Research on Deoxygenation Pyrolysis of Larch Based on Microwave Heating
Abstract
:1. Introduction
2. Results
2.1. Characterization Results of Calcium–Iron Composite Oxygen Carrier
2.2. Analysis of Liquid Products from Microwave Pyrolysis of Biomass
2.3. Effect of Calcium–Iron Composite Oxygen Carrier on Liquid Product
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods of Pyrolysis Experiment and Product Detection
4.3. Preparation and Characterization of Composite Oxygen Carrier
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.P.; Hoang, A.T.; Ler, A.I.; Engel, D.; Nayak, S.K. Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine. Fuel Process. Technol. 2021, 214, 106687. [Google Scholar] [CrossRef]
- Saraeian, A.; Nolte, M.W.; Shanks, B.H. Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon. Renew. Sustain. Energy Rev. 2019, 104, 262–280. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, H.P.; Wang, J.; Shi, T.; Yang, H.P.; Wang, X.H. Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J. Fuel Chem. Technol. 2011, 39, 893–900. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast Pyrolysis Processes for Biomass. Renew. Sustain. Energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Sipilä, K.; Kuoppala, E.; Fagernäs, L.; Oasmaa, A. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 1998, 14, 103–113. [Google Scholar] [CrossRef]
- Bagnato, G.; Sanna, A.; Paone, E.; Catizzone, E. Recent Catalytic Advances in Hydrotreatment Processes of Pyrolysis Bio-Oil. Catalysts 2021, 11, 157. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Attia, M.; Farag, S.; Chaouki, J. Upgrading of Oils from Biomass and Waste: Catalytic Hydrodeoxygenation. Catalysts 2020, 10, 1381. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Mukarakate, C.; Watson, M.J.; ten Dam, J.; Baucherel, X.; Budhi, S.; Yung, M.M.; Ben, H.; Iisa, K.; Baldwin, R.M.; Nimlos, M.R. Upgrading biomass pyrolysis vapors over beta-zeolites: Role of silica-to-alumina ratio. Green Chem. 2014, 16, 4891–4905. [Google Scholar] [CrossRef]
- Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011, 40, 5580–5588. [Google Scholar] [CrossRef]
- Ly, H.V.; Kim, J.; Hwang, H.T.; Choi, J.H.; Woo, H.C.; Kim, S.-S. Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading. Catalysts 2019, 9, 1043. [Google Scholar] [CrossRef]
- Miao, F.; Luo, Z.; Zhou, Q.; Du, L.; Zhu, W.; Wang, K.; Zhou, J. Study on the reaction mechanism of C8+ aliphatic hydrocarbons obtained directly from biomass by hydropyrolysis vapor upgrading. Chem. Eng. J. 2023, 464, 142639. [Google Scholar] [CrossRef]
- Xue, S.; Luo, Z.; Sun, H.; Zhu, W. Product regulation and catalyst deactivation during ex-situ catalytic fast pyrolysis of biomass over Nickel-Molybdenum bimetallic modified micro-mesoporous zeolites and clays. Bioresour. Technol. 2022, 364, 128081. [Google Scholar] [CrossRef]
