Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes
Abstract
:1. Introduction
2. Research Methodology
3. Some Typical Industrial Solid Wastes
3.1. Coal Fly Ash
3.2. Metallurgical Slag
- (1)
- Blast furnace slag
- (2)
- Steel slag
- (3)
- Coal gasification slag
- (4)
- Some other slags
3.3. Waste Glass
3.4. Waste Catalyst
4. Synthesis of Zeolites from Industrial Wastes
4.1. Synthesis Methology
- (1)
- Hydrothermal method
- (2)
- Alkali fusion–hydrothermal synthesis [52]
- (3)
- Assisted hydrothermal synthesis
- (4)
- Synthesis with crystal seeds
- (5)
- Other new methods
4.2. Some Factors in Synthesis
4.2.1. Temperature
4.2.2. Acid or Alkali Solution
4.2.3. Si/Al
5. Application
5.1. Degradation of Volatile Organic Compounds (VOCs)
5.2. Wastewater Treatment
5.3. Denitrification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fletcher, R.E.; Ling, S.; Slater, B. Violations of Löwenstein’s rule in zeolites. Chem. Sci. 2017, 8, 7483–7491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, S.-K.; Zhang, M.-H.; Grieneisen, M.L.; Zhang, J.-F. Aliphatic hydrocarbons recovered in vegetables from soils based on their in-situ distribution in various soil humus fractions using a successive extraction method. J. Hazard. Mater. 2018, 346, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sunil Kumar, M.; Alphin, M.S.; Manigandan, S.; Vignesh, S.; Vigneshwaran, S.; Subash, T. A review of comparison between the traditional catalyst and zeolite catalyst for ammonia-selective catalytic reduction of NOx. Fuel 2023, 344, 128125. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Shang, H.; Wu, L.; Yang, J. Gas diffusion and adsorption capacity enhancement via ultrasonic pretreatment for hydrothermal synthesis of K-KFI zeolite with nano/micro-scale crystals. Microporous Mesoporous Mater. 2020, 297, 110036. [Google Scholar] [CrossRef]
- Moliner, M.; Martinez, C.; Corma, A. Multipore zeolites: Synthesis and catalytic applications. Angew. Chem. Int. Ed. 2015, 54, 3560–3579. [Google Scholar] [CrossRef]
- El Bojaddayni, I.; Emin Küçük, M.; El Ouardi, Y.; Jilal, I.; El Barkany, S.; Moradi, K.; Repo, E.; Laatikainen, K.; Ouammou, A. A review on synthesis of zeolites from natural clay resources and waste ash: Recent approaches and progress. Miner. Eng. 2023, 198, 108086. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Catalysis and sustainable (green) chemistry. Catal. Today 2003, 77, 287–297. [Google Scholar] [CrossRef]
- Wang, M.; Chen, D.; Wang, H.; Gao, W. A review on fly ash high-value synthesis utilization and its prospect. Green Energy Resour. 2024, 2, 100062. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, T.; Xiong, X.; Miki, T.; Wu, X.; Yang, L. In- situ synthesis of modified zeolite with high zirconium content using fly ash and its efficient removal for As(V) in solution. J. Environ. Chem. Eng. 2024, 12, 112212. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Z.-W.; Zhang, C.; Jiao, W.-Z.; Liu, Y.-Z. Synthesis of zeolite X from fly ash in an impinging stream reactor and its mechanisms. Chem. Eng. Sci. 2024, 294, 120123. [Google Scholar] [CrossRef]
