; Agrawal, D.; Kumar, V.; Park, S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol. Adv. 2021, 49, 107736. [Google Scholar] [CrossRef]
- Bernal, V.; Castaño-Cerezo, S.; Cánovas, M. Acetate metabolism regulation in Escherichia coli: Carbon overflow, pathogenicity, and beyond. Appl. Microbiol. Biotechnol. 2016, 100, 8985–9001. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Feng, G.-H.; Chen, W.; Song, Y.-F.; Dong, X.; Li, G.-H.; Zhang, H.-J.; Wei, W. Artificial bioconversion of carbon dioxide. Chin. J. Catal. 2019, 40, 1421–1437. [Google Scholar] [CrossRef]
- Schuchmann, K.; Müller, V. Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 2014, 12, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.W.; Ross, D.E.; Fichot, E.B.; Norman, R.S.; May, H.D. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 2013, 47, 6023–6029. [Google Scholar] [CrossRef]
- Niu, H.; Li, R.; Wu, J.; Cai, Z.; Yang, D.; Gu, P.; Li, Q. Production of succinate by recombinant Escherichia coli using acetate as the sole carbon source. 3 Biotech. 2018, 8, 421. [Google Scholar] [CrossRef]
- Lai, N.; Luo, Y.; Fei, P.; Hu, P.; Wu, H. One stone two birds: Biosynthesis of 3-hydroxypropionic acid from CO(2) and syngas-derived acetic acid in Escherichia coli. Synth. Syst. Biotechnol. 2021, 6, 144–152. [Google Scholar] [CrossRef]
- Noh, M.H.; Lim, H.G.; Woo, S.H.; Song, J.; Jung, G.Y. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol. Bioeng. 2018, 115, 729–738. [Google Scholar] [CrossRef]
- Cavallo, E.; Nobile, M.; Cerrutti, P.; Foresti, M.L. Exploring the production of citric acid with Yarrowia lipolytica using corn wet milling products as alternative low-cost fermentation media. Biochem. Eng. J. 2020, 155, 107463. [Google Scholar] [CrossRef]
- Zhong, W.; Yang, M.; Hao, X.; Sharshar, M.M.; Wang, Q.; Xing, J. Improvement of d-lactic acid productivity by introducing Escherichia coli acetyl-CoA synthesis pathway in engineered Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2021, 96, 2509–2519. [Google Scholar] [CrossRef]
- Steiger, M.G.; Punt, P.J.; Ram, A.F.J.; Mattanovich, D.; Sauer, M. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab. Eng. 2016, 35, 95–104. [Google Scholar] [CrossRef]
- Sun, W.; Vila-Santa, A.; Liu, N.; Prozorov, T.; Xie, D.; Faria, N.T.; Ferreira, F.C.; Mira, N.P.; Shao, Z. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metab. Eng. Commun. 2020, 10, e00124. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Chin, T.; Hiratsuka, K.; Aso, Y.; Tanaka, Y.; Takahashi, T.; Ohara, H. Production of itaconic acid using metabolically engineered Escherichia coli. J. Gen. Appl. Microbiol. 2014, 60, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Steiger, M.G.; Blumhoff, M.L.; Mattanovich, D.; Sauer, M. Biochemistry of microbial itaconic acid production. Front. Microbiol. 2013, 4, 23. [Google Scholar]
- Zhao, C.; Cui, Z.; Zhao, X.; Zhang, J.; Zhang, L.; Tian, Y.; Qi, Q.; Liu, J. Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl. Microbiol. Biotechnol. 2019, 103, 2181–2192. [Google Scholar]
- Krivoruchko, A.; Zhang, Y.; Siewers, V.; Chen, Y.; Nielsen, J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 2015, 28, 28–42. [Google Scholar] [CrossRef]
- Oliver, D.J.; Nikolau, B.J.; Wurtele, E.S. Acetyl-CoA—Life at the metabolic nexus. Plant Sci. 2009, 176, 597–601. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Deng, L.; Xu, P. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresour. Technol. 2020, 317, 123991. [Google Scholar]