- Gundekari, S.; Karmee, S.K. Catalytic Hydropyrolysis of Lignin for the Preparation of Cyclic Hydrocarbon-Based Biofuels. Catalysts 2022, 12, 1651. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Zhang, X.; Hu, X.; Guo, Q. Chemical looping staged conversion of microalgae with calcium ferrite as oxygen carrier: Pyrolysis and gasification characteristics. J. Anal. Appl. Pyrolysis 2021, 156, 105129. [Google Scholar] [CrossRef]
- Eraslan, U.; Calhan, R. Investigation of the performance and emissions of a diesel engine fuelled with bio-oil generated through microwave-assisted pyrolysis of a blend of hazelnut, walnut, and polyethylene terephthalate waste. Ind. Crops Prod. 2024, 214, 118560. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. A review on the susceptor assisted microwave processing of materials. Energy 2016, 97, 306–338. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Q.; Ju, M.; Ji, P.; Sun, Q.; Li, W. Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts 2020, 10, 742. [Google Scholar] [CrossRef]
- Kobayashi, N.; Itaya, Y. Performance of Iron Oxide-Based Oxygen Carrier in Biomass Pyrolysis. J. Chem. Eng. Jpn. 2018, 51, 469–475. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Wu, S.; Li, G.; Zhao, S.; Li, Y.; Yang, B. Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: Products distribution and kinetic analysis on gaseous products from cellulose. Fuel Process. Technol. 2019, 193, 361–371. [Google Scholar] [CrossRef]
- Siriwardane, R.; Riley, J.; Tian, H.; Richards, G. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions. Appl. Energy 2016, 165, 952–966. [Google Scholar] [CrossRef]
- Ismail, M.; Liu, W.; Dunstan, M.T.; Scott, S.A. Development and performance of iron based oxygen carriers containing calcium ferrites for chemical looping combustion and production of hydrogen. Int. J. Hydrogen Energy 2016, 41, 4073–4084. [Google Scholar] [CrossRef]
- Chan, M.S.C.; Liu, W.; Ismail, M.; Yang, Y.; Scott, S.A.; Dennis, J.S. Improving hydrogen yields, and hydrogen:steam ratio in the chemical looping production of hydrogen using Ca2Fe2O5. Chem. Eng. J. 2016, 296, 406–411. [Google Scholar] [CrossRef]
- Ismail, M.; Liu, W.; Chan, M.S.C.; Dunstan, M.T.; Scott, S.A. Synthesis, Application, and Carbonation Behavior of Ca2Fe2O5 for Chemical Looping H2 Production. Energy Fuels 2016, 30, 6220–6232. [Google Scholar] [CrossRef]
- Miller, D.D.; Ranjani, S. CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application. Appl. Energy 2018, 224, 708–716. [Google Scholar] [CrossRef]
- Gao, N.; Liz, M.; Quan, C.; Bieniek, A.; Magdziarz, A. Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor. Renew. Energy 2021, 167, 652–661. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Liu, Z.; Cai, N.; Chen, H. Negative-carbon pyrolysis of biomass (NCPB) over CaO originated from carbide slag for on-line upgrading of pyrolysis gas and bio-oil. J. Anal. Appl. Pyrolysis 2021, 156, 105063. [Google Scholar] [CrossRef]