- Gui, L.; Zhang, Z.; Sun, K.; Shi, X.; Liang, S.; Duan, H.; Yang, Z.; Yuan, S.; Guo, L.; Xu, J.; et al. Recycling of fly ash to synthesize zeolites for efficient removal of dioxins. J. Environ. Chem. Eng. 2024, 12, 112970. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, T.; Xiong, P.; Yang, S.; Gao, M.; Nagasaka, T. Green activating silica-alumina insoluble phase of fly ash to synthesize zeolite P with high adsorption capacity for Pb(II) in solution. Adv. Powder Technol. 2023, 34, 103938. [Google Scholar] [CrossRef]
- Ndlovu, N.Z.N.; Ameh, A.E.; Petrik, L.F.; Ojumu, T.V. Synthesis and characterisation of pure phase ZSM-5 and sodalite zeolites from coal fly ash. Mater. Today Commun. 2023, 34, 105436. [Google Scholar] [CrossRef]
- Haghjoo, S.; Lengauer, C.L.; Kazemian, H.; Roushani, M. Facile and innovative application of surfactant-modified-zeolite from Austrian fly ash for glyphosate removal from water solution. J. Environ. Manag. 2023, 346, 118976. [Google Scholar] [CrossRef]
- da Silva, L.T.V.; de Freitas, A.D.L.; de Gois Martins, T.; de Morais França, A.M.; Loiola, A.R.; do Nascimento, R.F. Comparative study on the performance of two synthetic zeolite 4A on the removal of heavy metals from aqueous solution—Effect of coal fly ash as Al and Si source. Desalination Water Treat. 2023, 310, 157–166. [Google Scholar] [CrossRef]
- Niu, Y.; Zheng, F.; Liu, Y.; Yang, Y.; Yu, T.; Wang, Z.; Mao, X.; Zhen, Q.; Yu, Y. The comprehensive utilization of mass and heat of hot blast furnace slag and coordinated disposal of chromium-containing sludge to prepare glass-ceramic. Ceram. Int. 2024, 50, 39983–39992. [Google Scholar] [CrossRef]
- Liu, W.; Aldahri, T.; Xu, C.; Li, C.; Rohani, S. Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process. J. Environ. Chem. Eng. 2021, 9, 104652. [Google Scholar] [CrossRef]
- Liu, W.; Aldahri, T.; Ren, S.; Xu, C.C.; Rohani, S.; Liang, B.; Li, C. Solvent-free synthesis of hydroxycancrinite zeolite microspheres during the carbonation process of blast furnace slag. J. Alloys Compd. 2020, 847, 156456. [Google Scholar] [CrossRef]
- Abdel Moniem, S.M.; Hegazey, R.M.; Embaby, M.A.; El-Kady, A.A.; Dhmees, A.S. Synthetic Zeolite from Blast Furnace Slag (BFS) as an effective sorbent for simultaneous removal of Cadmium and Copper ions. Inorg. Chem. Commun. 2024, 168, 112870. [Google Scholar] [CrossRef]
- Hu, G.; Duan, X.; Yang, J.; Yang, C.; Liu, Q.; Ren, S.; Li, J.; Teng, L.; Liu, W. A novel conversion of Ti-bearing blast furnace slag into Ti-containing zeolites: Comparison study between FAU and MFI type zeolites. Adv. Powder Technol. 2022, 33, 103559. [Google Scholar] [CrossRef]
- Wu, R.; Xiao, Y.; Zhang, P.; Lin, J.; Cheng, G.; Chen, Z.; Yu, R. Asphalt VOCs reduction of zeolite synthesized from solid wastes of red mud and steel slag. J. Clean. Prod. 2022, 345, 131078. [Google Scholar] [CrossRef]
- Jusoh, A.; Cheng, W.; Low, W.M.; Nora’Aini, A.; Noor, M.J. Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination 2005, 182, 347–353. [Google Scholar] [CrossRef]
- Samanta, N.S.; Banerjee, S.; Mondal, P.; Anweshan; Bora, U.; Purkait, M.K. Preparation and characterization of zeolite from waste Linz-Donawitz (LD) process slag of steel industry for removal of Fe3+ from drinking water. Adv. Powder Technol. 2021, 32, 3372–3387. [Google Scholar] [CrossRef]
- Shekhar Samanta, N.; Mondal, P.; Dhara, S.; Bora, U.; Purkait, M.K. Fabrication of LD-slag derived zeolite Y coated polysulfone (PSf) membrane for decontamination of groundwater. Chem. Eng. J. 2023, 478, 147330. [Google Scholar] [CrossRef]
