Recent Advances in Photocatalytic Degradation of Tetracycline Antibiotics
Abstract
:1. Introduction
2. Photocatalytic Materials for Tetracycline Antibiotic Degradation
2.1. Metal-Organic Framework (MOF)-Based Photocatalysts
2.2. Element-Doped Photocatalysts
2.3. Mesoporous Material-Loaded Photocatalysts
2.4. Carbon Quantum Dot Photocatalyst
2.5. Floatation-Based Photocatalysts
2.6. Heterojunction Photocatalysts
2.6.1. Type-I and Type-II Heterojunction Photocatalysts
2.6.2. Z-Scheme Heterojunction Photocatalysts
2.6.3. S-Scheme Heterojunction Photocatalysts
3. Catalytic Oxidation of Tetracycline Antibiotics by Photocatalytic Materials and Their Derivatives
3.1. Mechanism of Catalytic Oxidation of Tetracycline Antibiotics
3.2. Strategies for Optimising Photocatalyst Degradation of Tetracycline Antibiotics
3.2.1. Separation and Charge Transfer Rates of Catalyst Surface Carriers
3.2.2. Broad-Spectrum Response Characteristics
3.2.3. Efficient Activation of Persulfates
4. Novel Technologies Under Development
4.1. Novel Composite Structures of Photocatalysts
4.1.1. Aerogel-Based Photocatalysts
4.1.2. Hollow Spherical-Shell Photocatalysts
4.2. Novel Synthetic Methods of Photocatalysts
4.2.1. Molecularly Imprinted Photocatalysts
4.2.2. Biomimetic Photocatalysts
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmaruzzaman, M.; Mishra, S.R.; Gadore, V.; Yadav, G.; Roy, S.; Bhattacharjee, B.; Bhuyan, A.; Hazarika, B.; Darabdhara, J.; Kumari, K. Phenolic Compounds in Water: From Toxicity and Source to Sustainable Solutions—An Integrated Review of Removal Methods, Advanced Technologies, Cost Analysis, and Future Prospects. J. Environ. Chem. Eng. 2024, 12, 112964. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Hong, Y.; Duan, X.; Ai, C.; Zhang, L.; Zhang, T.; Chen, Y.; Lin, X.; Shi, W.; et al. Iron Phthalocyanine Nanodots Decorated Ultra-Thin Porous Carbon Nitride: A Combination of Photocatalysis and Fenton Reaction to Achieve Two-Channel Efficient Tetracycline Degradation. J. Alloys Compd. 2023, 966, 171580. [Google Scholar] [CrossRef]
- Jia, W.; Song, C.; He, L.; Wang, B.; Gao, F.; Zhang, M.; Ying, G. Antibiotics in Soil and Water: Occurrence, Fate, and Risk. Curr. Opin. Environ. Sci. Health 2023, 32, 100437. [Google Scholar] [CrossRef]
- Pino-Otín, M.R.; Valenzuela, A.; Gan, C.; Lorca, G.; Ferrando, N.; Langa, E.; Ballestero, D. Ecotoxicity of Five Veterinary Antibiotics on Indicator Organisms and Water and Soil Communities. Ecotoxicol. Environ. Saf. 2024, 274, 116185. [Google Scholar] [CrossRef] [PubMed]
- Perez-Bou, L.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Correa-Galeote, D. Promising Bioprocesses for the Efficient Removal of Antibiotics and Antibiotic-Resistance Genes from Urban and Hospital Wastewaters: Potentialities of Aerobic Granular Systems. Environ. Pollut. 2024, 342, 123115. [Google Scholar] [CrossRef]
- Chang, D.; Mao, Y.; Qiu, W.; Wu, Y.; Cai, B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics 2023, 11, 214. [Google Scholar] [CrossRef]
- Martínez, J.L. Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8.
- Kumar, R.; Barakat, M.A.; Al-Mur, B.A.; Alseroury, F.A.; Eniola, J.O. Photocatalytic Degradation of Cefoxitin Sodium Antibiotic Using Novel BN/CdAl2O4 Composite. J. Clean. Prod. 2020, 246, 119076. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, M.; Zhang, S.; Yangcuo, Z.; He, L.; Xie, L.; Ye, Y.; Xu, G.; Chen, Z.; Cai, Q. Development of a New Synchronous Fluorescence Spectrometry Combined with Al3+ Sensitized for Simultaneous and Rapid Determination of Trace Flumequine, Ciprofloxacin and Doxycycline Hydrochloride Residues in Wastewater. Water Res. 2024, 260, 121941. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, Fate, and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment: A Review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef]
- Yang, S.; Carlson, K. Evolution of Antibiotic Occurrence in a River through Pristine, Urban and Agricultural Landscapes. Water Res. 2003, 37, 4645–4656. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Dai, S.; Feng, H.; Karunaratne, S.H.P.P.; Yang, M.; Zhang, Y. Persistence and Potential Risks of Tetracyclines and Their Transformation Products in Two Typical Different Animal Manure Composting Treatments. Environ. Pollut 2024, 341, 122904. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, C.; Liu, J.; Zhang, Y.; Fu, W. Occurrence, Fate, and Risk Assessment of Antibiotics in Conventional and Advanced Drinking Water Treatment Systems: From Source to Tap. J. Environ. Manag. 2024, 358, 120746. [Google Scholar] [CrossRef]
- Velempini, T.; Prabakaran, E.; Pillay, K. Recent Developments in the Use of Metal Oxides for Photocatalytic Degradation of Pharmaceutical Pollutants in Water—A Review. Mater. Today Chem. 2021, 19, 100380. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, P.; Upadhyay, S. Recent Developments in Photocatalytic Degradation of Insecticides and Pesticides. Rev. Chem. Eng. 2021, 39, 225–270. [Google Scholar] [CrossRef]
- Guo, J.; Huang, M.; Gao, P.; Zhang, Y.; Chen, H.; Zheng, S.; Mu, T.; Luo, X. Simultaneous Robust Removal of Tetracycline and Tetracycline Resistance Genes by a Novel UiO/TPU/PSF Forward Osmosis Membrane. Chem. Eng. J. 2020, 398, 125604. [Google Scholar] [CrossRef]
- Ghuge, S.P.; Saroha, A.K. Catalytic Ozonation for the Treatment of Synthetic and Industrial Effluents—Application of Mesoporous Materials: A Review. J. Environ. Manag. 2018, 211, 83–102. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Activation of Peroxymonosulfate by Sludge-Derived Biochar for the Degradation of Triclosan in Water and Wastewater. Chem. Eng. J. 2019, 356, 350–358. [Google Scholar] [CrossRef]
- Xue, Z.; Luan, D.; Zhang, H.; Lou, X.W.D. Single-Atom Catalysts for Photocatalytic Energy Conversion. Joule 2022, 6, 92–133. [Google Scholar] [CrossRef]
- Liu, J.; Wang, G.; Li, B.; Ma, X.; Hu, Y.; Cheng, H. A High-Efficiency Mediator-Free Z-Scheme Bi2MoO6/AgI Heterojunction with Enhanced Photocatalytic Performance. Sci. Total Environ. 2021, 784, 147227. [Google Scholar] [CrossRef]
- Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. COF/ln2S3 S-Scheme Photocatalyst with Enhanced Light Absorption and H2O2-Production Activity and fs-TA Investigation. Adv. Mater. 2024, 36, 2400288. [Google Scholar] [CrossRef] [PubMed]
- Di, T.; Xu, Q.; Ho, W.; Tang, H.; Xiang, Q.; Yu, J. Review on Metal Sulphide-based Z-scheme Photocatalysts. ChemCatChem 2019, 11, 1394–1411. [Google Scholar] [CrossRef]
- Liu, M.; Ye, P.; Wang, M.; Wang, L.; Wu, C.; Xu, J.; Chen, Y. 2D/2D Bi-MOF-Derived BiOCl/MoS2 Nanosheets S-Scheme Heterojunction for Effective Photocatalytic Degradation. J. Environ. Chem. Eng. 2022, 10, 108436. [Google Scholar] [CrossRef]
- Li, L.; Chao, M.; Zhang, B.; Song, C.; Luo, C.; Yan, L. A Sulfur-Doped Alga-like g-C3N4 Photocatalyst for Enhanced Photocatalytic and Antimicrobial Properties. New J. Chem. 2024, 48, 7845–7855. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, C.; Li, B.; Xu, F.; Huang, D.; Liu, S.; Qin, L.; Fu, Y.; Liu, X.; Yi, H.; et al. Unravelling the Role of Dual Quantum Dots Cocatalyst in 0D/2D Heterojunction Photocatalyst for Promoting Photocatalytic Organic Pollutant Degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Saleem, S.; Kaur, K.; Kumar, V.; Khan, A.A.; Malik, A. An Overview of Metal–Organic Frameworks as Potential Platform: Sensing for Detection Environmental Pollutants and Drug Delivery Applications. J. Mol. Struct. 2024, 1312, 138389. [Google Scholar] [CrossRef]
