Recent Advances in NO Reduction with NH3 and CO over Cu-Ce Bimetallic and Derived Catalysts
Abstract
:1. Introduction
2. NH3-SCR Catalysts
2.1. Effect Factors of NH3-SCR Performance
2.1.1. Effects of Preparation Methods
2.1.2. Effects of Modification/Doping
2.1.3. Effects of Supports
2.2. Anti-Toxicity Properties of NH3-SCR Reactions
2.3. NH3-SCR Reaction Mechanism
3. CO-SCR Catalysts
3.1. Effect Factors of CO-SCR Performance
3.1.1. Effects of Preparation Methods
3.1.2. Effects of Modification/Doping
3.1.3. Effects of Supports
3.2. Anti-Toxicity Properties of CO-SCR Reactions
3.3. CO-SCR Reaction Mechanism
4. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Li, P.; Yang, Z.; Gao, C.; Fu, L.; Liao, Z.; Zhao, T.; Cao, F.; Chen, W.; Peng, Y.; et al. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front. Cell. Dev. Biol. 2021, 9, 661802. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, Y.; Lin, Y.; Zhu, T. A review of the catalysts used in the reduction of NO by CO for gas purification. Environ. Sci. Pollut. Res. 2020, 27, 6723–6748. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiao, P.; Xu, X.; Bi, H.; Liu, X.; Zhu, J. Catalytic CO oxidation and CO + NO reduction conducted on La-Co-O composites: The synergistic effects between Co3O4 and LaCoO3. Catal. Today 2021, 376, 255–261. [Google Scholar] [CrossRef]
- Zhao, C.X.; Liu, J.N.; Li, B.Q.; Ren, D.; Chen, X.; Yu, J.; Zhang, Q. Multiscale Construction of Bifunctional Electrocatalysts for Long-Lifespan Rechargeable Zinc–Air Batteries. Adv. Funct. Mater. 2020, 30, 36. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K. Modified selective non-catalytic reduction system to reduce NOx gas emission in biodiesel powered engines. Fuel 2021, 298, 120826. [Google Scholar] [CrossRef]
- Van Caneghem, J.; De Greef, J.; Block, C.; Vandecasteele, C. NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: A case study. J. Clean. Prod. 2016, 112, 4452–4460. [Google Scholar] [CrossRef]
- Liu, H.; Park, J.; Chen, Y.; Qiu, Y.; Cheng, Y.; Srivastava, K.; Gu, S.; Shanks, B.H.; Roling, L.T.; Li, W. Electrocatalytic Nitrate Reduction on Oxide-Derived Silver with Tunable Selectivity to Nitrite and Ammonia. ACS Catal. 2021, 11, 8431–8442. [Google Scholar] [CrossRef]
- Mladenović, M.; Paprika, M.; Marinković, A. Denitrification techniques for biomass combustion. Renew. Sustain. Energy Rev. 2018, 82, 3350–3364. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Zhao, H.; Pei, M.; Fan, Y.; Xu, H.; Wang, J.; Chen, Y. Revealing the roles of Zr on enhanced H2-SCR performances on Pt/TiO2 catalyst. Chem. Eng. J. 2024, 490, 151714. [Google Scholar] [CrossRef]
- Prasad, V.S.; Aghalayam, P. Microkinetic Modeling of HC-SCR of NO to N2, N2O, and NO2 on Pt Catalysts in Automotive Aftertreatment. Ind. Eng. Chem. Res. 2017, 56, 11705–11712. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem. Rev. 2019, 119, 10916. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Gui, K.; Gu, S.; Wei, Y. Study of the nitric oxide reduction of SCR-NH3 on γFe2O3 catalyst surface with quantum chemistry. Appl. Surf. Sci. 2020, 509, 144659. [Google Scholar] [CrossRef]
