Optimization of Palladium-Catalyzed One-Pot Synthesis of Functionalized Furans for High-Yield Production: A Study of Catalytic and Reaction Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Catalyst Type
2.2. Effect of Solvent Type
2.3. Effect of Base Type
2.4. Effect of Oxidant Type
2.5. Synthesis of Functionalized Furans from Different 1,3-Diketones and Alkenyl Bromides
2.6. Hypothetical Mechanism
3. Experimental Procedure
3.1. Reagents and Materials
3.2. One-Pot Synthesis of Functionalized Furans via Pd-Catalysis
3.3. Characteristics of the Reaction Product
3.4. Characterization Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deepthi, A.; Babu, B.P.; Balachandran, A.L. Synthesis of Furans—Recent Advances. Org. Prep. Proced. Int. 2019, 51, 409–442. [Google Scholar] [CrossRef]
- Mortensen, D.S.; Rodriguez, A.L.; Carlson, K.E.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Synthesis and biological evaluation of a novel series of furans: Ligands selective for estrogen receptor α. J. Med. Chem. 2001, 44, 3838–3848. [Google Scholar] [CrossRef] [PubMed]
- Gevrek, T.N.; Sanyal, A. Furan-Containing Polymeric Materials: Harnessing the Diels-Alder Chemistry for Biomedical Applications. Eur. Polym. J. 2021, 153, 110514. [Google Scholar] [CrossRef]
- Banerjee, R.; Kumar, H.K.S.; Banerjee, M. Medicinal Significance of Furan Derivatives: A Review. Int. J. Res. Phytochem. Pharmacol. 2015, 5, 48–57. [Google Scholar]
- Sahoo, S.S.; Kataria, P.; Kontham, R. Concise and Collective Total Syntheses of 2,4-Disubstituted Furan-Derived Natural Products from Hydroxyoxetanyl Ketones. Org. Biomol. Chem. 2024, 22, 1475–1483. [Google Scholar] [CrossRef]
- Raczko, J.; Jurczak, J. Furan in the synthesis of natural products. Stud. Nat. Prod. Chem. 1995, 16, 639–685. [Google Scholar] [CrossRef]
- Minetto, G.; Raveglia, L.F.; Sega, A.; Taddei, M. Microwave-Assisted Paal–Knorr Reaction—Three-Step Regiocontrolled Synthesis of Polysubstituted Furans, Pyrroles and Thiophenes. Eur. J. Org. Chem. 2005, 24, 5277–5288. [Google Scholar] [CrossRef]
- Rao, H.S.P.; Jothilingam, S. Facile Microwave-Mediated Transformations of 2-Butene-1,4-diones and 2-Butyne-1,4-diones to Furan Derivatives. J. Org. Chem. 2003, 68, 5392–5394. [Google Scholar] [CrossRef]
- Ghazvini, M.; Shahvelayati, A.S.; Sabri, A.; Nasrabadi, F.Z. Synthesis of Furan and Dihydrofuran Derivatives via Feist–Benary Reaction in the Presence of Ammonium Acetate in Aqueous Ethanol. Chem. Heterocycl. Compd. 2016, 52, 161–164. [Google Scholar] [CrossRef]
- Efremov, I.; Paquette, L.A. First Synthesis of a Rearrangedneo-Clerodane Diterpenoid. Development of Totally Regioselective Trisubstituted Furan Ring Assembly and Medium-Ring Alkylation Tactics for Efficient Access to (−)-Teubrevin G. J. Am. Chem. Soc. 2000, 122, 9324–9325. [Google Scholar] [CrossRef]
- Rodriguez, A.; Moran, W.J. Furan Synthesis through AuCl₃-Catalysed Cycloisomerisation of β-Alkynyl β-Ketoesters. Tetrahedron Lett. 2011, 52, 2605–2607. [Google Scholar] [CrossRef]
- Arcadi, A.; Cacchi, S.; Larock, R.C.; Marinelli, F. The palladium-catalysed synthesis of 2, 3, 5-trisubstituted furans from 2-propargyl-1, 3-dicarbonyl compounds and vinylic or aryl triflates or halides. Tetrahedron Lett. 1993, 34, 2813–2816. [Google Scholar] [CrossRef]
- Zeni, G.; Larock, R.C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev. 2004, 104, 2285–2310. [Google Scholar] [CrossRef]
- Wang, W.K.; Tan, H.R.; Wang, N.N.; Ruan, H.L.; Zhao, S.Y. Copper(I)-catalyzed direct oxidative annulation of 1,3-dicarbonyl compounds with maleimides: Access to polysubstituted dihydrofuran derivatives. J. Org. Chem. 2022, 87, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Wang, Q.; Wu, K.; Wu, P.; Yu, Z. Iron-catalyzed oxidative C–H functionalization of internal olefins for the synthesis of tetrasubstituted furans. Org. Lett. 2017, 19, 3287–3290. [Google Scholar] [CrossRef]