- Wu, S.; Huang, S.; Wu, Y.; Gao, J. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag. J. Energy Inst. 2015, 88, 93–103. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Li, L.; Guo, X.; Wei, D.; Kong, J.; Du, H.; Wang, H.; Zhuang, Y.; Xing, P. A novel process to recycle coal gasification fine slag by preparing Si-Fe-Al-Ca alloy. J. Environ. Manag. 2023, 337, 117681. [Google Scholar] [CrossRef]
- Lv, B.; Deng, X.; Jiao, F.; Dong, B.; Fang, C.; Xing, B. Removal of Pb2+ in aqueous solutions using Na-type zeolite synthesized from coal gasification slag in a fluidized bed: Hydrodynamic and adsorption. Process Saf. Environ. Prot. 2023, 174, 869–881. [Google Scholar] [CrossRef]
- Tang, G.; Li, Y.; Wang, Y.; Chai, Y.; Liu, C. A review on the synthesis, structural modification and application of two-dimensional MFI zeolite. J. Porous Mater. 2022, 29, 1649–1666. [Google Scholar] [CrossRef]
- Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Synthesis and characterization of zeolite X from lithium slag. Appl. Clay Sci. 2012, 59–60, 148–151. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, J.; Wang, X.; Ma, K.; Zhai, W.; Wu, Z.; Zhang, J. Synthesis of zeolite molecular sieve 13X from coal-fired slag for efficient room temperature CO2 adsorption. Chem. Eng. Sci. 2024, 288, 119838. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite synthesis from aluminum saline slag waste. Powder Technol. 2020, 366, 175–184. [Google Scholar] [CrossRef]
- Ritter, M.T.; Lobo-Recio, M.Á.; Padilla, I.; Romero, M.; López-Delgado, A. Salt slag and rice husk ash as raw materials in zeolite synthesis: Process optimization using central composite rotational design. Sustain. Chem. Pharm. 2024, 39, 101599. [Google Scholar] [CrossRef]
- Han, J.F.; Jin, X.T.; Song, C.F.; Bi, Y.L.; Liu, Q.L.; Liu, C.X.; Ji, N.; Lu, X.B.; Ma, D.G.; Li, Z.G. Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue. Green Chem. 2020, 22, 219–229. [Google Scholar] [CrossRef]
- Balan, L.A.; Anupam, B.R.; Sharma, S. Thermal and mechanical performance of cool concrete pavements containing waste glass. Constr. Build. Mater. 2021, 290, 123238. [Google Scholar] [CrossRef]
- Sayehi, M.; Garbarino, G.; Delahay, G.; Busca, G.; Tounsi, H. Synthesis of high value-added Na–P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps. Mater. Chem. Phys. 2020, 248, 122903. [Google Scholar] [CrossRef]
- Taylor, J.H.; Elmes, V.K.; Hurt, A.P.; Coleman, N.J. Synthesis of feldspathoids and zeolite K–F from waste amber container glass. Mater. Chem. Phys. 2020, 246, 122805. [Google Scholar] [CrossRef]
- Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A. A review of metal recovery from spent petroleum catalysts and ash. Waste Manag. 2015, 45, 420–433. [Google Scholar] [CrossRef]
- Wang, B.; Chen, H.; Wang, S.; Pan, H.; Yang, Z.; Su, H.; Zhang, H.; Pan, J.; Zhang, J.-N.; Li, L.; et al. Synthesis of customized zeolite X with outstanding CO2 selectivity over CH4 and N2 using facile activated spent fluid catalytic cracking catalysts. Sep. Purif. Technol. 2025, 354, 128713. [Google Scholar] [CrossRef]
- Timoshev, V.; Haufe, L.A.; Busse, O.; Hamedi, H.; Seifert, M.; Weigand, J.J. Recycling of Spent FCC Catalysts: Conversion of Leached Residues to Zeolite ZSM-5. Chemsuschem 2024, 17, e202301642. [Google Scholar] [CrossRef]