- Li, F.; Cheng, L.; Fan, J.; Xiang, Q. Steering the Behavior of Photogenerated Carriers in Semiconductor Photocatalysts: A New Insight and Perspective. J. Mater. Chem. A 2021, 9, 23765–23782. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, X.; Xiang, Q. MOFs-Based S-Scheme Heterojunction Photocatalysts. Coord. Chem. Rev. 2024, 504, 215674. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Cao, C.; Wang, J.; Yu, X.; Zhang, Y.; Zhu, L. Photodegradation of Seven Bisphenol Analogues by Bi5O7I/UiO-67 Heterojunction: Relationship between the Chemical Structures and Removal Efficiency. Appl. Catal. B Environ. 2020, 277, 119222. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Wang, C. Mining Resources from Wastes to Produce High Value-Added MOFs. Resour. Conserv. Recycl. 2023, 190, 106805. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Liu, S.; Yi, X.; Wang, C.; Fu, H. Fabrication Strategies of Metal–Organic Frameworks Derivatives for Catalytic Aqueous Pollutants Elimination. Chem. Eng. J. 2023, 463, 142466. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, K.; Xue, Z.; Hu, Z.; Yuan, N. Modulation of CdS Nanoparticles Decorated Bimetallic Fe/Mn-MOFs Z-Scheme Heterojunctions for Enhancing Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2024, 992, 174462. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, R.; He, J.; Li, Z.; Liu, Y.; Chen, D.; Peng, L.; Shu, Y.; Jiang, L.; Zhao, G. Construction of g-C3N4@Bi-MOF@BiOCl Double Z-Type Heterojunctions for Photodegradation of Antibiotics under Visible Light Irradiation: Mechanism, Pathway, and Toxicity Assessment. J. Water Process Eng. 2024, 66, 106036. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, S.; Liao, Y.; Lu, Q.; Wang, H.; Zhao, C.; Tang, N.; Du, F. MOF-Derived Bi12O17Cl2 Nanoflakes for the Photocatalytic Degradation of Bisphenol A and Tetracycline Hydrochloride under Visible Light. ACS Appl. Nano Mater. 2024, 7, 3188–3198. [Google Scholar] [CrossRef]
- Chen, H.; Cai, T.; Dong, W.; Wang, J.; Liu, Y.; Li, W.; Xia, X.; Tang, L. Catalytic Thermal Degradation of Tetracycline Based on Iron-Based MOFs and Annealed Derivative in Dark Condition. J. Clean. Prod. 2023, 406, 136976. [Google Scholar] [CrossRef]
- Gagliardi, L.; Yaghi, O.M. Three Future Directions for Metal–Organic Frameworks. Chem. Mater. 2023, 35, 5711–5712. [Google Scholar] [CrossRef]
- Tai, R.; Wu, R.; Zhang, M.; Yuan, J.; Tressel, J.; Tang, Y.; Wang, Q.; Chen, S. Metal–Organic Framework–Based Heterojunctions for Photocatalysis. Curr. Opin. Chem. Eng. 2024, 45, 101033. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. A Review of Updated S-Scheme Heterojunction Photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180. [Google Scholar] [CrossRef]
- Luo, C.; Lin, Y.; Zhang, Y.; Zhang, S.; Tong, S.; Wu, S.; Yang, C. S-Scheme Heterojunction between MOFs and Ag3PO4 Leads to Efficient Photodegradation of Antibiotics in Swine Wastewater. Sep. Purif. Technol. 2023, 320, 124052. [Google Scholar] [CrossRef]
- Zhang, S.; Han, D.; Wang, Z.; Gu, F. Bi-Doped and Bi Nanoparticles Loaded CeO2 Derived from Ce-MOF for Photocatalytic Degradation of Formaldehyde Gas and Tetracycline Hydrochloride. Small 2024, 20, 2309656. [Google Scholar] [CrossRef] [PubMed]
- Sheikhsamany, R.; Nezamzadeh-Ejhieh, A.; Ensandoost, R.; Kakavandi, B. BaTi0.85Zr0.15O3/MOF-5 Nanocomposite: Synthesis, Characterization and Photocatalytic Activity toward Tetracycline. J. Mol. Liq. 2024, 403, 124850. [Google Scholar] [CrossRef]
- Roy, D.; Sarkar, P.; Chowdhury, A.; Zade, S.U.; De, S. Preparation and Performance of Scalable Photocatalyst Beads: A Case Study of Tetracycline Degradation Assisted by Visible Light and Peroxymonosulfate Activation. J. Clean. Prod. 2024, 447, 141548. [Google Scholar] [CrossRef]
- Manju, R.; Jeyaprakash, J.S.; Yazhini, C.; Neppolian, B. Wide-Spectrum-Responsive MoS2/WS2 Decorated Al-MOF Nanohybrid with Dual S-Scheme Heterojunction in Facilitating Sonophotocatalytic Tetracycline Abatement and Pharmaceutical Effluent Treatment. J. Clean. Prod. 2024, 476, 143752. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, F.; Zhang, Y.; Dong, B.; Li, Z.; Qu, W.; Liu, C.; Song, Z.; Lu, P.; Ji, D.; et al. Carbon Quantum Dots/UiO-66@polysulfone Porous Microspheres Fabricated via Pickering Emulsion Template for Pollutant Removal. Sep. Purif. Technol. 2024, 337, 126367. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, R.; He, J.; Chen, Z.; Jiang, J.; Li, Z.; Liu, Y.; Chen, D.; Ma, Y. Construction of Heterojunctions with in Situ Growth of ZnIn2S4 Nanosheets on the Surface of Atomically Dispersed Cu-Modified MOFs for High-Performance Visible-Light Photocatalytic Antibiotic Degradation. Sep. Purif. Technol. 2025, 354, 129093. [Google Scholar] [CrossRef]
- Wen, Q.; Li, D.; Gao, C.; Wu, L.; Song, F.; Zhou, J. Synthesis of Dual p–n Heterojunction of Ni/Mn-MOF-74/CdS@Co3O4 Photocatalyst as a Photoassisted Fenton-like Catalyst for Removal of Tetracycline Hydrochloride. Inorg. Chem. 2023, 62, 20412–20429. [Google Scholar] [CrossRef]
- Sun, X.; Fang, Y.; Mu, J.; Zhao, W.; Wang, J.; Liu, B.; Cao, Y. One-Step Synthesis of Mixed-Valence NH2-MIL-101(Fe2+/Fe3+) with Controllable Morphology for Photocatalytic Removal of Tetracycline and Cr(VI). J. Alloys Compd. 2023, 955, 169969. [Google Scholar] [CrossRef]
- Hu, H.; Lin, H.; Chen, X.; Pan, Y.; Li, X.; Zhuang, Z.; Chen, H.; Wang, X.; Luo, M.; Zheng, K.; et al. Fe, Mn-Prussian Blue analogue@MXene Composites for Efficient Photocatalytic Peroxydisulfate-Activated Degradation of Tetracycline Hydrochloride and Photoelectrochemical Desalination. Chem. Eng. J. 2023, 476, 146682. [Google Scholar] [CrossRef]
- Jin, W.; Yang, C.; Pau, R.; Wang, Q.; Tekelenburg, E.K.; Wu, H.; Wu, Z.; Jeong, S.Y.; Pitzalis, F.; Liu, T.; et al. Photocatalytic Doping of Organic Semiconductors. Nature 2024, 630, 96–101. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, L.; Yang, J.; Wang, X.; Peng, H.; Peng, J. Evaporation-Induced Self-Assembly Al Doped Black TiO2 for the Degradation of Tetracycline Hydrochloride under Visible Light. J. Alloys Compd. 2024, 1007, 176415. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Z.; Ou, L.; Shen, Y.; Ning, Z.; Hu, F.; Peng, X. Iron Nanoparticles Decorated TiO2 Hollow Microspheres for Boosting Degradation of Tetracycline in a Photo-Fenton Catalytic System. J. Environ. Chem. Eng. 2023, 11, 110797. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, H.; Zhang, C.; Shi, H. Regulating Spin Polarization of Mn-Doped ZnFe2O4 for Boosting Antibiotic Degradation: Intermediate, Toxicity Assessment and Mechanism. J. Clean. Prod. 2024, 466, 142886. [Google Scholar] [CrossRef]
- Chen, M.; Cai, X.; Yang, Q.; Lu, W.; Huang, Z.; Gan, T.; Hu, H.; Zhang, Y. Construction of a N–Mo–O Bond Bridged MoO2/Mo-Doped g-C3N4 Schottky Heterojunction Composite with Enhanced Interfacial Compatibility for Efficient Photocatalytic Degradation of Tetracycline. Sep. Purif. Technol. 2023, 314, 123546. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Liu, H.; Cao, R.; Meng, C. Roles of CeO2 in preparing Ce-doped CdIn2S4 with boosted photocatalytic degradation performance for methyl orange and tetracycline hydrochloride. Chemosphere 2023, 338, 139574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Luo, W.; Sun, H.; Yang, H.; Yang, T.; Liu, D.; Zhu, X.; Zhao, L.; Shu, M.; Yang, F. Ce-Doped Nanosheet as Visible Light Photocatalyst for the Photocatalytic Degradation of Tetracycline Hydrochloride. ACS Appl. Nano Mater. 2024, 7, 11506–11517. [Google Scholar] [CrossRef]
- Bilgin Simsek, E.; Tuna, Ö. Understanding the Nature of Ce–Fe Synergy in the Structure CaWO4 Scheelite for Enhanced Photocatalytic Performance under Visible Light. Ceram. Int. 2024, 50, 20600–20611. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, X.; Zhang, Y.; Zhou, N.; Deng, J.; Zeng, Y.; Lin, D.; Zhou, C.; Liu, Q. Synergistic Combination of Mn/Fe Bimetal-Doped Carbon Nitride and Peroxymonosulfate for Efficient Photocatalytic Degradation of Antibiotics. J. Environ. Chem. Eng. 2024, 12, 113730. [Google Scholar] [CrossRef]