- Sheng, L.; Ma, Z.; Chen, S.; Lou, J.; Li, C.; Li, S.; Zhang, Z.; Wang, Y.; Yang, H. Mechanistic insight into N2O formation during NO reduction by NH3 over Pd/CeO2 catalyst in the absence of O2. Chin. J. Catal. 2019, 40, 1070–1077. [Google Scholar] [CrossRef]
- Ali, S.; Chen, L.; Yuan, F.; Li, R.; Zhang, T.; Bakhtiar, S.U.H.; Leng, X.; Niu, X.; Zhu, Y. Synergistic effect between copper and cerium on the performance of Cux-Ce0.5-x-Zr0.5 (x = 0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia. Appl. Catal. B Environ. 2017, 210, 223–234. [Google Scholar] [CrossRef]
- Li, X.; Ren, S.; Jiang, Y.; Chen, Z.; Wang, L.; Liu, M.; Chen, T. In situ IR spectroscopy study of NO removal over CuCe catalyst for CO-SCR reaction at different temperature. Catal. Today 2023, 418, 114082. [Google Scholar] [CrossRef]
- Zhang, M.; Guan, Z.; Qiao, Y.; Zhou, S.; Chen, G.; Guo, R.; Pan, W.; Wu, J.; Li, F.; Ren, J. The impact of catalyst structure and morphology on the catalytic performance in NH3-SCR reaction: A review. Fuel 2024, 361, 130541. [Google Scholar] [CrossRef]
- Xiong, S.; Peng, Y.; Wang, D.; Huang, N.; Zhang, Q.; Yang, S.; Chen, J.; Li, J. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. Chem. Eng. J. 2020, 387, 124090. [Google Scholar] [CrossRef]
- Jeon, J.; Ham, H.; Xing, F.; Nakaya, Y.; Shimizu, K.; Furukawa, S. PdIn-Based Pseudo-Binary Alloy as a Catalyst for NOx Removal under Lean Conditions. ACS Catal. 2020, 10, 11380–11384. [Google Scholar] [CrossRef]
- Wang, M.; Ren, S.; Jiang, Y.; Su, B.; Chen, Z.; Liu, W.; Yang, J.; Chen, L. Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel 2022, 319, 123763. [Google Scholar] [CrossRef]
- Zhu, H.; Kim, J.; Ihm, S. Characteristics of Pt/WO3/CeO2/ZrO2 catalysts for catalytic reduction of NO by CO. Appl. Catal. B Environ. 2009, 86, 87–92. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Song, S.; Xu, W.; Li, L.; Zhang, Y.; Chen, W.; Li, H.; Jiang, J.; Zhu, T.; et al. Negatively Charged Single-Atom Pt Catalyst Shows Superior SO2 Tolerance in NOx Reduction by CO. ACS Catal. 2023, 13, 224–236. [Google Scholar] [CrossRef]
- Yang, L.; You, X.; Sheng, Z.; Ma, D.; Yu, D.; Xiao, X.; Wang, S. The promoting effect of noble metal (Rh, Ru, Pt, Pd) doping on the performances of MnOx-CeO2/graphene catalysts for the selective catalytic reduction of NO with NH3 at low temperatures. New J. Chem 2018, 42, 11673–11681. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Zhu, H.; Xu, W.; Jiang, R.; Zhang, Y.; Yu, J.; Chen, W.; Jia, L.; Jiang, J.; et al. Isolating Contiguous Ir Atoms and Forming Ir–W Intermetallics with Negatively Charged Ir for Efficient NO Reduction by CO. Adv. Mater. 2022, 34, e2205703. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Chen, J.; Huang, N.; Yan, T.; Peng, Y.; Li, J. The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO−CeO2 as an example. Appl. Catal. B Environ. 2020, 267, 118668. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Shen, Z.; Chen, S.; Wang, Q.; Cheng, D.; Zhang, D. Low-temperature NOx reduction over hydrothermally stable SCR catalysts by engineering low-coordinated Mn active sites. Chem. Eng. J. 2022, 442, 136182. [Google Scholar] [CrossRef]