- Colobert, F.; Castanet, A.S.; Abillard, O. Palladium-Catalyzed Suzuki Coupling with Terminal Alkynes—Application to the Synthesis of 2,3-Disubstituted Benzo[b]furans. Eur. J. Org. Chem. 2005, 2005, 3334–3341. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Lyu, D.; Yi, Y.; Zhang, J.; Sun, T.; Gao, G. Palladium-Catalyzed Domino Heck/Cross-Coupling Cyclization Reaction: Diastereoselective Synthesis of Furan-Containing Indolines. J. Org. Chem. 2024, 89, 7552–7560. [Google Scholar] [CrossRef]
- Duan, X.H.; Liu, X.Y.; Guo, L.N.; Liao, M.C.; Liu, W.M.; Liang, Y.M. Palladium-Catalyzed One-Pot Synthesis of Highly Substituted Furans by a Three-Component Annulation Reaction. J. Org. Chem. 2005, 70, 6980–6983. [Google Scholar] [CrossRef]
- Mohapatra, S.; Panda, J.; Mohapatra, S.; Nayak, S. Synthesis of Polysubstituted Furans: An Update Since 2019. Asian J. Org. Chem. 2023, 12, e202300304. [Google Scholar] [CrossRef]
- Aljaar, N.; Malakar, C.C.; Conrad, J.; Strobel, S.; Schleid, T.; Beifuss, U. Cu-catalyzed reaction of 1,2-dihalobenzenes with 1,3-cyclohexanediones for the synthesis of 3,4-dihydrodibenzo[b,d]furan-1(2H)-ones. J. Org. Chem. 2012, 77, 7793–7803. [Google Scholar] [CrossRef]
- Kumar, P.; Satbhaiya, S. Proline and proline-derived organocatalysts in the synthesis of heterocycles. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 215–251. [Google Scholar] [CrossRef]
- Tian, Y.M.; Wang, H.; König, B. Photocatalytic synthesis of tetra-substituted furans promoted by carbon dioxide. Chem. Sci. 2024, 15, 3084–3213. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, P.; Bala, A.; Mehta, S.K.; Bhasin, K.K. Visible-Light Photocatalyzed Synthesis of 2-ArylN-Methylpyrroles, Furans, and Thiophenes Utilizing Arylsulfonyl Chlorides as a Coupling Partner. Tetrahedron 2016, 72, 2521–2526. [Google Scholar] [CrossRef]
- Han, X.; Widenhoefer, R.A. Palladium-Catalyzed Oxidative Alkoxylation of α-Alkenyl β-Diketones to Form Functionalized Furans. J. Org. Chem. 2004, 69, 1738–1740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chang, M.; Xu, X.; Zhao, Q. Direct Access to Furan and Cyclopropane Derivatives via Palladium-Catalyzed C-H Activation/Alkene Insertion/Annulation. Chem. Commun. 2024, 60, 6769–6772. [Google Scholar] [CrossRef]
- Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Sequential Alkylation/Transition Metal Catalyzed Annulation Reactions of 1,3-Dicarbonyl Compounds with Propargyl Bromide. Tetrahedron Lett. 2000, 41, 9195–9198. [Google Scholar] [CrossRef]
- Zhu, C.F.; Gao, C.H.; Hao, W.J.; Zhu, Y.L.; Tu, S.J.; Wang, D.C.; Jiang, B. Synthesis of C₃-alkylated benzofurans via palladium-catalyzed regiocontrolled hydro-furanization of unactivated alkenes. Org. Chem. Front. 2021, 8, 247. [Google Scholar] [CrossRef]
- Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. Studies on the Transition Metal-Catalyzed Synthesis of Variously Substituted (E)-3-[1-(Aryl)Methylidene]- and (E)-3-(1-Alkylidene)-3H-Furan-2-Ones. Tetrahedron 1998, 54, 135–156. [Google Scholar] [CrossRef]
- Hfaiedh, A.; Yuan, K.; Ben Ammar, H.; Ben Hassine, B.; Soulé, J.F.; Doucet, H. Eco-friendly solvents for palladium-catalyzed desulfitative C–H bond arylation of heteroarenes. ChemSusChem 2015, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Jiang, H.F.; Huang, H.W.; Zhao, J.W. Pd-catalyzed cyclization reaction: A convenient domino process for the synthesis of α-carbonyl furan derivatives. Org. Biomol. Chem. 2011, 9, 7313–7317. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, H.; Cao, H.; Zhao, J.; Shi, D. Palladium-Catalyzed One-Pot Synthesis of Polysubstituted Furans from Alkynoates and 2-yn-1-ols. Tetrahedron 2012, 68, 3135–3144. [Google Scholar] [CrossRef]