- Monzón, J.D.; Gonzalez, M.R.; Mardones, L.E.; Conconi, M.S.; Pereyra, A.M.; Basaldella, E.I. The role of alkaline activation in the structural transformations of aluminosiliceous industrial wastes towards zeolite production. Mater. Today Commun. 2019, 21, 100624. [Google Scholar] [CrossRef]
- Le, T.; Wang, Q.; Ravindra, A.V.; Li, X.; Ju, S. Microwave intensified synthesis of Zeolite-Y from spent FCC catalyst after acid activation. J. Alloys Compd. 2019, 776, 437–446. [Google Scholar] [CrossRef]
- Lu, G.; Lu, X.; Liu, P. Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking. J. Ind. Eng. Chem. 2020, 92, 236–242. [Google Scholar] [CrossRef]
- Silva, J.S.; Medeiros de Jesus-Neto, R.; Fiuza, R.A.; Gonçalves, J.P.; Mascarenhas, A.J.S.; Andrade, H.M.C. Alkali-activation of spent fluid cracking catalysts for CO2 capture. Microporous Mesoporous Mater. 2016, 232, 1–12. [Google Scholar] [CrossRef]
- Yangcheng, R.; Cui, Y.; Luo, S.; Ran, J.; Wang, J. Hierarchical pore-trapped and hydrogen-bonded phosphoric acid in Pd-supported zeolite for the efficient aqueous hydrodeoxygenation of lignin derivatives at ambient temperature. Microporous Mesoporous Mater. 2023, 350, 112460. [Google Scholar] [CrossRef]
- Chen, L.H.; Sun, M.H.; Wang, Z.; Yang, W.M.; Xie, Z.K.; Su, B.L. Hierarchically Structured Zeolites: From Design to Application. Chem. Rev. 2020, 120, 11194–11294. [Google Scholar] [CrossRef]
- Cao, C.; Xuan, W.; Yan, S.; Wang, Q. Zeolites synthesized from industrial and agricultural solid waste and their applications: A review. J. Environ. Chem. Eng. 2023, 11, 110898. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
- Tanaka, H.; Eguchi, H.; Fujimoto, S.; Hino, R. Two-step process for synthesis of a single phase Na–A zeolite from coal fly ash by dialysis. Fuel 2006, 85, 1329–1334. [Google Scholar] [CrossRef]
- Chafiq Elidrissi, Z.; El Machtani Idrissi, D.; Kouzi, Y.; Achiou, B.; Tahiri, S.; Ouammou, M.; Alami Younssi, S. Effective conversion of fly ash waste into Na-P1 zeolite and its application on the adsorption of Cr(VI). Inorg. Chem. Commun. 2023, 156, 111192. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Wang, N.; An, S.; Peng, J.; Peng, J.; Song, X. Synthesis of hierarchical porous ceramsites loaded with GIS-P1 zeolite crystals for removal of ammonia nitrogen from aqueous solution. J. Environ. Chem. Eng. 2023, 11, 110221. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Masoudi Soltani, S. Synthesis of biomass combustion fly ash derived zeolites for CO2 adsorption: Optimisation of hydrothermal synthetic pathway. Carbon Capture Sci. Technol. 2024, 12, 100245. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Molina, A.; Poole, C. A comparative study using two methods to produce zeolites from fly ash. Miner. Eng. 2004, 17, 167–173. [Google Scholar] [CrossRef]
- Alves, J.; Dantas, E.R.S.; Pergher, S.B.C.; Melo, D.M.A.; Melo, M.A.F. Synthesis of High Value-added Zeolitic Materials Using Glass Powder Residue as a Silica Source. Mater. Res. Ibero Am. J. Mater. 2014, 17, 213–218. [Google Scholar] [CrossRef]
- Sayehi, M.; Hajji, S.; Boudjema, L.; Kazemian, H.; Nasri, M.; Tounsi, H. Using a zeolite produced from glass waste and aluminum scraps to develop a novel gelatin-based biodegradable composites films: Antibacterial and antioxidant properties of a potential food packaging material. Inorg. Chem. Commun. 2022, 140, 109415. [Google Scholar] [CrossRef]