- Gao, G.; Shi, J.; Liu, C.; Gao, C.; Fan, Z.; Niu, C. Mn/CeO2 catalysts for SCR of NOx with NH3: Comparative study on the effect of supports on low-temperature catalytic activity. Appl. Surf. Sci. 2017, 411, 338–346. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Han, F.; Zhao, Y. Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13. J. Environ. Chem. Eng. 2022, 10, 107888. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Sang, H.; Zhang, B.; Bai, H.; Han, L.; Hu, L.; Wu, B. Promoting NO removal performance of Fenton-like enhanced SCR reactions via modulating V/Fe in Fe-V oxides. Appl. Surf. Sci. 2024, 653, 159379. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Mu, J.; Fan, S.; Wang, L.; Gan, G.; Qin, M.; Li, J.; Li, Z.; Zhang, D. Facile Design of Highly Effective CuCexCo1–xOy Catalysts with Diverse Surface/Interface Structures toward NO Reduction by CO at Low Temperatures. Ind. Eng. Chem. Res. 2019, 58, 15459–15469. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Lan, G.; Yin, Z.; Pan, M.; Jiang, F.; Li, J.; Tan, D. Development and evaluation of mechanistic model for standard SCR, fast SCR, and NO2 SCR of NH3-SCR over Cu-ZSM-5. Energy 2024, 306, 132544. [Google Scholar] [CrossRef]
- Liu, W.; Long, Y.; Liu, S.; Zhou, Y.; Tong, X.; Yin, Y.; Li, X.; Hu, K.; Hu, J. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts. J. Ind. Eng. Chem. 2022, 107, 197–206. [Google Scholar] [CrossRef]
- Nam, K.B.; Kwon, D.W.; Hong, S.C. DRIFT study on promotion effects of tungsten-modified Mn/Ce/Ti catalysts for the SCR reaction at low-temperature. Appl. Catal. A Gen. 2017, 542, 55–62. [Google Scholar] [CrossRef]
- Guo, M.; Niu, K.; Liu, C.; Liu, Q.; Ma, D.; Wang, Y.; Zhao, Y.; Cui, S.; Chen, S.; Liu, B. Acid sites-CeO doping CrZrCeO catalyst with high SO2 resistance for marine SCR application: Surface analysis and mechanism study. Sep. Purif. Technol. 2025, 354, 129001. [Google Scholar] [CrossRef]
- Hu, W.; Selleri, T.; Gramigni, F.; Fenes, E.; Rout, K.R.; Liu, S.; Nova, I.; Chen, D.; Gao, X.; Tronconi, E. On the Redox Mechanism of Low-Temperature NH3-SCR over Cu-CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angew. Chem. Int. Ed. 2021, 60, 7197–7204. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.; Liu, S.; Jia, W. The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst. Appl. Surf. Sci. 2020, 507, 145153. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, F.; Dong, L.; Yu, W.; Qi, L.; Wang, Z.; Dong, L.; Chen, Y. Studies on surface structure of MxOy/MoO3/CeO2 system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH3. Appl. Catal. B Environ. 2010, 95, 144–152. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, N.; Huang, Z.; Zhao, G.; Chu, F.; Yang, R.; Tang, X.; Wang, G.; Gao, F.; Huang, X. Recent advances in low-temperature NH3-SCR of NOx over Ce-based catalysts: Performance optimizations, reaction mechanisms and anti-poisoning countermeasures. Chem. Eng. J. 2023, 476, 146889. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dang, P.; Tang, X.; Lu, M.; Du, Y.; Zhou, Y.; Yi, H.; Duan, E. Recent advances in NO reduction with CO over copper-based catalysts: Reaction mechanisms, optimization strategies, and anti-inactivation measures. Chem. Eng. J. 2022, 450, 137374. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, A.; Ning, J.; Shen, W. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts. Chin. J. Catal. 2020, 41, 928–937. [Google Scholar] [CrossRef]