- Pimenta, F.; Filho, E.; Diniz, Â.; Barrozo, M.A.S. Catalytic Microwave-Assisted Pyrolysis of the Main Residue of the Brewing Industry. Catalysts 2023, 13, 1170. [Google Scholar] [CrossRef]
- Kahil, H.; Faramawy, A.; El-Sayed, H.; Abdel-Sattar, A. Magnetic Properties and SAR for Gadolinium-Doped Iron Oxide Nanoparticles Prepared by Hydrothermal Method. Crystals 2021, 11, 1153. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, L.; Tian, H.; Li, X.; Gong, J. Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane. ACS Catal. 2017, 7, 3548–3559. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Łamacz, A.; Beaunier, P.; Czajkowska, S.; Domański, M.; Krztoń, A.; Van Le, T.; Djéga-Mariadassou, G. Partial oxidation of methane over bifunctional catalyst I. In situ formation of Ni0/La2O3 during temperature programmed POM reaction over LaNiO3 perovskite. Appl. Catal. B Environ. 2014, 152–153, 360–369. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, K.; Wang, H.; Tian, D.; Wang, Y.; Zhu, X.; Wei, Y.; Zheng, M.; Luo, Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane. Appl. Catal. B Environ. 2017, 202, 51–63. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catal. 2015, 5, 6594–6599. [Google Scholar] [CrossRef]
- Xu, D.; Lin, J.; Ma, R.; Fang, L.; Sun, S.; Luo, J. Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation. Renew. Energy 2022, 184, 124–133. [Google Scholar] [CrossRef]
- Yan, J.; Sun, R.; Shen, L.; Bai, H.; Jiang, S.; Xiao, Y.; Song, T. Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier. Chem. Eng. J. 2020, 387, 124107. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, S.; Hu, J.; Chen, A.; Rony, A.H.; Russell, C.K.; Xiang, W.; Fan, M.; Darby Dyar, M.; Dklute, E.C. Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Appl. Energy 2018, 211, 431–442. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X.; Russell, C.K.; Dyar, M.D.; Sklute, E.C.; Toan, S.; Fan, M.; Duan, L.; Xiang, W. Synergistic enhancement of chemical looping-based CO2 splitting with biomass cascade utilization using cyclic stabilized Ca2Fe2O5 aerogel. J. Mater. Chem. A 2019, 7, 1216–1226. [Google Scholar] [CrossRef]
Oxygen Carrier | Elemental Semi-Quantitative Results (Mass%) | Stoichiometry of Each Element | |||
---|---|---|---|---|---|
CaO | Fe2O3 | Ca | Fe | O | |
CaFe2O4 | 25.39 | 74.61 | 0.97 | 2 | 3.97 |
Ca2Fe2O5 | 42.71 | 57.29 | 2.12 | 2 | 5.12 |
Oxygen Carrier | Oxygen Type (%) | OII/OI | ||
---|---|---|---|---|
OI | OII | OIII | ||
CaFe2O4 | 61.99 | 28.97 | 9.04 | 0.47 |
Ca2Fe2O5 | 51.12 | 41.62 | 7.26 | 0.81 |
Chemical Formula | Product Name | Selectivity | ||
---|---|---|---|---|
Fe + CaO | Ca2Fe2O5 | CaFe2O4 | ||
C6H10O3 | 2-Butanone,1-(acetyloxy)- | 1.32% | - | - |
C4H8O3 | 1,2-Ethanediol,monoacetate | - | 1.38% | 1.76% |
C4H6O3 | Propanoic acid,2-oxo-,methyl ester | 1.12% | 1.17% | 1.46% |
C5H8O | Cyclopentanone | 1.46% | 0.63% | 0.64% |
C5H4O2 | 3-Furaldehyde | 5.32% | 6.78% | 9.89% |
C6H10O | Cyclopentanone,2-methyl | 0.80% | - | - |