- Wang, H.; Wan, Y.; Li, B.; Ye, J.; Gan, J.; Liu, J.; Liu, X.; Song, X.; Zhou, W.; Li, X.; et al. Rational Design of Ce-Doped CdS/N-rGO Photocatalyst Enhanced Interfacial Charges Transfer for High Effective Degradation of Tetracycline. J. Mater. Sci. Technol. 2024, 173, 137–148. [Google Scholar] [CrossRef]
- Li, Y.; Qu, C.; Ye, Q.; Meng, F.; Yang, D.; Wang, L. Enhanced Tetracycline Degradation by Novel Mn–FeOOH/CNNS Photocatalysts in a Visible-Light-Driven Photocatalysis Coupled Peroxydisulfate System. Environ. Res. 2024, 257, 119293. [Google Scholar] [CrossRef]
- Xing, Y.; Jiang, X.; Han, L.; Jin, X.; Ni, G.; Peng, Y.; Yong, X.; Wang, X. Efficient Degradation of Tetracycline over Vacancy-Modified Cu-Doped Bi2O2S via Peroxymonosulfate Activation and Photocatalysis. J. Clean. Prod. 2023, 400, 136631. [Google Scholar] [CrossRef]
- Chen, H.; Meng, F.; Feng, X.; Zhao, Y.; Xie, T.; Wang, D.; Lin, Y. Efficient Photocatalytic Activation of Peroxymonosulfate by Cobalt-Doped Oxygen-Vacancies-Rich BiVO4 for Rapid Tetracycline Degradation. Langmuir 2024, 40, 12778–12791. [Google Scholar] [CrossRef]
- Li, S.; Deng, C.; Karmaker, P.G.; Yang, K.; Wang, J.; Liu, W.; Yang, X. Yb-Doped BiOBr for Highly Efficient Photocatalytic Degradation of Tetracycline Hydrochloride under Visible Light Irradiation. Mater. Res. Bull. 2024, 178, 112895. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, P.; Zeng, J.; Liang, T.; Qiu, Q. Enhanced Photocatalytic Degradation by the Preparation of a Stable La-Doped FeTiO3 Photocatalyst: Experimental and DFT Study. Inorg. Chem. 2024, 63, 14425–14437. [Google Scholar] [CrossRef]
- James, A.; Shivakumar; Rodney, J.D.; Joshi, S.; Dalimba, U.; Kim, B.C.; Udayashankar, N.K. Mechanistic Insights and DFT Analysis of Bimetal Doped Styrofoam-like LaFeO3 Perovskites with in-Built Dual Redox Couples for Enhanced Photo-Fenton Degradation of Tetracycline. Chem. Eng. J. 2024, 481, 148466. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Wang, X.; Huang, Y.; Zeng, M.; Xu, J. In Situ Ion Exchange Synthesis of Strongly Coupled Ag@AgCl/g-C3N4 Porous Nanosheets as Plasmonic Photocatalyst for Highly Efficient Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 22116–22125. [Google Scholar] [CrossRef]
- Qu, J.; Du, Y.; Feng, Y.; Wang, J.; He, B.; Du, M.; Liu, Y.; Jiang, N. Visible-Light-Responsive K-Doped g-C3N4/BiOBr Hybrid Photocatalyst with Highly Efficient Degradation of Rhodamine B and Tetracycline. Mater. Sci. Semicond. Process. 2020, 112, 105023. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, Z.; Zeng, G.; Zhang, C.; Xiao, R.; Zhou, C.; Xiong, W.; Yang, Y.; Lei, L.; Liu, Y.; et al. Sulfur Doped Carbon Quantum Dots Loaded Hollow Tubular G-C3N4 as Novel Photocatalyst for Destruction of Escherichia Coli and Tetracycline Degradation under Visible Light. Chem. Eng. J. 2019, 378, 122132. [Google Scholar] [CrossRef]
- Jia, H.; Dong, M.; Yuan, Z.; Chen, J.; Gong, Z.; Shao, J. Deep Eutectic Solvent Electrolysis for Preparing N and P Co-Doped Titanium Dioxide for Rapid Photodegradation of Dyestuff and Antibiotic. Ceram. Int. 2021, 47, 23249–23258. [Google Scholar] [CrossRef]
- Tao, F.-T.; Hu, C.; Wu, J.C.S.; Nguyen, V.-H.; Tung, K.-L. Influence of Nitrogen Sources on N-Doped Reduced TiO2 Prepared Using Atmospheric Plasma Spraying for Photocatalytic Tetracycline and Ciprofloxacin Degradation. Sep. Purif. Technol. 2023, 326, 124784. [Google Scholar] [CrossRef]
- Zhao, E.; Li, M.; Xu, B.; Wang, X.; Jing, Y.; Ma, D.; Mitchell, S.; Pérez-Ramírez, J.; Chen, Z. Transfer Hydrogenation with a Carbon-Nitride-Supported Palladium Single-Atom Photocatalyst and Water as a Proton Source. Angew. Chem. Int. Ed. 2022, 61, e202207410. [Google Scholar] [CrossRef]
- Ali, A.; Shoeb, M.; Li, Y.; Li, B.; Khan, M.A. Enhanced Photocatalytic Degradation of Antibiotic Drug and Dye Pollutants by Graphene-Ordered Mesoporous Silica (SBA 15)/TiO2 Nanocomposite under Visible-Light Irradiation. J. Mol. Liq. 2021, 324, 114696. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Shi, R.; Zhao, J.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Photocatalytic Ethylene Production by Oxidative Dehydrogenation of Ethane with Dioxygen on ZnO-Supported PdZn Intermetallic Nanoparticles. Nat. Commun. 2024, 15, 789. [Google Scholar] [CrossRef]
- Wu, C.; Shen, Q.; Zheng, S.; Zhang, X.; Sheng, J.; Yang, H. Fabrication of Bi2Sn2O7@MIL-100(Fe) Composite Photocatalyst with Enhanced Superoxide-Radical-Dominated Photocatalytic Activity for Ciprofloxacin Degradation. J. Mol. Struct. 2022, 1258, 132657. [Google Scholar] [CrossRef]
- Razavi-Esfali, M.; Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B.-K. Highly Efficient Photocatalytic Degradation of Organic Pollutants by Mesoporous Graphitic Carbon Nitride Bonded with Cyano Groups. Chem. Eng. J. 2021, 419, 129503. [Google Scholar] [CrossRef]
- Tang, H.; E, H.; Yao, C.; Wang, X.; Zhou, J.; Song, W.; Zhang, Z. Boosted Antibiotic Elimination over 2D/2D Mesoporous CeO2/BiOCl S-Scheme Photocatalyst. Sep. Purif. Technol. 2025, 354, 128977. [Google Scholar] [CrossRef]
- Kılıç, D.; Sevim, M.; Eroğlu, Z.; Metin, Ö.; Karaca, S. Strontium Oxide Modified Mesoporous Graphitic Carbon Nitride/Titanium Dioxide Nanocomposites (SrO-Mpg-CN/TiO2) as Efficient Heterojunction Photocatalysts for the Degradation of Tetracycline in Water. Adv. Powder Technol. 2021, 32, 2743–2757. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Wang, W.; Lan, K.; Zhao, D. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications. Adv. Mater. 2024, 36, 2311460. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, M.; Guo, S.; Li, Y.; Zhang, Z.; Xie, Y.; Cai, C.; Wei, Q. Hierarchically Porous TiO2 Photocatalyst Prepared by Additive Manufacturing and Dealloying for Highly Efficient Photocatalytic Degradation of Tetracycline. ACS ES&T Water 2024, 4, 1590–1600. [Google Scholar] [CrossRef]
- Phoon, B.; Lai, C.; Chen, C.; Boonyuen, S.; Tang, W.; Juan, J. Mesoporous I-Doped-g-C3N4 with C Vacancies as Superior Visible-Light-Driven Photocatalyst for Removal of Tetracycline Antibiotic. J. Alloys Compd. 2024, 1009, 176772. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; Zhou, Q.; Yang, P.; Qin, P.; Huang, F.; Yang, W. Highly Effective Ruthenium-Doped Mesoporous Ti1−xRuxO2−y Crystals for Photocatalytic Tetracycline Degradation. J. Mater. Chem. C 2023, 11, 11027–11033. [Google Scholar] [CrossRef]
- Shanmugam, P.; Smith, S.M.; Boonyuen, S.; Luengnaruemitchai, A. In-Situ Development of Boron Doped g-C3N4 Supported SBA-15 Nanocomposites for Photocatalytic Degradation of Tetracycline. Environ. Res. 2023, 224, 115496. [Google Scholar] [CrossRef]
- Mkhalid, I.A.; Ismail, A.A.; Hussein, M.A.; Thomali, R.H.M.A. Nanoheterojunctions MnCo2O4 Nanoparticles Anchored on Mesoporous TiO2 Networks for Superior Photocatalytic Ability. Mater. Res. Bull. 2023, 167, 112439. [Google Scholar] [CrossRef]
- Tang, Q.; Cheng, Q.; Pan, Z. Constructing Novel Metal-Free HCOF-Ph@g-C3N4 Heterojunctions through Molecular Expansion to Enhance Photogenerated Carrier Involved Molecular Oxygen Activation and Photocatalytic Hydrogen Evolution. Sustain. Mater. Technol. 2024, 41, e01115. [Google Scholar] [CrossRef]
- Das, C.; Shafi, T.; Thulluru, L.P.; Li, Y.; Naushad, M.; Dubey, B.K.; Chowdhury, S. Three-Dimensional Highly Porous MoS2/Graphene Aerogel for Visible-Light-Driven Photocatalytic Degradation of Tetracycline. ACS ES&T Water 2024, 4, 2144–2158. [Google Scholar] [CrossRef]
- Hou, Y.; Meng, F.; He, J.; Dong, M.; Tong, J.; Sun, J.; Sun, C.; Wang, X.; Su, Z. Hierarchically Porous CsPbBr3@HZIF-8 Heterojunctions for High-Performance Photocatalytic Degradation of Antibiotics in High-Salinity Wastewater. J. Mater. Chem. 2023, 11, 13570–13578. [Google Scholar] [CrossRef]