- Xing, M.; Sun, Q.; Zeng, C.; Wang, H.; Zhao, D.; Zhanga, N.; Hong, S. Modulating Cu+ distribution on the surface of Ce-doped CuO composite oxides for SO2-resistant NH3-selective catalytic reduction of NO. RSC Adv. 2017, 7, 18830–18837. [Google Scholar] [CrossRef]
- Chen, L.; Si, Z.; Wu, X.; Weng, D. DRIFT Study of CuO–CeO2 –TiO2 Mixed Oxides for NOx Reduction with NH3 at Low Temperatures. ACS Appl. Mater. Interfaces 2014, 6, 8134–8145. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhang, L.; Li, L.; Liu, L.; Cao, Y.; Dong, X.; Gao, F.; Deng, Y.; Tang, C.; Chen, Z.; et al. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Appl. Catal. B Environ. 2014, 150–151, 315–329. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Ning, P.; Gu, J.; Guan, Q. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3. Appl. Surf. Sci. 2014, 317, 955–961. [Google Scholar] [CrossRef]
- Tang, A.; Yang, F.; Xin, Y.; Zhu, X.; Yu, L.; Liu, S.; Han, D.; Jia, J.; Lu, Y.; Li, Z.; et al. Enhanced Low-Temperature Activity and Hydrothermal Stability of Ce-Mn Oxide-Modified Cu-SSZ-39 Catalysts for NH3-SCR of NOx. Catalysts 2024, 14, 10. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ying, Q.; Yao, W.; Wu, Z. The superior performance of Nb-modified Cu-Ce-Ti mixed oxides for the selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2018, 562, 19–27. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, G.; Ma, N.; Zhang, H.; Li, Y.; Xia, Y.; Zhang, D.; Zhan, S. Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. J. Environ. Chem. Eng. 2021, 9, 106024. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Zhang, T.; Liu, Y.; Fan, Q.; Jiang, Y.; Gao, Y.; Mao, Z.; Gu, X.; Zeng, S. Cu docking-activated Nb incorporation in multivariate CuO-Nb2O5/CeO2 catalysts for selective reduction of NOx with NH3. Appl. Catal. B Environ. 2024, 340, 123254. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, Y.; Zhu, J.; Chen, C.; Lin, X.; Zheng, Q. The synergetic mechanism between copper species and ceria in NO abatement over Cu/CeO2 catalysts. Appl. Catal. A Gen. 2010, 377, 121–127. [Google Scholar] [CrossRef]
- Wang, Q.; Han, X.; Chen, K.; Liu, K.; Yang, X.; Zhang, Y. Asymmetric oxygen vacancy promotes CO-SCR performance on defect-engineered Rh/CeCuOx catalyst. J. Environ. Sci. 2025, 152, 416–428. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, Z.; Sun, X.; Ge, H.; Jiang, Y.; Xu, Y.; Yang, Z. 3DOM Cu-Ce binary composite oxides for selective catalytic reduction of NO with CO. J. Environ. Chem. Eng. 2024, 12, 113684. [Google Scholar] [CrossRef]
- Dai, X.; Jiang, W.; Wang, W.; Weng, X.; Shang, Y.; Xue, Y.; Zhongbiao, W. Supercritical water syntheses of transition metal—Doped CeO2 nano—Catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectros—Copy study. Chin. J. Catal. 2018, 39, 728–735. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Zhan, Y.; Lin, X.; Cai, G.; Wei, K.; Zheng, Q. Characterization and catalytic performance of Cu/CeO2 and Cu/MgO-CeO2 catalysts for NO reduction by CO. Appl. Catal. A Gen. 2009, 363, 208–215. [Google Scholar] [CrossRef]