- Lee, W.-H.; Lin, Y.-W.; Lin, K.-L. Optimization of synthesis parameters for the preparation of zeolite by reusing industrialwaste as raw material: Sandblasting waste and solar panel waste glass. Solid State Sci. 2023, 143, 107277. [Google Scholar] [CrossRef]
- Sayehi, M.; Delahay, G.; Tounsi, H. Preparation of zeolite type faujasite from glass waste and aluminum scraps for the selective catalytic reduction of NO with NH3. Inorg. Chem. Commun. 2023, 153, 110749. [Google Scholar] [CrossRef]
- Lee, W.-H.; Lin, Y.-W.; Lin, K.-L. Parameter optimization, characterization, and crystallization mechanisms underlying the synthesis of zeolite A using liquid crystal display waste glass and sandblasting waste as alternative raw materials. J. Environ. Chem. Eng. 2022, 10, 108506. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, G.; Zhao, X.; Wang, H.; Qu, Z. Flexible textural design of ZSM-5 zeolite adsorbent from coal fly ash via solvent-free method for toluene elimination. J. Environ. Chem. Eng. 2023, 11, 109589. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, H.D. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem. 2009, 15, 736–742. [Google Scholar] [CrossRef]
- Murakami, T.; Otsuka, K.; Fukasawa, T.; Ishigami, T.; Fukui, K. Hierarchical porous zeolite synthesis from coal fly ash via microwave heating. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130941. [Google Scholar] [CrossRef]
- Boycheva, S.; Marinov, I.; Miteva, S.; Zgureva, D. Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation. Sustain. Chem. Pharm. 2020, 15, 100217. [Google Scholar] [CrossRef]
- Chen, Z.; Song, G.; Li, C.; Chen, W.; Li, Z.; Kawi, S. Coal fly ash to Y zeolite of great purity and crystallinity: A new and green activation method of combined in situ microwave and ultrasound. Solid State Sci. 2023, 136, 107102. [Google Scholar] [CrossRef]
- Shu, Q.; Sun, Z.; Zhu, G.; Wang, C.; Li, H.; Qi, F.; Zhang, Q.; Li, S. Highly efficient synthesis of ZSM-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to VOCs adsorption. Process Saf. Environ. Prot. 2022, 167, 173–183. [Google Scholar] [CrossRef]
- Kim, S.; Lauterbach, J. Synthesis of ZSM-5 catalysts via microwave-assisted heating method for military jet fuel cracking into petroleum gas. Microporous Mesoporous Mater. 2021, 328, 111446. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, B.; Dai, Z.; Jiang, X.; Wang, Y. Organotemplate-free synthesis of MOR zeolite from coal fly ash through simultaneously effective extraction of Si and Al. Microporous Mesoporous Mater. 2021, 314, 110872. [Google Scholar] [CrossRef]
- Wang, B.; Ma, L.; Han, L.; Feng, Y.; Hu, J.; Xie, W.; Bao, W.; Chang, L.; Huang, Z.; Wang, J. Assembly-reassembly of coal fly ash into Cu-SSZ-13 zeolite for NH3-SCR of NO via interzeolite transformations. Chem. Eng. Sci. X 2021, 10, 100089. [Google Scholar] [CrossRef]
- Yin, R.; Han, L.; Wang, B.; Ren, W.; Chang, L.; Bao, W.; Wang, J. In-situ interzeolite transformation synthesis Cu-SSZ-13 from coal fly ash-derived zeolite for NH3-SCR reaction. J. Environ. Chem. Eng. 2024, 12, 112898. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, Y.; Chen, M.; Wang, Y.; Ding, J.; Ma, B.; Wang, Q.; Lu, S. One-step high efficiency synthesis of zeolite from fly ash by mechanochemical method as a low-cost adsorbent for cadmium removal. J. Environ. Chem. Eng. 2024, 12, 111877. [Google Scholar] [CrossRef]