C5H6O2 | 2-Furanmethanol | 2.43% | 0.66% | 0.78% |
C6H8O | 2-Cyclopenten-1-one,2-methyl | 2.70% | 1.40% | 1.67% |
C5H8O3 | 2-Propanone,1-(acetyloxy)- | 0.71% | - | 0.73% |
C4H4O2 | 2(5H)-Furanone | 1.38% | 1.76% | 2.05% |
C5H6O2 | 1,2-Cyclopentanedione | 0.59% | 1.17% | 0.89% |
C7H10O | 2-Cyclopenten-1-one,3,4-dimethyl | 0.80% | - | - |
C6H6O2 | 2-Furancarboxaldehyde, 5-methyl | 0.95% | 2.03% | 2.19% |
C6H8O | 2-Cyclopenten-1-one,3-methyl | 1.99% | 0.87% | 1.03% |
C6H6O | Phenol | 2.24% | 8.82% | 8.51% |
C8H17NO | Oxazolidine,2,2-diethyl-3-methyl | - | 2.25% | 2.29% |
C7H10O | 2-Cyclopenten-1-one,2,3-dimethyl | 4.48% | - | 0.56% |
C6H8O2 | 2-Cyclopenten-1-one,2-hydroxy-3-methyl | 1.79% | 1.92% | 1.80% |
C9H8 | Indene | 1.21% | 1.24% | 1.45% |
C7H8O | Phenol,2-methyl | 1.99% | 3.65% | 2.81% |
C8H12O | 2-Cyclopenten-1-one,2,3,4-trimethyl | 1.23% | - | - |
C7H8O | Phenol,3-methyl | 2.93% | 11.59% | 9.11% |
C7H8O2 | Phenol,2-methoxy | 4.12% | 2.31% | 2.59% |
C9H8O | (Z)-3-Phenylacrylaldehyde | - | 0.72% | - |
C9H8O | Benzofuran,2-methyl | - | 0.75% | 0.65% |
C5H10O | 2-Penten-1-ol,(Z)- | 0.76% | - | - |
C8H12O | 2-Ethyl-3-methylcyclopent-2-en-1-one | 0.64% | - | - |
C8H10O | Phenol,2,4-dimethyl | 1.71% | 1.61% | 0.99% |
C10H10 | 1H-Indene,3-methyl | 1.11% | 0.74% | 0.65% |
C8H10O | Phenol,2,5-dimethyl | 0.64% | 0.89% | 0.68% |
C8H10O | Phenol,3-ethyl- | - | 1.67% | 1.13% |
C8H10O | Benzene,1-methoxy-4-methyl | - | 1.47% | - |
C8H10O | Phenol,2,3-dimethyl | - | 0.95% | 0.84% |
C12H14N4O4 | 2-Vinyl-9-[3-deoxy-á-dribofuranosyl] hypoxanthine | - | 0.99% | 0.89% |
C13H20O2 | (3-Methoxyphenyl) methanol,2-methylbutyl ether | - | - | 1.14% |
C10H8 | Azulene | - | 8.22% | 10.02% |
C8H8O | Benzofuran,2,3-dihydro | - | 1.43% | 0.56% |
C6H6O3 | 5-Hydroxymethyl furfural | - | 0.95% | 0.68% |
C8H16O | Cyclohexanol,2,4-dimethyl | 0.89% | - | - |
C8H10O2 | Creosol | 10.11% | - | - |
C9H12O | Phenol,2-ethyl-5-methyl | - | 1.82% | 0.94% |
C10H16O2 | Ascaridole | 0.82% | - | - |
C9H12O2 | 3,4-Dimethoxytoluene | 1.05% | - | - |
C12H18O | 5,9,9-Trimethylspiro[3.5]non5-en-1-one | 0.99% | - | - |
C9H12O2 | Phenol,4-ethyl-2-methoxy | 1.67% | 1.02% | 0.99% |
C9H8O | 1H-Inden-1-one,2,3-dihydro | 0.67% | - | - |
C7H8O2 | 1,2-Benzenediol,4-methyl | - | 0.76% | - |
C11H10 | Naphthalene,1-methyl | 1.41% | 1.27% | 2.21% |
C9H10O2 | 2-Methoxy-4-vinylphenol | 4.05% | 2.16% | 1.75% |
C11H10 | Naphthalene,2-methyl | 1.06% | 1.01% | 1.65% |
C8H10O3 | Phenol,2,6-dimethoxy | 1.94% | 1.34% | 1.02% |
C10H12O2 | Eugenol | 1.39% | 1.02% | 0.84% |
C10H14O2 | Phenol,2-methoxy-4-propyl | 0.64% | - | - |
C8H8O3 | Benzaldehyde,3-hydroxy-4-methoxy | 0.74% | 0.63% | 0.56% |
C9H8O | Benzofuran,2-methyl | - | 1.05% | 0.64% |
C12H10 | Biphenyl | - | - | 1.48% |
C10H12O2 | trans-Isoeugenol | 0.83% | 0.63% | 2.59% |
C9H12O3 | 3,5-Dimethoxy4-hydroxytoluene | 1.85% | 1.36% | 1.07% |
C10H12O2 | Phenol,2-methoxy-4-(1-propenyl)- | 5.49% | 3.14% | - |