- Fang, X.; Qin, T.; Chen, J.; Ma, Z.; Liu, X.; Tang, X. Atom Pairing Enhances Sulfur Resistance in Low-Temperature SCR via Upshifting the Lowest Unoccupied States of Cerium. Environ. Sci. Technol. 2024, 58, 12272–12280. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Q.; Jiaqiang, E.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zhang, T.; Wang, H.; Ma, Y.; Wang, J.; Ning, P. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: The active sites and reaction mechanism. Appl. Surf. Sci. 2020, 503, 144190. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, H.; Wang, X.; Peng, M.; Huang, R.; Gong, W.; Fu, H.; Chen, X.; Lin, Z. A new synthesis method for supported composite oxides: Preparation of Ce-Cu/TiO2 catalysts by ice-melting method. J. Chem. Technol. Biotechnol. 2023, 98, 506–515. [Google Scholar]
- Zhuang, K.; Jin, P.; Yang, L.; Yao, J.; Yu, L.; Sheng, Z.; Chu, X.; Zhuang, Z.; Chen, X. Different morphologies on Cu–Ce/TiO2 catalysts for the selective catalytic reduction of NOx with NH3 and DRIFTS study on sol–gel nanoparticles. RSC Adv. 2023, 13, 25989–26000. [Google Scholar] [CrossRef]
- Guoa, X.; Zhou, R. A new insight into the morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas. Catal. Sci. Technol. 2016, 6, 3862–3871. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Ma, K.; Zou, W.; Cao, Y.; Xiong, Y.; Tang, C.; Dong, L. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2017, 207, 366–375. [Google Scholar] [CrossRef]
- Shen, Z.; Xing, X.; She, Y.; Guo, P.; Ren, S.; Niu, W.; Li, J.; Li, H.; Meng, H. Unveiling the promoting mechanism of Mo on the performance of CuCeOx catalyst for simultaneously NH3-SCR denitration and CO oxidation under oxygen-rich conditions. Sep. Purif. Technol. 2025, 355, 129561. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Liu, Y.; Fang, X.; Xu, J.; Wang, X.; Xu, X. Band-Gap Engineering: A New Tool for Tailoring the Activity of Semiconducting Oxide Catalysts for CO Oxidation. J. Phys. Chem. Lett. 2021, 12, 9188–9196. [Google Scholar] [CrossRef] [PubMed]
- Ten Elshof, J.E. Electronic band structure and electron transfer properties of two-dimensional metal oxide nanosheets and nanosheet films. Curr. Opin. Solid State Mater. Sci. 2017, 21, 312–322. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, K.; Zhang, Z.; Fu, Q.; Bian, M.; Han, X.; Shen, X.; Chen, X.; Xie, H.; Wang, X.; et al. Essential features of weak current for excellent enhancement of NOx reduction over monoatomic V-based catalyst. Nat. Commun. 2024, 15, 6688. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Rong, W.; Zhang, S.; Zhong, Q.; Zhong, Z. Ti species regulated CuO/CeO2 catalyst for efficient simultaneously NH3-SCR denitration and CO oxidation under oxygen-rich conditions. Fuel 2024, 358, 130277. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, G.; Tang, Z.; Zhang, J. Morphology-Controlled Synthesis of TiO2 with Different Structural Units and Applied for the Selective Catalytic Reduction of NOx with NH3. Catal. Surv. Asia 2020, 24, 300–312. [Google Scholar] [CrossRef]