- Zhu, L.; Ge, X.; Yu, H.; Li, C.; Wang, Q.; Zhang, W.; Wang, X.; Liu, X. Preparation of O-g-C3N4 Nanowires/Bi2O2CO3 Porous Plate Composite Photocatalysts for the Efficient Degradation of Tetracycline Hydrochloride in Wastewater. Environ. Res. 2024, 251, 118566. [Google Scholar] [CrossRef]
- Khan, M.A.; Safira, A.R.; Kaseem, M.; Fattah-alhosseini, A. Enhanced Electrochemical and Photocatalytic Performance Achieved through Dual Incorporation of SnO2 and WO3 Nanoparticles into LDH Layer Fabricated on PEO-Coated AZ31 Mg Alloy. J. Magnes. Alloys 2024, 12, 1880–1898. [Google Scholar] [CrossRef]
- Guo, H.; Lu, Y.; Lei, Z.; Bao, H.; Zhang, M.; Wang, Z.; Guan, C.; Tang, B.; Liu, Z.; Wang, L. Machine Learning-Guided Realization of Full-Color High-Quantum-Yield Carbon Quantum Dots. Nat. Commun. 2024, 15, 4843. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, C.; Zhang, A.; Zhang, Y.; Zhang, L.; Bai, H. Nitrogen-Doped Carbon Quantum Dots Modified Dual-Vacancy Z-Scheme CuFe2O4/g-C3N4 Photocatalyst Synergistic with Fenton Technique for Photothermal Degradation of Antibiotics. Chem. Eng. J. 2024, 497, 154497. [Google Scholar] [CrossRef]
- Kumar, G.; Cilamkoti, V.; Dutta, R.K. Sunlight Mediated Enhanced Photocatalytic Degradation of Antibiotics in Aqueous Medium Using Silicon Doped Carbon Quantum Dots Decorated Bi2MoO6 Nanoflakes. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128368. [Google Scholar] [CrossRef]
- Wang, C.; Rong, K.; Liu, Y.; Yang, F.; Li, S. Carbon Quantum Dots-Modified Tetra (4-Carboxyphenyl) Porphyrin/BiOBr S-Scheme Heterojunction for Efficient Photocatalytic Antibiotic Degradation. Sci. China Mater. 2024, 67, 562–572. [Google Scholar] [CrossRef]
- Hu, J.; Chen, C.; Tan, C.; Fan, H.; Lu, J.; Li, Y.; Hu, H. Novel In-Situ Composites of Chlorine-Doped CQDs and g-C3N4 with Improved Interfacial Connectivity and Accelerated Charge Transfer to Enhance Photocatalytic Degradation of Tetracycline and Hydrogen Evolution. Appl. Surf. Sci. 2023, 638, 158060. [Google Scholar] [CrossRef]
- Choi, N.; Tang, C.; Park, Y.; Du, A.; Ayoko, G.A.; Hwang, Y.; Chae, S. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Citric Acid and Lemon Juice-Derived Carbon Quantum Dots Incorporated TiO2 Nanocomposites. Sep. Purif. Technol. 2024, 350, 127836. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, M.; Vyas, P. Abatement of Microbes and Organic Pollutants Using Heterostructural Nanocomposites of Rice Straw CQDs with Substituted Strontium Ferrite. Chemosphere 2024, 359, 142310. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Ma, P.; Guo, Z.; Ma, Q.; Zhao, Q.; Guo, Y.; Zhao, J.; Guan, G. Carbon Quantum Dots/Cu2O S-Scheme Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline. Colloid Surf. A 2024, 690, 133779. [Google Scholar] [CrossRef]
- Nguyen, M.B.; Doan, H.V.; Le Hoang Tan, D.; Lam, T.D. Advanced G-C3N4 and Bimetallic FeNi-BTC Integration with Carbon Quantum Dots for Removal of Microplastics and Antibiotics in Aqueous Environments. J. Environ. Chem. Eng. 2024, 12, 112965. [Google Scholar] [CrossRef]
- Nguyen, M.B.; Doan, H.V.; Tan, D.L.H.; Lam, T.D. Enhancement of Tetracycline Photocatalytic Degradation under Visible Light: Unleashing the Synergy of Z-Scheme Ag3PO4/GCN/FeNi-BTC Photocatalyst with Carbon Quantum Dots. J. Ind. Eng. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Chen, J.; Qin, S.; Yang, X.; Wang, Y.; Yang, T.; Que, M.; Ma, Y.; Li, Y. Synthesis of Highly Conductive Carbon Quantum Dot-Enhanced Z-Scheme BiOBr/g-C3N4 Heterojunction for Effective Photocatalytic Degradation of Tetracycline Hydrochloride. J. Phys. Chem. Solids 2024, 189, 111957. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Wang, Y.; Luo, S.; Ma, C.; Zhang, H.; Guo, M. Internal Electric Field Promoted NCDs/BiOBr/AgBr Z-Scheme Heterojunction with Rich Oxygen Vacancies for Efficient Photocatalytic Degradation of Tetracycline and Reduction of Cr (VI). J. Environ. Chem. Eng. 2024, 12, 112476. [Google Scholar] [CrossRef]
- Ma, H.; He, J.; Li, Z.; Dong, L.; Guo, S.; Zhu, X.; Li, D.; Zang, L.; Shi, L.; Ba, T. Lignin-Derived Carbon Quantum Dots/Ni-MOL Heterojunction from Red Phosphorus-Assisted Ball Milling Pretreatment and Their Application in Photocatalysis: An Insight from Experiment and DFT Calculation. Ind. Crops Prod. 2022, 189, 115829. [Google Scholar] [CrossRef]
- Lv, M.; Wang, S.; Shi, H. Carbon Quantum Dots/BiVO4 S-Scheme Piezo-Photocatalysts Improved Carrier Separation for Efficient Antibiotic Removal. J. Mater. Sci. Technol. 2024, 201, 21–31. [Google Scholar] [CrossRef]
- Karaca, M.; Eroğlu, Z.; Açışlı, Ö.; Metin, Ö.; Karaca, S. Boosting Tetracycline Degradation with an S-Scheme Heterojunction of N-Doped Carbon Quantum Dots-Decorated TiO2. ACS Omega 2023, 8, 26597–26609. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Liu, Q.; Jin, X.; Ding, G.; Liu, M.; Wang, P.; Chen, S. Magnetic Carbon Quantum Dots/Iron Oxide Composite Based on Waste Rice Noodle and Iron Oxide Scale: Preparation and Photocatalytic Capability. Nanomaterials 2023, 13, 2506. [Google Scholar] [CrossRef]
- Lu, T.; Huang, H.; Lv, G.; Meng, Z.; Zhu, L. Aerogel-Derived Carbon Quantum Dots Modified BiOCl Nanocomposites with Augmented Oxygen Vacancies for Enhanced Photodegradation of Antibiotics. J. Ind. Eng. Chem. 2024, 138, 586–600. [Google Scholar] [CrossRef]
- Chen, H.; Niu, Y.; Xu, H.; Zhang, S.; Huang, C.; Cui, Z. Construction and Investigation of Graphitic Carbon Nitride/Expanded Perlite Composite Photocatalyst with Floating Ability. Colloid Surf. A 2022, 648, 129384. [Google Scholar] [CrossRef]
- Liu, G.; Yi, X.; Chu, H.; Wang, C.; Gao, Y.; Wang, F.; Wang, F.; Wang, P.; Wang, J. Floating MIL-88A(Fe)@expanded Perlites Catalyst for Continuous Photo-Fenton Degradation toward Tetracyclines under Artificial Light and Real Solar Light. J. Hazard. Mater. 2024, 472, 134420. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Dong, S.; Li, N.; Xu, Q.; Li, H.; Lu, J.; Chen, D. Self-Floating Polymer Microreactor for High-Efficiency Synergistic CO2 Photoreduction and Antibiotic Degradation in One Photoredox Cycle. Adv. Funct. Mater. 2024, 2408831. [Google Scholar] [CrossRef]
- Zhang, T.; Qu, J.; Wu, J.; Jiao, F.; Li, C.; Gao, F.; Liu, J.; Yu, Z.; Li, X. All-In-One Self-Floating Wood-Based Solar-Thermal Evaporators for Simultaneous Solar Steam Generation and Catalytic Degradation. Adv. Funct. Mater. 2024, 34, 2403505. [Google Scholar] [CrossRef]
- Swathi, A.C.; Sandhiya, S.T.; B, S.; Chandran, M. Precursor Dependent—Visible Light-Driven g-C3N4 Coated Polyurethane Foam for Photocatalytic Applications. Chemosphere 2024, 350, 141013. [Google Scholar] [CrossRef]
- Lin, L.; Xie, D.; Xu, L.; Huang, Y.; Qing, X.; Huang, M.; Kazemian, H. One-Step Synthesis of Floatable BiOCl/BiOBr@FACs Enriched in Oxygen Vacancies for Improved Photocatalytic Activity via Peroxymonosulfate Activation. Colloid Surf. A 2023, 676, 132165. [Google Scholar] [CrossRef]
- Wu, T.; Liang, Q.; Tang, L.; Tang, J.; Wang, J.; Shao, B.; Gong, S.; He, Q.; Pan, Y.; Liu, Z. Construction of a Novel S-Scheme Heterojunction Piezoelectric Photocatalyst V-BiOIO3/FTCN and Immobilization with Floatability for Tetracycline Degradation. J. Hazard. Mater. 2023, 443, 130251. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Sun, Q.; Chen, L.; Yuan, M.; Sun, Z.; Zhang, Y.; Xia, S.; Zhao, J. Enhanced Activation of Peroxymonosulfate by a Floating Cu0-MoS2/C3N4 Photocatalyst under Visible-Light Assistance for Tetracyclines Degradation and Escherichia Coli Inactivation. Chem. Eng. J. 2023, 457, 141220. [Google Scholar] [CrossRef]
- Zhang, M.; Ke, J.; Xu, D.; Zhang, X.; Liu, H.; Wang, Y.; Yu, J. Construction of Plasmonic Bi/Bismuth Oxycarbonate/Zinc Bismuth Oxide Ternary Heterojunction for Enhanced Charge Carrier Separation and Photocatalytic Performances. J. Colloid Interface Sci. 2022, 615, 663–673. [Google Scholar] [CrossRef]