- Boycheva, S.; Szegedi, Á.; Lázár, K.; Popov, C.; Popova, M. Advanced high-iron coal fly ash zeolites for low-carbon emission catalytic combustion of VOCs. Catal. Today 2023, 418, 114109. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Behin, J.; Kazemian, H.; Rohani, S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 2015, 140, 250–266. [Google Scholar] [CrossRef]
- Pathak, A.; Rana, M.S.; Marafi, M.; Kothari, R.; Gupta, P.; Tyagi, V.V. Waste petroleum fluid catalytic cracking catalysts as a raw material for synthesizing valuable zeolites: A critical overview on potential, applications, and challenges. Sustain. Mater. Technol. 2023, 38, e00733. [Google Scholar] [CrossRef]
- Liu, X.-h.; Gai, G.-s.; Yang, Y.-f.; Sui, Z.-t.; Li, L.; Fu, J.-x. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag. J. China Univ. Min. Technol. 2008, 18, 275–278. [Google Scholar] [CrossRef]
- Duan, W.; Li, R.; Wang, Z.; Ji, J.; Liu, J.; Yu, Q. Optimizing sustainability and profitability: A multi-step approach to the synthesis of X-zeolite from blast furnace slag. Process Saf. Environ. Prot. 2024, 189, 1527–1537. [Google Scholar] [CrossRef]
- Sayehi, M.; Delahay, G.; Tounsi, H. Synthesis and characterization of ecofriendly materials zeolite from waste glass and aluminum scraps using the hydrothermal technique. J. Environ. Chem. Eng. 2022, 10, 108561. [Google Scholar] [CrossRef]
- Volli, V.; Purkait, M.K. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J. Hazard. Mater. 2015, 297, 101–111. [Google Scholar] [CrossRef]
- Tsotetsi, N.; Nomngongo, P.; Mekuto, L. Synthesis, modification and characterization of nano-zeolites from coal fly ash for the removal of sulfates in wastewater. Nano Struct. Nano Objects 2024, 37, 101088. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Hu, S.; Zhang, J.; Zhang, S.; He, Q.; Luo, Q.; Gu, J. Facile synthesis of zeolite catalyst from lithium slag efficiently activates peroxymonosulfate for tetracycline degradation: •O2- and the electron transfer. Environ. Technol. Innov. 2024, 35, 103710. [Google Scholar] [CrossRef]
- Rozhkovskaya, A.; Rajapakse, J.; Millar, G.J. Process engineering approach to conversion of alum sludge and waste glass into zeolite LTA for water softening. J. Water Process Eng. 2021, 43, 102177. [Google Scholar] [CrossRef]
- Ma, W.; Yi, Y.; Fang, M.; Lin, Y.; Li, C.; Li, J.; Liu, W. Zeolite prepared from high-calcium ladle furnace slag and fly ash for Pb2+ removal. J. Water Process Eng. 2024, 61, 105351. [Google Scholar] [CrossRef]
- Mouna, S.; Hajji, S.; Tounsi, H. Waste to health: Green synthesis of Zn loaded LTA zeolite prepared from waste glass and aluminum scrap with high antioxidant and antimicrobial activities. J. Clean. Prod. 2024, 434, 139946. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Z.; Ye, X.; Cui, M.; Ma, X.; Deng, H.; Li, Y. The coupling action mechanism of NaOH/NaNO3 on the hydrothermal synthesis of fly ash-based zeolites and the Sr-Na exchange capacity. J. Environ. Chem. Eng. 2024, 12, 113436. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Sun, H.; Zhang, Z.; Ma, X. Coupling effect of NaOH and NaNO3 on the solidified fly ash-cement matrices containing Cs+: Reaction products, microstructure and leachability. J. Nucl. Mater. 2020, 539, 152252. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Yu, Y.; Zhang, Q.; Li, L.; Zhong, H.; Wang, S. A novel conversion for blast furnace slag (BFS) to the synthesis of hydroxyapatite-zeolite material and its evaluation of adsorption properties. J. Ind. Eng. Chem. 2022, 105, 63–73. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Jiang, Y.; Liu, L.; Wang, M.; Yang, J.; Chen, Z.; Liu, W.; Liu, Q. Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 2022, 320, 123969. [Google Scholar] [CrossRef]