- Yuan, Y.; Guan, B.; Chen, J.; Zhuang, Z.; Zheng, C.; Zhou, J.; Su, T.; Zhu, C.; Guo, J.; Dang, H.; et al. Research status and outlook of molecular sieve NH3-SCR catalysts. Mol. Catal. 2024, 554, 113846. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Sun, X.; Gao, Y.; Kong, X.; Zhang, L.; Zhong, X.; Zhai, S.; Yao, Z.; Wang, J. Unravelling the functional complexity of oxygen-containing groups on carbon for the reduction of NO with NH3. J. Taiwan Inst. Chem. Eng. 2022, 133, 104261. [Google Scholar] [CrossRef]
- Wang, F.; Wang, P.; Zhang, J.; Peng, D.; Wei, M.; Zhang, D. Deactivation mechanisms and anti-deactivation strategies of molecular sieve catalysts for NOx reduction. Chin. Chem. Lett. 2024, 35, 108800. [Google Scholar] [CrossRef]
- Liu, C.; Malta, G.; Kubota, H.; Kon, K.; Toyao, T.; Maeno, Z.; Shimizu, K. In Situ/Operando IR and Theoretical Studies on the Mechanism of NH3 –SCR of NO/NO2 over H–CHA Zeolites. J. Phys. Chem. C 2021, 125, 13889–13899. [Google Scholar] [CrossRef]
- Khivantsev, K.; Kwak, J.; Jaegers, N.R.; Koleva, I.Z.; Vayssilov, G.N.; Derewinski, M.A.; Wang, Y.; Aleksandrov, H.A.; Szanyi, J. Identification of the mechanism of NO reduction with ammonia (SCR) on zeolite catalysts. Chem. Sci. 2022, 13, 10383–10394. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; He, X.; Jing, G. Insight into Low-Temperature Catalytic NO Reduction with NH3 on Ce-Doped Manganese Oxide Octahedral Molecular Sieves. J. Phys. Chem. C 2019, 123, 10981–10990. [Google Scholar] [CrossRef]
- Wu, Q.; Fan, C.; Wang, Y.; Chen, X.; Wang, G.; Qin, Z.; Mintova, S.; Li, J.; Chen, J. Direct incorporating small amount of Ce (III) in Cu-SAPO-18 catalysts for enhanced low-temperature NH3-SCR activity: Influence on Cu distribution and Si coordination. Chem. Eng. J. 2022, 435, 134890. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Li, Z.; Geng, C.; Bai, X.; Cao, D. Synthesis of CuCe co-modified mesoporous ZSM-5 zeolite for the selective catalytic reduction of NO by NH3. Environ. Sci. Pollut. Res. 2020, 27, 9935–9942. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Yang, J.; Lv, C.; Li, D.; Fang, D. Research progress of NH3-SCR over carbon-based catalysts for NO removal. J. Environ. Chem. Eng. 2023, 11, 110966. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, J.; Peng, Y.; Chen, J.; Yuan, X.; Li, J. In Situ S-Doping Engineering for Highly Efficient NH3–SCR over Metal-Free Carbon Catalysts: A Novel Synergetic Promotional Mechanism. Environ. Sci. Technol. 2024, 58, 371–380. [Google Scholar] [CrossRef]
- Zhu, J.; Mo, D.; Tao, L.; Li, J.; Fu, S.; Dong, L.; Li, B.; Chen, Z.; Fan, M. N-doped porous carbon material derived by MOFs calcined in proper oxygen atmosphere as high-performance catalyst for the low-temperature NH3-SCR. J. Environ. Chem. Eng. 2023, 11, 111218. [Google Scholar] [CrossRef]
- Chen, J.; Cao, F.; Qu, R.; Gao, X.; Cen, K. Bimetallic cerium–copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH3. J. Colloid. Interface Sci. 2015, 456, 66–75. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Yao, L.; Meng, X.; Jia, C.Q.; Jiang, X.; Jiang, W. Copper Doping Promotion on Ce/CAC-CNT Catalysts with High Sulfur Dioxide Tolerance for Low-Temperature NH3–SCR. ACS Sustain. Chem. Eng. 2021, 9, 987–997. [Google Scholar] [CrossRef]
- Lee, T.; Bai, H. Byproduct Analysis of SO2 Poisoning on NH3-SCR over MnFe/TiO2 Catalysts at Medium to Low Temperatures. Catalysts 2019, 9, 265. [Google Scholar] [CrossRef]