- Zhao, Z.-A.; Mao, J.; Lu, C.; Yang, S.; Qian, Q.; Chen, Q.; Xue, H.; Sun, X.; Yang, M.-Q. Design and Fabrication of Self-Suspending Aluminum-Plastic/Semiconductor Photocatalyst Devices for Solar Energy Conversion. J. Environ. Sci. 2024, 136, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Sun, Q.; Yuan, M.; Sun, Z.; Xia, S.; Zhao, J. Enhanced Visible Light Photo-Fenton-like Degradation of Tetracyclines by Expanded Perlite Supported FeMo3Ox/g-C3N4 Floating Z-Scheme Catalyst. J. Hazard. Mater. 2022, 424, 127387. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, H.; Xu, Z.; Li, Z.; Qi, X. Self-Floating FeOOH/EPE Catalyst Derived from Waste Expandable Polyethylene for Boosted Peroxymonosulfate Activation for Removal of Tetracycline Hydrochloride. J. Mater. Sci. Mater. Electron. 2024, 35, 1747. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, Q.; Liu, T.; He, Y.; Chen, G.; Chen, K.; Han, D.; Qin, D.; Niu, L. Fabrication of water-floating litchi-like polystyrene-sphere-supported TiO2/Bi2O3 S-scheme heterojunction for efficient photocatalytic degradation of tetracycline. Mater. Horiz. 2023, 10, 5869–5880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Sun, Q.; Yuan, M.; Sun, Z.; Chen, L.; Zhang, Y.; Xia, S.; Zhao, J. Enhanced Activation of Peroxymonosulfate by a Floating FeMo3Ox/C3N4 Photocatalyst under Visible-Light Assistance for Oxytetracycline Degradation: Performance, Mechanisms and Comparison with H2O2 Activation. Environ. Pollut. 2023, 316, 120668. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chem. Soc. Rev. 2015, 44, 2893–2939. [Google Scholar] [CrossRef]
- Xie, L.; Du, T.; Wang, J.; Ma, Y.; Ni, Y.; Liu, Z.; Zhang, L.; Yang, C.; Wang, J. Recent Advances on Heterojunction-Based Photocatalysts for the Degradation of Persistent Organic Pollutants. Chem. Eng. J. 2021, 426, 130617. [Google Scholar] [CrossRef]
- Shang, Y.; Li, W.; Ma, Y.; Li, B.; Xu, Q.; Du, Y.; Peng, Y.; Wang, Y.; Zhu, Y. Rapid Hole Generation via D-A Structure-Dependent Built-In Electric Field of Deacetylated Chitin-PDI for Efficient Photocatalytic Oxidation. Adv. Funct. Mater. 2024, 2406533. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, Y.; Zeid, T.; Duan, X. Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743. [Google Scholar] [CrossRef]
- Acharya, L.; Nayak, S.; Pattnaik, S.P.; Acharya, R.; Parida, K. Resurrection of Boron Nitride in P-n Type-II Boron Nitride/B-Doped-g-C3N4 Nanocomposite during Solid-State Z-Scheme Charge Transfer Path for the Degradation of Tetracycline Hydrochloride. J. Colloid Interface Sci. 2020, 566, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Xu, X.; Shi, H.; Cui, S.; Liu, W.; Tang, T. Enhanced Photocatalytic Performance of NiFe2O4/ZnIn2S4 p-n Heterojunction for Efficient Degradation of Tetracycline. J. Colloid Interface Sci. 2025, 677, 11–24. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Liu, Z.; Wang, K. Fabrication of p–n Cu2O/CaWO4 Heterojunctions for the Efficient Degradation of Tetracycline and Doxycycline. Appl. Surf. Sci. 2024, 665, 160285. [Google Scholar] [CrossRef]
- Li, S.; Xue, B.; Wang, C.; Jiang, W.; Hu, S.; Liu, Y.; Wang, H.; Liu, J. Facile Fabrication of Flower-Like BiOI/BiOCOOH p-n Heterojunctions for Highly Efficient Visible-Light-Driven Photocatalytic Removal of Harmful Antibiotics. Nanomaterials 2019, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yan, X.; Mao, Y.; Kang, H.; Yan, Q.; Zhou, J.; Song, Z.; Zhu, H.; Li, Y.; Cui, L. All-Solid-State Z-Scheme AgBr/Bi2CrO6 Heterostructure with Metallic Ag as a Charge Transfer Bridge for Boosted Charge Transfer and Photocatalytic Performances. Appl. Surf. Sci. 2024, 654, 159471. [Google Scholar] [CrossRef]
- Lu, J.; Bai, X.; Zhao, Q.; Lu, B.; Fu, Y. Construction of AgI/PCN-224 Z-Scheme Heterojunction for Efficient Photocatalytic Degradation of Tetracycline Hydrochloride: Pathways, Mechanism and Theoretical Calculations. J. Clean. Prod. 2024, 456, 142364. [Google Scholar] [CrossRef]
- Tie, W.; Bhattacharyya, S.S.; Ma, T.; Yuan, S.; Chen, M.; He, W.; Lee, S.H. Improving Photoexcited Carrier Separation through Z-Scheme W18O49/BiOBr Heterostructure Coupling Carbon Quantum Dots for Efficient Photoelectric Response and Tetracycline Photodegradation. Carbon 2024, 231, 119707. [Google Scholar] [CrossRef]
- Han, M.; Wang, S.; Yu, X.; Yu, X.; Gao, H.; Zhou, X.; Li, D.; Fang, L.; Angadi V., J.; Ubaidullah, M.; et al. A Novel CuAl2O4/MoS2/BaFe12O19 Magnetic Photocatalyst Simultaneously Coupling Type I and Z-Scheme Heterojunctions for the Sunlight-Driven Removal of Tetracycline Hydrochloride. Environ. Sci. Nano 2024, 11, 1948–1966. [Google Scholar] [CrossRef]
- Zhou, T.; Dong, G.; Geng, J.; Han, K.; Xiao, C. Z-Type Composite Type II Ternary CNFeOS Heterojunction Composite Photocatalyst for Enhancing the Photocatalytic Degradation of Tetracycline. Appl. Surf. Sci. 2024, 655, 159592. [Google Scholar] [CrossRef]
- Lu, J.; Shi, Y.; Chen, Z.; Sun, X.; Yuan, H.; Guo, F.; Shi, W. Photothermal Effect of Carbon Dots for Boosted Photothermal-Assisted Photocatalytic Water/Seawater Splitting into Hydrogen. Chem. Eng. J. 2023, 453, 139834. [Google Scholar] [CrossRef]
- Ma, J.; Xu, L.; Yin, Z.; Li, Z.; Dong, X.; Song, Z.; Chen, D.; Hu, R.; Wang, Q.; Han, J.; et al. “One Stone Four Birds” Design Atom Co-Sharing BiOBr/Bi2S3 S-Scheme Heterojunction Photothermal Synergistic Enhanced Full-Spectrum Photocatalytic Activity. Appl. Catal. B Environ. 2024, 344, 123601. [Google Scholar] [CrossRef]
- Azqandi, M.; Nateq, K.; Amarzadeh, M.; Yoosefian, M.; Yaghoot-Nezhad, A.; Ahmad, A.; Ramavandi, B.; Nasseh, N. Intensified Photo-Decontamination of Tetracycline Antibiotic by S-Scheme Spinel Manganese Ferrite-Grafted ZIF-8 Heterojunction Photocatalyst: Mechanism Conception, Degradation Pathway and DFT Studies. J. Environ. Chem. Eng. 2024, 12, 112875. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Xie, Y.; Shi, Y.; Zhao, C.; Li, G.; Zhang, Y.; Shi, H. Construction of Novel Biochar/g-C3N4/BiOBr Heterojunction with S-Scheme Mechanism for Efficient Photocatalytic Degradation of Tetracycline. J. Environ. Chem. Eng. 2024, 12, 113469. [Google Scholar] [CrossRef]
- Sun, J.; Wu, H.; Fu, C.; Zhang, C.; Hu, Z.; Zhou, M. Novel Fenton-like System Based on Bifunctional MgO/g-C3N4 S-Scheme Heterojunction Photoanode for Efficient Tetracycline Degradation. Appl. Catal. B Environ. Energy 2024, 351, 123976. [Google Scholar] [CrossRef]
- Alamgir; Ullah, R.; Talha, K.; Yang, H.; Mushtaq, N.; Ahmad, A.; Fan, L.; Li, L.; Zhao, G.; Wang, X.; et al. MOF-Derived In2O3/TiO2 S-Scheme Heterojunction for Efficient Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2024, 1002, 175398. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, T.; Li, Z.; Zhu, W.; Li, L. Enhanced Photocatalytic Performance of S-Scheme CdMoO4/CdO Nanosphere Photocatalyst. J. Mater. Sci. Technol. 2024, 179, 198–207. [Google Scholar] [CrossRef]
- Beshkar, F.; Al-Nayili, A.; Amiri, O.; Salavati-Niasari, M.; Mousavi-Kamazani, M. Fabrication of S-Scheme ZnO/Zn3(PO4)2 Heterojunction Photocatalyst toward Photodegradation of Tetracycline Antibiotic and Photocatalytic Mechanism Insight. Int. J. Hydrog. Energy 2022, 47, 928–939. [Google Scholar] [CrossRef]
- Ding, S.; Gan, W.; Guo, J.; Chen, R.; Liu, R.; Zhao, Z.; Li, J.; Zhang, M.; Sun, Z. Construction of a SnS2/TiO2 S-Scheme Heterostructure Photocatalyst for Highly Efficient Photocatalytic Degradation of Tetracycline Hydrochloride. J. Mater. Chem. C 2024, 12, 7079–7094. [Google Scholar] [CrossRef]