C12H8 | Acenaphthylene | 1.41% | 1.25% | 1.13% |
C9H10O3 | Apocynin | 1.21% | 0.58% | - |
C13H12 | Diphenylmethane | - | 0.50% | 0.64% |
C10H8O | 1-Naphthalenol | - | 2.13% | - |
C19H24O5 | Bicyclo[3.2.2] non-6-ene-6-carboxylic acid,8-(3,4-dimethoxyphenyl)-9-methyl-3-oxa-,methyl ester | 0.62% | - | - |
C10H14O3 | 5-tert-Butylpyrogallol | 0.77% | - | 0.99% |
C9H10O4 | Gallacetophenone-4′-methylether | - | 0.55% | - |
C12H8O | Dibenzofuran | - | - | 1.45% |
C11H16O2 | Guaiacol,4-butyl | 1.35% | - | - |
C10H12O3 | Phenol,4-ethenyl-2,6-dimethoxy | 2.08% | 0.82% | 0.56% |
C14H10O | 2-Fluorenecarboxaldehyde | 1.85% | 1.34% | - |
C13H10 | Fluorene | - | - | 2.27% |
C10H14O3 | Benzenepropanol,4-hydroxy-3-methoxy | 1.55% | 1.23% | - |
C11H14O3 | (E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol | 3.09% | 1.53% | 1.11% |
C11H10O | 1-Naphthalenol,2-methyl | - | 0.53% | - |
C14H10 | Anthracene | 2.85% | 1.20% | 3.04% |
C18H18 | Phenanthrene,3,4,5,6-tetramethyl | 0.59% | - | - |
C21H28O3 | 7-Oxodehydroabietic acid,methyl ester | 0.61% | - | - |
C14H14 | Dehydrochamazulene | - | 0.56% | - |
C10H10O3 | Coniferylaldehyde | - | 0.52% | - |
C14H12 | 9H-Fluorene,2-methyl | - | - | 0.78% |
C15H12 | Phenanthrene,1-methyl | - | - | 0.56% |
C16H10 | Fluoranthene | - | - | 1.30% |
Oxygen Carrier | Elemental Analysis of Pyrolysis Oil, wt% | Calorific Value MJ/kg | ||||
---|---|---|---|---|---|---|
wC,ad | wH,ad | wO,ad | wN,ad | wS,ad | ||
Without oxygen carrier | 47.09 | 6.65 | 46.13 | 0.10 | 0.03 | 19.04 |
Fe | 53.36 | 7.36 | 39.15 | 0.10 | 0.03 | 22.53 |
Fe3O4 | 62.48 | 7.99 | 29.41 | 0.09 | 0.03 | 27.19 |
Ca2Fe2O5 | 61.98 | 9.14 | 28.76 | 0.09 | 0.03 | 28.13 |
CaFe2O4 | 67.17 | 8.03 | 27.70 | 0.08 | 0.02 | 29.05 |
Industrial Analysis/% | |||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FC, ad | ||||
3.4 | 0.42 | 80.71 | 15.47 | ||||
Elemental Analysis/% | |||||||
wC,ad | wH,ad | wO,ad | wN,ad | wS,ad | |||
37.95 | 5.17 | 52.90 | 0.11 | 0.05 | |||
Fiber Composition Analysis/% | |||||||
Cellulose | Hemicellulose | Lignin | Total | ||||
33.02 | 26.73 | 31.67 | 91.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, S.; Wang, X.; Zhang, B.; Xiao, B.; Song, Y. Research on Deoxygenation Pyrolysis of Larch Based on Microwave Heating. Catalysts 2024, 14, 808. https://doi.org/10.3390/catal14110808
Xue S, Wang X, Zhang B, Xiao B, Song Y. Research on Deoxygenation Pyrolysis of Larch Based on Microwave Heating. Catalysts. 2024; 14(11):808. https://doi.org/10.3390/catal14110808
Chicago/Turabian StyleXue, Shuang, Xin Wang, Biao Zhang, Bin Xiao, and Yongyi Song. 2024. "Research on Deoxygenation Pyrolysis of Larch Based on Microwave Heating" Catalysts 14, no. 11: 808. https://doi.org/10.3390/catal14110808
APA StyleXue, S., Wang, X., Zhang, B., Xiao, B., & Song, Y. (2024). Research on Deoxygenation Pyrolysis of Larch Based on Microwave Heating. Catalysts, 14(11), 808. https://doi.org/10.3390/catal14110808