- Liu, H.; Huang, X.; Liu, Y.; Jing, X.; Ning, Y.; Xu, P.; Deng, L.; Wang, F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. J. Agric. Food Chem. 2023, 71, 18909–18918. [Google Scholar] [CrossRef]
- Lv, Y.; Gu, Y.; Xu, J.; Zhou, J.; Xu, P. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metab. Eng. 2020, 61, 79–88. [Google Scholar] [CrossRef]
- Pinhal, S.; Ropers, D.; Geiselmann, J.; de Jong, H. Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate. J. Bacteriol. 2019, 201, e00147-19. [Google Scholar] [CrossRef]
- Wong, L.; Engel, J.; Jin, E.; Holdridge, B.; Xu, P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia Lipolytica. Metab. Eng. Commun. 2017, 5, 68–77. [Google Scholar] [CrossRef]
- Ma, J.; Gu, Y.; Xu, P. Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica. Commun. Biol. 2022, 5, 1239. [Google Scholar] [CrossRef]
- Cao, X.; Wei, L.-J.; Lin, J.-Y.; Hua, Q.J.B.T. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 2017, 245, 1641–1644. [Google Scholar] [CrossRef] [PubMed]
Plasmid or Strain | Relevant Properties or Genotype | Source |
---|---|---|
Plasmid | ||
PYLXP’ | - | [41] |
PYLXP’-ylCAS | PYLXP’ carrying CAS from Y. lipolytica | This study |
PYLXP’-ylCAS-ylACS | PYLXP’ carrying CAS and ACS from Y. lipolytica | This study |
PYLXP’-ylCAS-EcACS | PYLXP’ carrying CAS from Y. lipolytica and ACS from E. coli | This study |
PYLXP’-ylCAS-ylACS-ylMTT | PYLXP’ carrying CAS, ACS, MTT from Y. lipolytica | This study |
PYLXP’-AtCADA | PYLXP’ carrying CADA from A. terreus | This study |
PYLXP’-AtCADA-ylMTT | PYLXP’ carrying CADA from A. terreus, MTT from Y. lipolytica | This study |
PYLXP’-AtCADA-ylACO | PYLXP’ carrying CADA from A. terreus, ACO from Y. lipolytica | This study |
PYLXP’-AtCADA-ylMTT-ylCAS -ylACS | PYLXP’ carrying CADA from A. terreus, ACS, MTT, CAS from Y. lipolytica | This study |
pΔleu2loxP-gRNA(FAS1-FAS2)-dCas9 | pΔleu2loxP carrying gRNAs (FAS1and FAS2) and dCas9 | [39] |
Strains | ||
E. coli DH5α | φ80,lacZΔM15,Δ (lacZYA-argF) U169, endA1, recA1,hsdR17(rk−,mk+), supE44, λ−, thi-1, gyrA96, relA1, phoA | Tian Gen Biotech Co., Ltd., Beijing, China |
Y. lipolytica Po1fk | MatA, Leu-, Ura-, ΔAEP, ΔAXP, Suc+, ΔKu70 | [42] |
Y. lipolytica Po1fk-FAS | Y. lipolytica Po1fk with the integration of gRNAs (FAS1and FAS2) and dCas9 circuits at leu2 site | This study |
HLYaLiCA1 | Y. lipolytica Po1fk with vector PYLXP’-ylCAS-ylACS-ylMTT | This study |
HLYaLiCA2 | Y. lipolytica Po1fk-FAS with vector PYLXP’-ylCAS-ylACS-ylMTT | This study |
HLYaLiITA1 | Y. lipolytica Po1fk with vector PYLXP’-AtCADA-ylMTT-ylCAS -ylACS | This study |
HLYaLiITA2 | Y. lipolytica Po1fk-FAS with vector PYLXP’-AtCADA-ylMTT-ylCAS -ylACS | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Y.; Zhang, R.; Liu, H.; Yu, Y.; Deng, L.; Wang, F. Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica. Catalysts 2024, 14, 710. https://doi.org/10.3390/catal14100710
Ning Y, Zhang R, Liu H, Yu Y, Deng L, Wang F. Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica. Catalysts. 2024; 14(10):710. https://doi.org/10.3390/catal14100710
Chicago/Turabian StyleNing, Yuchen, Renwei Zhang, Huan Liu, Yue Yu, Li Deng, and Fang Wang. 2024. "Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica" Catalysts 14, no. 10: 710. https://doi.org/10.3390/catal14100710
APA StyleNing, Y., Zhang, R., Liu, H., Yu, Y., Deng, L., & Wang, F. (2024). Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica. Catalysts, 14(10), 710. https://doi.org/10.3390/catal14100710