- Sun, L.; He, X.; Liu, B.; Zhang, S.; Xiang, Z.; Wang, X.; Wang, Y. Synergistic Adsorption-Photocatalytic Degradation of Tetracycline by S-Scheme InVO4/ZnIn2S4 Heterojunction: Mechanism, Toxicity Assessment, and Potential Applications. Sep. Purif. Technol. 2025, 353, 128515. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Ding, M.; Li, J.; Lyu, J.; Liang, S.; Cui, J. Mechanism Insight into Boosting Photocatalytic Purification of Tetracycline Hydrochloride over 2D/2D S-Scheme (BiO)2CO3/BiOCl Heterojunctions. J. Environ. Chem. Eng. 2024, 12, 112723. [Google Scholar] [CrossRef]
- Huo, S.; Deng, J.; Zhao, Q.; Wang, Y.; Fu, W.; Wu, X.; Gao, M.; Xie, H. Partially Amorphization Induced S-Scheme Charge Migration in g-C3N4/Mn1.1Fe1.9O4 Defective Heterojunction for Boosting Fenton-like Degradation of Tetracycline under Visible Light. Chem. Eng. J. 2024, 494, 153088. [Google Scholar] [CrossRef]
- Liu, J.; Gong, S.; Wu, Z.; Shi, J.; Deng, H. Bi3.64Mo0.36O6.55/Bi4O5I2 S-Scheme Heterojunction Boosting Antibiotic Photodegradation: Insights from Interface to Performance. Chem. Eng. J. 2024, 483, 149156. [Google Scholar] [CrossRef]
- Zhang, X.; Zha, X.; Luo, Y.; Liu, T.; Chen, G.; He, X. In2O3 Nanoparticle/Bi4O5Br2 Nanosheet S-Scheme Heterojunctions with Interfacial Oxygen Vacancies for Photocatalytic Degradation of Tetracycline. ACS Appl. Nano Mater. 2023, 6, 11877–11887. [Google Scholar] [CrossRef]
- Jeyaprakash, J.S.; Rajamani, M.; Bianchi, C.L.; Ashokkumar, M.; Neppolian, B. Highly Efficient Ultrasound-Driven Cu-MOF/ZnWO4 Heterostructure: An Efficient Visible-Light Photocatalyst with Robust Stability for Complete Degradation of Tetracycline. Ultrason. Sonochem. 2023, 100, 106624. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, J.; Shangguan, W. A Review on Photocatalysis in Antibiotic Wastewater: Pollutant Degradation and Hydrogen Production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, G.; Kumari, A.; Guo, C.; Naushad, M.; Vo, D.-V.N.; Iqbal, J.; Stadler, F.J. Construction of Dual Z-Scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 Heterojunction for Visible and Solar Powered Coupled Photocatalytic Antibiotic Degradation and Hydrogen Production: Boosting via I−/I3− and Bi3+/Bi5+ Redox Mediators. Appl. Catal. B Environ. 2021, 284, 119808. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, Z.; Wang, Q. Oxidation Removal of Nitric Oxide from Flue Gas Using UV Photolysis of Aqueous Hypochlorite. Environ. Sci. Technol. 2017, 51, 11950–11959. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, J.; Yuan, J.; Zhao, W.; Zhu, X.; Sun, C.; Xie, J. Enhanced Photocatalytic Activity over Flower-like Sphere Ag/Ag2CO3/BiVO4 Plasmonic Heterojunction Photocatalyst for Tetracycline Degradation. Chem. Eng. J. 2018, 331, 242–254. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, Y.; Wang, C.; Pei, L.; Mao, Q.; Liu, M.; Zheng, R.; Bokhari, A.; Han, N.; Zhong, J. “Light Battery” Role of Long Afterglow Phosphor for Round-the-Clock Environmental Photocatalysis. J. Clean. Prod. 2024, 450, 142041. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.-B.; Liu, C.; Li, X.; Zhao, G.-H.; Liu, R.-H.; Wang, H.-Y.; Jiang, Y.-Y.; Zhang, Y.-L.; Gao, Y.-H.; et al. Construction of Oxygen-Doped g-C3N4/BiOCl (S-Scheme) Heterojunction: Efficient Degradation of Tetracycline in Wastewater. J. Environ. Chem. Eng. 2024, 12, 113354. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, X.; Zhong, J.; Li, M.; Zhang, S. In-Situ Fabrication of BiOCl/OVs–BiPO4 Heterojunctions with Enhanced Photocatalytic Destruction Performance. Rare Metals 2024, 1–16. [Google Scholar] [CrossRef]
- Wang, A.; Liang, H.; Chen, F.; Tian, X.; Jing, S.; Tsiakaras, P. Preparation and Characterization of Novel Niln2S4/UiO-66 Photocatalysts for the Efficient Degradation of Antibiotics in Water. Chemosphere 2022, 307, 135699. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Zhang, Y.; Mei, L.; Zhu, R.; Qin, J.; Hu, J.; Chen, Z.; Ng, Y.; Voiry, D.; et al. 2D Transition Metal Dichalcogenides for Photocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202218016. [Google Scholar] [CrossRef]
- Zhao, H.; Li, G.; Tian, F.; Jia, Q.; Liu, Y.; Chen, R. G-C3N4 Surface-Decorated Bi2O2CO3 for Improved Photocatalytic Performance: Theoretical Calculation and Photodegradation of Antibiotics in Actual Water Matrix. Chem. Eng. J. 2019, 366, 468–479. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, D.; Wang, Z.; Yi, L.; Sun, J.; Liu, D.; Yu, X.; Chen, Y. Bandgap Engineering of Carbon Nitride by Formic Acid Assisted Thermal Treatment for Photocatalytic Degradation of Tetracycline Hydrochloride. Chem. Eng. J. 2024, 485, 149830. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Lu, P.; Zhou, Y.; Zhou, Y.; Bai, Y.; Yao, J. Cyano-Deficient g-C3N4 for Round-the-Clock Photocatalytic Degradation of Tetracycline: Mechanism and Application Prospect Evaluation. Water Res. 2024, 260, 121936. [Google Scholar] [CrossRef]
- Fu, X.; Kong, Y.; Wang, M.; Cai, T.; Zeng, Q. MXene Derived Ti3C2/TiO2/Ag Persistent Photocatalyst with Enhanced Electron Storage Capacity for Round-the-Clock Degradation of Organic Pollutant. J. Colloid Interf. Sci. 2024, 656, 233–240. [Google Scholar] [CrossRef]
- Shi, J.; Xu, Y.; Chen, Y.; Jiang, W.; Liu, B.; Pei, W.; Liu, C.; Zhou, T.; Che, G. In-Site Growing Honeycombed Integrated S-Doped-g-C3N4-NiCo2O4 PMS Activator for Round-the-Clock Ultra-Efficient Degradation of Multiple Pollutants. Sep. Purif. Technol. 2025, 354, 129492. [Google Scholar] [CrossRef]
- Wu, C.; Lv, K.; Li, X.; Li, Q. Dual Cocatalysts for Photocatalytic Hydrogen Evolution: Categories, Synthesis, and Design Considerations. Chin. J. Catal. 2023, 54, 137–160. [Google Scholar] [CrossRef]
- Ma, L.; Lu, M.; Li, K.; Zhang, S.; Liu, H.; Huang, Y.; Xing, Z.; Wu, Z.; Ye, X. Photocatalytic Degradation of Octadecylamine and 4-Dodecylmorpholine over Titanium Based Photocatalyst: Activity and Mechanism Insights. Chem. Eng. J. 2023, 472, 144782. [Google Scholar] [CrossRef]
- Chen, R.; Ni, C.; Zhu, J.; Fan, F.; Li, C. Surface Photovoltage Microscopy for Mapping Charge Separation on Photocatalyst Particles. Nat. Protoc. 2024, 19, 2250–2282. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Q.; Wang, X.; Li, J.; Li, W.; Li, Y.; Zhang, G. Carbon Dots Modified Bismuth Antimonate for Broad Spectrum Photocatalytic Degradation of Organic Pollutants: Boosted Charge Separation, DFT Calculations and Mechanism Unveiling. Chem. Eng. J. 2021, 418, 129460. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Y.; Huang, H.; Sun, J.; Hong, J.; Zhang, F.; Wei, X.; Gao, W.; Shao, M.; Guo, Y.; et al. Design and Synthesis of Broadband Absorption Covalent Organic Framework for Efficient Artificial Photocatalytic Amine Coupling. Nat. Commun. 2024, 15, 4856. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, H.; Zhang, C.; Ta, N.; Li, R.; Li, C. Triclinic-Phase Bismuth Chromate: A Promising Candidate for Photocatalytic Water Splitting with Broad Spectrum Ranges. Adv. Mater. 2023, 35, 2211182. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-Hydrogen Efficiency of More than 9% in Photocatalytic Water Splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef]
- Sathish, T.; Saravanan, R.; Kumar, A.; Prakash, C.; Shahazad, M.; Gupta, M.; Senthilkumar, N.; Pandit, B.; Ubaidullah, M.; Smirnov, V.A. Influence of Synthesizing Parameters on Surface Qualities of Aluminium Alloy AA5083/CNT/MoS2 Nanocomposite in Powder Metallurgy Technique. J. Mater. Res. Technol. 2023, 27, 1611–1629. [Google Scholar] [CrossRef]
- Suganya, B.; Maruthamuthu, S.; Chandrasekaran, J.; Saravanakumar, B.; Vijayakumar, E.; Marnadu, R.; Al-Enizi, A.M.; Ubaidullah, M. Design of Zinc Vanadate (Zn3V2O8)/Nitrogen Doped Multiwall Carbon Nanotubes (N-MWCNT) towards Supercapacitor Electrode Applications. J. Electroanal. Chem. 2021, 881, 114936. [Google Scholar] [CrossRef]