- Nallagonda, R.; Reddy, R.R.; Ghorai, P. Palladium-Catalyzed Oxidative Cycloisomerization of 2-Cinnamyl-1,3-Dicarbonyls: Synthesis of Functionalized 2-Benzyl Furans. Chem.–Eur. J. 2015, 21, 14732–14736. [Google Scholar] [CrossRef] [PubMed]
- Moran, W.J.; Rodríguez, A. Metal-Catalyzed Furan Synthesis. A Review. Org. Prep. Proc. Int. 2012, 44, 103–130. [Google Scholar] [CrossRef]
- Guo, L.N.; Duan, X.H.; Liang, Y.M. Palladium-Catalyzed Cyclization of Propargylic Compounds. Acc. Chem. Res. 2011, 44, 111–122. [Google Scholar] [CrossRef]
- Makarov, A.S.; Uchuskin, M.G.; Gevorgyan, V. Intramolecular Palladium-Catalyzed Oxidative Amination of Furans: Synthesis of Functionalized Indoles. J. Org. Chem. 2018, 83, 14010–14021. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.Y.; Fang, X.X.; Liu, G.Q.; Ling, Y. Preparation of Polysubstituted Dihydrofurans through a PhI(OAc)₂-Promoted Haloenolcyclization of Olefinic Dicarbonyl Compounds. Org. Biomol. Chem. 2018, 16, 7454–7460. [Google Scholar] [CrossRef] [PubMed]
- Yusifov, N.N.; Ismayilov, V.M.; Sadigova, N.D.; Kopylovich, M.N.; Mahmudov, K.T. A Straightforward Synthesis of 2(3),6,6-Trimethyl-6,7-Dihydrobenzofuran-4(5H)-ones. Mendeleev Commun. 2013, 23, 292–293. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Guan, Z.; Tang, R.-C.; Ostojic, Z.; Jones, T.N.; Wu, T.-T.; He, Y.-H. A Simple Preparation of Ethyl 2,5-Dimethylfuran-3-Carboxylate and 2,5-Dimethylfuran-3,4-Dicarboxylic Acid from Diethyl 2,3-Diacetylsuccinate. J. Heterocycl. Chem. 2009, 46, 540–543. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | Base | Oxidant | Temp (°C) | Time (h) | Yield (%) |
1 | PdCl2(CH3CN)2 | Dioxane | K2CO3 | CuCl2 | 80 | 2 | 94 |
2 | Pd(OAc)2 | Dioxane | K2CO3 | CuCl2 | 80 | 6 | 80 |
3 | Pd(acac)2 | Dioxane | K2CO3 | CuCl2 | 80 | 6 | 63 |
4 | PdCl2(CH3CN)2 | Dioxane | K3PO4 | CuCl2 | 80 | 6 | 25 |
5 | PdCl2(CH3CN)2 | Dioxane | Cs2CO3 | CuCl2 | 80 | 6 | 51 |
6 | PdCl2(CH3CN)2 | Dioxane | KOtBu | CuCl2 | 80 | 6 | 35 |
7 | PdCl2(CH3CN)2 | Dioxane | NaOAc | CuCl2 | 80 | 6 | 32 |
8 | PdCl2(CH3CN)2 | Dioxane | Et3N | CuCl2 | 80 | 6 | 0 |
9 | PdCl2(CH3CN)2 | DMF | K2CO3 | CuCl2 | 80 | 12 | 51 |
10 | PdCl2(CH3CN)2 | Dioxane | K2CO3 | BQ | 80 | 6 | 62 |
11 | PdCl2(CH3CN)2 | Dioxane | K2CO3 | IBX | 80 | 6 | 55 |
Exp. | Reactants | Product | Yield | |
---|---|---|---|---|
1,3-diketone | Allyl Halid | |||
1 | 94% | |||
2 | 88% | |||
3 | 25% | |||
4 | 21% | |||
5 | 71% | |||
6 | 89% | |||
7 | 80% | |||
8 | 85% | |||
9 | 81% | |||
10 | 55% | |||
11 | 72% | |||
12 | 82% | |||
13 | 84% | |||
14 | 86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haiouani, K.; Hegazy, S.; Alsaeedi, H.; Bechelany, M.; Barhoum, A. Optimization of Palladium-Catalyzed One-Pot Synthesis of Functionalized Furans for High-Yield Production: A Study of Catalytic and Reaction Parameters. Catalysts 2024, 14, 712. https://doi.org/10.3390/catal14100712
Haiouani K, Hegazy S, Alsaeedi H, Bechelany M, Barhoum A. Optimization of Palladium-Catalyzed One-Pot Synthesis of Functionalized Furans for High-Yield Production: A Study of Catalytic and Reaction Parameters. Catalysts. 2024; 14(10):712. https://doi.org/10.3390/catal14100712
Chicago/Turabian StyleHaiouani, Kheira, Sherif Hegazy, Huda Alsaeedi, Mikhael Bechelany, and Ahmed Barhoum. 2024. "Optimization of Palladium-Catalyzed One-Pot Synthesis of Functionalized Furans for High-Yield Production: A Study of Catalytic and Reaction Parameters" Catalysts 14, no. 10: 712. https://doi.org/10.3390/catal14100712
APA StyleHaiouani, K., Hegazy, S., Alsaeedi, H., Bechelany, M., & Barhoum, A. (2024). Optimization of Palladium-Catalyzed One-Pot Synthesis of Functionalized Furans for High-Yield Production: A Study of Catalytic and Reaction Parameters. Catalysts, 14(10), 712. https://doi.org/10.3390/catal14100712