- Fan, X.; Yuan, R.; Gan, M.; Ji, Z.; Sun, Z. Subcritical hydrothermal treatment of municipal solid waste incineration fly ash: A review. Sci. Total Environ. 2023, 865, 160745. [Google Scholar] [CrossRef]
- Kim, J.-C.; Choi, M.; Song, H.J.; Park, J.E.; Yoon, J.-H.; Park, K.-S.; Lee, C.G.; Kim, D.-W. Synthesis of uniform-sized zeolite from windshield waste. Mater. Chem. Phys. 2015, 166, 20–25. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, X.; Muhammad, F.; Zhang, J. Preparation of hierarchically porous zeolite templated carbon from fly ash with investigation into the adsorption behavior towards volatile organic compound. J. Environ. Chem. Eng. 2024, 12, 112254. [Google Scholar] [CrossRef]
- Xu, L.; Dong, K.; Guo, F.; Liu, S.; Qiao, Q.; Mao, S.; Qian, L.; Bai, Y. Synthesis of zeolite-based porous catalysts from coal gasification fine slag for steam reforming of toluene. Energy 2023, 274, 127294. [Google Scholar] [CrossRef]
- Xu, L.; Kong, L.; Men, X.; Guo, F.; Sun, Z.; Dong, K.; Tang, B.; Wang, J.; Zhao, N.; Bai, Y. Facile synthesis of Ni-doped zeolite-based catalysts from waste coal gasification fine slag for steam reforming of toluene. Renew. Energy 2024, 231, 120910. [Google Scholar] [CrossRef]
- Tang, B.; Sun, Z.; Men, X.; Dong, K.; Wang, J.; Kong, L.; Bai, Y.; Guo, F. Synthesis of porous carbon/zeolite composites by low-temperature acid-alkaline leaching from coal gasification fine slag for adsorption of dye wastewater. J. Environ. Chem. Eng. 2024, 12, 112819. [Google Scholar] [CrossRef]
- Yuan, N.; Tan, K.; Zhang, X.; Zhao, A.; Guo, R. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag. Chemosphere 2022, 303, 134839. [Google Scholar] [CrossRef] [PubMed]
- Rajakrishnamoorthy, P.; Saravanan, C.G.; Natarajan, R.; Karthikeyan, D.; Sasikala, J.; Femilda Josephin, J.S.; Vikneswaran, M.; Sonthalia, A.; Varuvel, E.G. Exhaust emission control of SI engines using ZSM-5 zeolite supported bimetals as a catalyst synthesized from coal fly ash. Fuel 2023, 340, 127380. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, T.; Lv, Y.; Jing, T.; Gao, X.; Gu, Z.; Li, S.; Ao, H.; Fang, D. Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes. Catalysts 2024, 14, 734. https://doi.org/10.3390/catal14100734
Zhang W, Zhang T, Lv Y, Jing T, Gao X, Gu Z, Li S, Ao H, Fang D. Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes. Catalysts. 2024; 14(10):734. https://doi.org/10.3390/catal14100734
Chicago/Turabian StyleZhang, Wentao, Ting Zhang, Yinmei Lv, Tao Jing, Xu Gao, Ziqi Gu, Shiyang Li, Hailing Ao, and De Fang. 2024. "Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes" Catalysts 14, no. 10: 734. https://doi.org/10.3390/catal14100734
APA StyleZhang, W., Zhang, T., Lv, Y., Jing, T., Gao, X., Gu, Z., Li, S., Ao, H., & Fang, D. (2024). Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes. Catalysts, 14(10), 734. https://doi.org/10.3390/catal14100734