- Ubaidullah, M.; Ahmed, J.; Ahamad, T.; Shaikh, S.F.; Alshehri, S.M.; Al-Enizi, A.M. Hydrothermal Synthesis of Novel Nickel Oxide@nitrogenous Mesoporous Carbon Nanocomposite Using Costless Smoked Cigarette Filter for High Performance Supercapacitor. ACS Mater. Lett. 2020, 266, 127492. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, L.; Zhang, M.; Xiao, Y.; Tao, Y.; Yang, F.; Lin, Q.; Zhang, Y. Roles of BOCu Sites and Graphite Nitrogen on Persulfate Non-Radical Activation for Tetracycline Degradation. J. Colloid Interface Sci. 2024, 673, 178–189. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, Z.; Zhang, X.; Yan, C.; Wei, J.; Qiu, F.; Liu, Y. Fe–Mn Bimetallic Catalyst to Activate Peroxymonosulfate (PMS) for Efficient Degradation of Tetracycline: Mechanism Insights and Application for Pharmaceutical Wastewater. J. Clean. Prod. 2024, 445, 141365. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z.; Li, J.; Meng, Y.; Yao, X.; Wang, Y.; Lu, Y.; Zhang, T. Visible-Light-Assisted Peroxymonosulfate Activation by Metal-Free Bifunctional Oxygen-Doped Graphitic Carbon Nitride for Enhanced Degradation of Imidacloprid: Role of Non-Photochemical and Photocatalytic Activation Pathway. J. Hazard. Mater. 2022, 423, 127048. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Zhu, Y.; Fu, J.; Xu, S.; Wu, X.; Wang, Z.; Yuan, M.; Song, Z.; Cui, S. Facile Synthesis of a Novel Zn2Ti3O8 Aerogel with Porous Structure for High-Efficient Degradation of Antibiotics under Simulated Sunlight. Ceram. Int. 2023, 49, 23264–23275. [Google Scholar] [CrossRef]
- Qiu, J.; Peng, C.; Wang, R.; Yao, C.; Liu, X.; Wang, Q.; Wang, W. One-Step in-Situ Preparation of C/TiO2@rGO Aerogel Derived from Ti3C2Tx MXene for Integrating Microwave Absorption, Electromagnetic Interference Shielding and Catalytic Degradation of Antibiotics. Carbon 2024, 217, 118610. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Chen, Z.; Yang, Z.; Zhang, X.; Wang, X. In Situ Construction of CdS/g-C3N4 Heterojunctions in Spent Thiolation@Wood-Aerogel for Efficient Excitation Peroxymonosulfate to Degradation Tetracycline. ACS Appl. Mater. Interfaces 2024, 16, 28353–28366. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H.-M.; Wang, L. Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Adv. Mater. 2019, 31, 1801369. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Zhang, Y.; Liu, W.; Xu, J.; Lin, H. Enhanced Synergistic Performance of G-C3N4/MoS2 with Hollow Structure for Tetracycline Photocatalytic Degradation in Complex Environments: Performance and Mechanism. J. Clean. Prod. 2024, 451, 141983. [Google Scholar] [CrossRef]
- Luo, T.; Bao, Y. Stable Fabrication of S-Step Photocatalyst Assembled from Cu-Doped SnO2 Yolk-Shell Hollow Spheres Capsulated by MnCo2O4 Nanoparticles for Enhancing Antibiotic Photodegradation. Sep. Purif. Technol. 2024, 347, 127503. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, C.; Nie, Z.; Zhang, Y.; Bai, Q.; Yin, Z.; Zhang, S.; Qu, X.; Du, F.; Shi, L. Cookies-like Ag2S/Bi4NbO8Cl Heterostructures for High Efficient and Stable Photocatalytic Degradation of Refractory Antibiotics Utilizing Full-Spectrum Solar Energy. Sep. Purif. Technol. 2022, 292, 120969. [Google Scholar] [CrossRef]
- Sun, H.; Wang, C.; Shao, Y.; Zhang, Y.; Chen, C.; Liu, H.; Dou, S.; Xu, J.; Zhang, Y.; Lou, Y.; et al. Balanced Generation of Holes and Superoxide Radicals on Bi25CoO40 Sillenite Photocatalysts for Rapid Synergetic Degradation of Quinolone Antibiotics. Environ. Sci. Nano 2024, 11, 3178–3191. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Deng, Y.; Zheng, J.; He, C.; Tremblay, P.L.; Zhang, T. Photocatalytic degradation of persistent antibiotic pollutants by MOF-derived bird-nest ferric molybdate. J. Water Process Eng. 2024, 60, 105166. [Google Scholar] [CrossRef]
- Song, R.; Chi, H.; Ma, Q.; Li, D.; Wang, X.; Gao, W.; Wang, H.; Wang, X.; Li, Z.; Li, C. Highly Efficient Degradation of Persistent Pollutants with 3D Nanocone TiO2-Based Photoelectrocatalysis. J. Am. Chem. Soc. 2021, 143, 13664–13674. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhu, H.; Ma, Y.; Liu, N.; Niu, X.; Wei, M.; Pan, J. Rational Design and Fabrication of Surface Molecularly Imprinted Polymers Based on Multi-Boronic Acid Sites for Selective Capture Glycoproteins. Chem. Eng. J. 2019, 367, 55–63. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, Y.; Wang, P.; Xu, Y.; Zhang, J.; Wei, B.; Zhou, G.; Liu, X.; Huang, Y.; Wu, C. High-Throughput Imprinted Non-Metal S-Scheme Heterojunction Self-Cleaning Membrane with Tight Adhesion via Dopamine for Selective Photodegradation of TC. J. Environ. Chem. Eng. 2023, 11, 109745. [Google Scholar] [CrossRef]
- Fu, J.; Li, S.; Li, Q.; Bell, E.; Yang, D.; Li, T.; Li, Y.; He, J.; Zhou, L.; Zhang, Q.; et al. Preparation of Surface Molecular-Imprinted MOFs for Selective Degradation of Tetracycline Antibiotics in Wastewater. Colloids Surf. Physicochem. Eng. Asp. 2024, 687, 133575. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Song, Y.; Zhang, X.; Xie, H.; Sheng, S.; Zou, H. 3D/1D Fe3O4@TiO2/TC-TiO2/SiO2 Magnetic Inorganic-Framework Molecularly Imprinted Fibers for Targeted Photodegradation. Inorg. Chem. 2024, 63, 10568–10584. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhu, X.; Liu, Y.; An, Z.; Jia, H.; Wang, J. Design of Membrane-Based Microfluidic Chip Device Based on Bionic Leaf and Adsorption Detection of Tetracycline Antibiotics by Specific Gel Membrane. Chem. Eng. J. 2024, 495, 153394. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, Q.; Yang, W. Chloroplast Inspired Z-Scheme Photocatalyst for Efficient Degradation of Antibiotics: Synergistic Effect of Full-Visible Light Response, Multi-Channel Electron Transport and Enhanced Molecular Oxygen Activation. Sep. Purif. Technol. 2023, 315, 123721. [Google Scholar] [CrossRef]
- Ortiz, M.; Gomez, E.; Serra, A. Recyclable Biomimetic Sunflower Pollen-Based Photocatalyst for Enhanced Degradation of Pharmaceuticals. Small 2024, 2405204. [Google Scholar] [CrossRef]
- Xia, C.; Ou, X.; Chen, P.; Zhang, F.; Wei, M.; Wang, Y.; Zhang, M. Sunlight Degradation of Tetracycline by Z-Type BiOI/g-C3N4 Photocatalyst Synthesized via a Simple Two-Step Process: Response Surface Methods, Degradation Pathways, Toxicity Evaluation. J. Water Process Eng. 2024, 64, 105617. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Wang, C.; Zhao, L.; Pan, H.; Liu, Y.; Liang, L.; Zhao, C.; Huang, S. Self-Endowed Magnetic Photocatalysts Derived from Iron-Rich Sludge and Its Recycling in Photocatalytic Process for Tetracycline Degradation. Bioresour. Technol. 2024, 395, 130357. [Google Scholar] [CrossRef] [PubMed]
- Pajouhan, Y.; Sabbaghi, S.; Rasouli, K.; Rasouli, J.; Dastyar, W.; Andiroglu, E. Enhanced Photocatalytic Degradation of Tetracycline Using α-Fe2O3@TiO2- Impregnated Mxene Photocatalyst: Mechanism and Optimization of Process via RSM and ANN. Process Saf. Environ. 2024, 190, 1149–1163. [Google Scholar] [CrossRef]
- Xue, B.; Yang, C.; Chang, M.; Liu, D. Structural Design of Core-Shell ZIF-8@NH2-MIL-125 Photocatalyst for Synergistic Adsorption-Photocatalytic Degradation of Tetracycline Hydrochloride. J. Alloys Compd. 2024, 973, 172850. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, P.; Xie, T.; Liang, T.; Qiu, Q. Oxygen Vacancy and Ce Ion Co-Synergize to Enhance the Photocatalytic Degradation Performance of FeTiO3: An Experimental and DFT Study. Appl. Surf. Sci. 2024, 669, 160415. [Google Scholar] [CrossRef]
Pollutants | Materials | Band-Gap Energy (eV) | Degradation Condition | Degradation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|
Time/min | Catalyst Dosage | Concentration of Pollutants (mg/L) | |||||
TCs | Bi12O17Cl2 | 2.20 | 60 | 20 mg | 20 | 92.2% | [36] |
TCH | Bi/CeO2 (BC-1000) | 2.99 | 90 | 15 mg | 10 | 91.89% | [42] |
TCs | BaTi0.85Zr0.15O3/MOF-5 | 2.86 | 150 | 200 mg/L | 10 | 95% | [43] |
TCs | ZIF-67embedded Bentonite/alginate beads (ZIF-AB 2.5) | - | 60 | 500 mg/L | 25 | 99.8% | [44] |
TCs | Al-MOF/MoS2/WS2 (AlMWS) | 3.26 | 75 | 300 mg/L | 30 | 97.93% | [45] |
TCs | CQD@UiO-66-NH2/PSF | - | - | 500 mg/L | 20 | 100% | [46] |
TCs | Cu@UIO-66-NH2/ZnIn2S4 | - | 120 | 20 mg | 20/40 | 92.6% | [47] |
TCs | Ni/Mn-MOF-74/CdS@Co3O4 (4:4) (MCC-4) | - | 70 | 50 mg | 40 | 99.2% | [48] |
TCs | NH2-ML-101 (Fe2+/Fe3+)-0.2 | 2.27 | 90 | 25 mg | 20 | 94% | [49] |
TCH | [email protected] | 3.36 | 120 | 200 mg | 30 | 93.41% | [50] |
Pollutants | Materials | Band-Gap Energy (eV) | Degradation Condition | Degradation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|
Time/min | Catalyst Dosage | Concentration of Pollutants (mg/L) | |||||
TCH | Ce/Bi2WO6 | 1.61 | 40 | 600 mg/L | 35 | 90.40% | [57] |
TCs | Ce-Fe/CaWO4 | 2.10 | 120 | 500 mg/L | 10 | 98.4% | [58] |
TCs | Mn-Fe/CN-50 | 1.80 | 50 | 400 mg/L | 20 | 99% | [59] |
TCH | Ce5-CdS/N-rGO20 | - | 90 | 500 mg/L | 20 | 94.5% | [60] |
TCs | Mn-FeOOH/CNNS | - | 50 | 300 mg/L | 20 | 99.7% | [61] |
TCs | Cu/Bi2O2S | - | 30 | 30 mg | 30 | 90.4% | [62] |
TCs | Co/BiVO4-Vo | 2.28 | 10 | 200 mg/L | 20 | 92.3% | [63] |
TCH | Yb0.4/BiOBr | 2.95 | 100 | 200 mg/L | 20 | 89.38% | [64] |
TCH | La/FeTiO3 | 2.47 | 120 | - | 20 | 91.38% | [65] |
TCs | Bi0.05La0.95Cu0.1Fe0.9O3 | 2.39 | 60 | 100 mg | 40 | 94.6% | [66] |
Pollutants | Materials | Band-Gap Energy (eV) | Degradation Condition | Degradation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|
Time/min | Catalyst Dosage | Concentration of Pollutants (mg/L) | |||||
TCs | Mesoporous I-doped g-C3N4 with 0.50 g of I dopant (GCN-I0.50) | 2.45 | 150 | 600 mg/L | 10 | 99.8% | [80] |
TCs | nanoporous-TiO2-encapsulating macroporous-double-gyroid-structure photocatalyst (TiO2@DGS) | 2.82 | 60 | - | 10 | 93.6% | [81] |
TCs | Ti0.95Ru0.05O2−y | - | 50 | 20 mg | 10 | 98.7% | [82] |
TCs | B-g-C3N4/SBA-15 a | 2.19 | 120 | 10 mg | 20 | 93.74% | [83] |
TCs | MnCo2O4/TiO2 | 2.13 | 60 | 160 mg/L | 20 | 100% | [84] |
TCs | HCOF-Ph@g-C3N4 (HCg-30% b) | - | 14 | 30 mg | 30 | 100% | [85] |
TCs | porous molybdenum graphene aerogel (pMGA) | - | 120 | 500 mg/L | 5 | 97% | [86] |
TCH | CsPbBr3@HZIF-8 (the hierarchically porous ZIF-8) | - | 40 | 15 mg | 10 | 94% | [87] |
TCs | 1-CN@BCO (CN:BO/BCO=1:1) | 2.56 | 40 | 200 mg/L | 20 | 98.1% | [88] |
TCs | LDH-SnO2-WO3 (LDH, Layered double hydroxides) | 3.69 | 120 | - | 20 | 95.5% | [89] |
Pollutants | Materials | Band-Gap Energy (eV) | Degradation Condition | Degradation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|
Time/min | Catalyst Dosage | Concentration of Pollutants (mg/L) | |||||
TCs | CQDs/Cu2O | 2.04 | 100 | 100 mg | 10 | 92.49% | [97] |
TCs | g-C3N4/CQD/Fe8Ni2BTC a | 2.44 | 90 | 2500 mg/L | 30 | 98.28% | [98] |
TCs | Ag3PO4/g-C3N4/FeNi-BTC a/CQD | 2.56 | 60 | 400 mg/L | 30 | 98.4% | [99] |
TCH | BiOBr/g-C3N4/CQDs | - | 50 | 1000 mg/L | 10 | 99.63% | [100] |
TCs | NCDs/BiOBr/AgBr | - | 60 | 40 mg | 20 | 94% | [101] |
TCs | P(1.0)-CQD/Ni-MOL(nickel metal-organic layer) | 2.23 | 120 | 30mg | 100 | 98.98% | [102] |
TCs | CQDS/BiVO4 | - | 30 | 500 mg/L | 10 | 92.3% | [103] |
TCs | N-CQDs/TiO2 | 2.85 | 120 | 200 mg/L | 10 | 97.7% | [104] |
TCs | CQDs/FeOx | 1.40 | 320 | 2000 mg/L | 20 | 98.21% | [105] |
TCH | CA (carbon aerogel)/BiOCl | 3.16 | 120 | 200 mg/L | 20 | 100% | [106] |
Pollutants | Materials | Band-Gap Energy (eV) | Degradation Condition | Degradation Efficiency | Ref. | ||
---|---|---|---|---|---|---|---|
Time/min | Catalyst Dosage | Concentration of Pollutants (mg/L) | |||||
TCH | g-C3N4 on polyurethane foam | - | 120 | 30 mg/L | 5 | 96.8% | [111] |
TCs | BiOCl/BiOBr@FACs (fly ash cenospheres) | 2.98 | 60 | 1000 mg/L | 30 | 86.1% | [112] |
TCs | V-BiOIO3/FTCN (fish-scale tubular carbon nitride) | - | 60 | 400 mg/L | 10 | 89% | [113] |
TCs | CuO-MoS2/C3N4-expanded graphite | - | 60 | 330 mg/L | 50 | 99% | [114] |
TCs | Bi-Bi2O2CO3-ZnBi2O4 | 3.05 | 180 | 875 mg/L | 10 | 97.5% | [115] |
TCH | Self- suspending aluminum-plastic supported TiO2 | - | 240 | 2000 mg/L | 30 | 93.6% | [116] |
TCs | FeMo3Ox/g-C3N4/EP (expanded perlite) | 2.05 | 60 | 1330 mg/L | 25 | 98% | [117] |
TCH | FeOOH/EPE(expandable polyethylene) | - | 14 | 350 mg | 20 | 96.76% | [118] |
TCs | PS@TiO2/Bi2O3 | 3.53 | 60 | 200 mg/L | 50 | 88.4% | [119] |
TCs | FeMo3Ox/C3N4-EP (expanded perlite) | - | 30 | 1000 mg/L | 50 | 97.8% | [120] |
Pollutants | Materials | Band-Gap Magnitude | Degradation Conditions | Degradation Efficiency | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Semiconductor (eV) | Heterojunction (eV) | Time (min) | Catalyst Dosage | Pollutant Concentration (mg/L) | |||||
A | B | ||||||||
TCs | In2O3/TiO2 | 2.84 | 3.2 | 2.48 | 180 | 500 mg/L | 20 | 98% | [139] |
Oxytetracycline (OTC) | CdMoO4/CdO | 3.6 | 2.1 | - | 90 | 50 mg | 40 | 95.38% | [140] |
TCs | ZnO/Zn3(PO4)2 | 3.23 | 3.03 | 3.10 | 90 | 50 mg | 20 | 97% | [141] |
TCH | SnS2/TiO2 | 2.21 | 3.00 | 2.73 | 90 | 1.5 cm2 | 10 | 93.4% | [142] |
TCs | InVO4/ZnIn2S4 | 2.00 | 2.30 | - | 45 | 600 mg/L | 50 | 90.69% | [143] |
TCs | (BiO)2CO3/BiOCl | 3.02 | 3.17 | 3.05 | 60 | 50 mg | 10 | 95.3% | [144] |
TCs | g-C3N4/Mn1.1Fe1.9O4 | 2.75 | 2.03 | - | 90 | 500 mg/L | 40 | 94.7% | [145] |
TCs | Bi4O5I2/Bi3.64Mo0.36O6.55 | 2.27 | 2.41 | - | 60 | 200 mg/L | 10 | 91% | [146] |
TCH | In2O3/Bi4O5Br2 | 2.63 | 2.57 | - | 100 | 35 mg | 20 | 92.4% | [147] |
TCs | Cu-MOF/ZnWO4 | 2.7 | 3.0 | 1.25 | 60 | 20 mg | 20 | 98% | [148] |
Types | Light Source | Preparation Method | Initial TC Concentration (mg/L) | Degradation Efficiency (%) | Reaction Time (min) | Side Products | Ref. |
---|---|---|---|---|---|---|---|
Z-type heterojunction | Vis light | Hydrothermal + grinding | 10.94 | 95.63 | 150 | Small-molecule minerals | [193] |
magnetic basis | Vis light | pyrolysis | 10.00 | 95.30 | 300 | Magnetic recyclable | [194] |
Mxene | Vis light | Ultrasound Assist | 35 | 98.36 | 124 | None | [195] |
core–shell structure | Vis light | epitaxial growth | 50 | 92.9 | 100 | None | [196] |
MOF-based | UV | a facile one-pot solvent–thermal precipitation | 10 | 95 | 150 | None | [43] |
Element doping | Vis light | sol–gel | 20 | 97.5 | 120 | None | [197] |
Mesoporous material-loaded | Vis light | sequential deposition | 10 | 94 | 40 | Lower-oxidation-capacity minerals | [87] |
Carbon quantum dot | Full-spectrum irradiation | hydrothermal | 20 | 100 | 120 | None | [106] |
Floatation-based photocatalysts | UV | 3D printing design + surface deposition | 30 | 93.6 | 240 | None | [116] |
Aerogel-based photocatalysts | Vis light | one-step in situ preparation | - | 96.5 | 90 | None | [177] |
Molecularly imprinted photocatalysts | Vis light | surface molecular-imprinting technology | 50 | 99 | 20 | None | [188] |
Biomimetic photocatalysts | Vis light | a novel electrochemical synthesis method | 90 | >99 | 90 | Biomass ash (effective peroxymonosulphate activators for TC mineralization. | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Chen, Y.; Zhou, G.; Ge, H.; Liu, H. Recent Advances in Photocatalytic Degradation of Tetracycline Antibiotics. Catalysts 2024, 14, 762. https://doi.org/10.3390/catal14110762
Ma J, Chen Y, Zhou G, Ge H, Liu H. Recent Advances in Photocatalytic Degradation of Tetracycline Antibiotics. Catalysts. 2024; 14(11):762. https://doi.org/10.3390/catal14110762
Chicago/Turabian StyleMa, Jiale, Yang Chen, Gang Zhou, Haiyu Ge, and Hongbo Liu. 2024. "Recent Advances in Photocatalytic Degradation of Tetracycline Antibiotics" Catalysts 14, no. 11: 762. https://doi.org/10.3390/catal14110762
APA StyleMa, J., Chen, Y., Zhou, G., Ge, H., & Liu, H. (2024). Recent Advances in Photocatalytic Degradation of Tetracycline Antibiotics. Catalysts, 14(11), 762. https://doi.org/10.3390/catal14110762