- Ming, S.; Pang, L.; Chen, Z.; Guo, Y.; Guo, L.; Liu, Q.; Liu, P.; Dong, Y.; Zhang, S.; Li, T. Insight into SO2 poisoning over Cu-SAPO-18 used for NH3-SCR. Microporous Mesoporous Mat. 2020, 303, 110294. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, C.; Li, T.; Zhu, H.; Jiang, L.; Yue, Y.; Bao, X. Insight into the SO2 poisoning of heterobimetallic FeCu-SSZ-13 zeolite in NH3-SCR reaction. AICHE J. 2024, 70, e18335. [Google Scholar] [CrossRef]
- Tarot, M.; Iojoiu, E.E.; Lauga, V.; Duprez, D.; Courtois, X.; Can, F. Influence of Na, P and (Na + P) poisoning on a model copper-ferrierite NH3-SCR catalyst. Appl. Catal. B Environ. 2019, 250, 355–368. [Google Scholar] [CrossRef]
- Cimino, S.; Totarella, G.; Tortorelli, M.; Lisi, L. Combined poisoning effect of K+ and its counter-ion (Cl− or NO3−) on MnOx/TiO2 catalyst during the low temperature NH3-SCR of NO. Chem. Eng. J. 2017, 330, 92–101. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, R.; Wang, Q.; Pan, W.; Yang, N.; Lu, C.; Wang, S. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO. J. Taiwan Inst. Chem. Eng. 2016, 64, 116–123. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Guo, Y.; He, J.; Wu, R.; Song, L.; Zhang, G.; Zhao, J.; Wang, D.; He, H. A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Appl. Catal. B Environ. 2020, 270, 118860. [Google Scholar] [CrossRef]
- Gui, R.; Zhang, C.; Gao, Y.; Wang, Q.; Efstathiou, A.M. Unravelling the multiple effects of H2O on the NH3-SCR over Mn2Cu1Al1Ox-LDO by transient kinetics and in situ DRIFTS. Appl. Catal. B Environ. Energy 2025, 361, 124611. [Google Scholar] [CrossRef]
- Tan, H.; Ma, S.; Zhao, X.; Li, Y.; Zhao, C.; Zhu, Y. Excellent low-temperature NH3-SCR of NO activity and resistance to H2O and SO2 over WaCeOx (x = 0.06, 0.12, 0.18, 0.24) catalysts: Key role of acidity derived from tungsten addition. Appl. Catal. A Gen. 2021, 627, 118374. [Google Scholar] [CrossRef]
- Ma, S.; Tan, H.; Li, Y.; Wang, P.; Zhao, C.; Niu, X.; Zhu, Y. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y = 0.1, 0.2, 0.3) catalysts. Chemosphere 2020, 243, 125309. [Google Scholar] [CrossRef]
- Jian-Wen, S.; Wang, Y.; Duan, R.; Chen, G.; Wang, B.; He, C.; Niu, C. The synergistic effects between Ce and Cu in CuyCe1−yW5Ox catalysts for enhanced NH3-SCR of NOx and SO2 tolerance. Catal. Sci. Technol. 2019, 9, 718–730. [Google Scholar]
- Mu, Y.; Huang, X.; Tang, Z.; Wang, Q. Facile strategy to promote SO2-resistance ability for NH3-SCR catalyst CeSnTiO via copper sulfate-modified: Boost from a double reaction site. Sep. Purif. Technol. 2025, 353, 128490. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, J.; Ma, K.; Yu, H.; Tang, C.; Dong, L.; Li, L.; Wang, J. Improved K-Resistance of a Cu-Modified TiO2/CeO2 Catalyst for SCR of NOx at Low Temperatures. Ind. Eng. Chem. Res. 2023, 62, 5782–5791. [Google Scholar] [CrossRef]
- Wang, S.; Guo, R.; Pan, W.; Chen, Q.; Sun, P.; Li, M.; Liu, S. The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals: TPD and DRIFT studies. Catal. Commun. 2017, 89, 143–147. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, G.; Liu, T.; Sun, X.; Xu, Y.; Song, J.; Yang, Z. Theoretical study on K poisoning resistance of M-doped Ce/TiO2 (001) surface (M=Cu, Co, Zr, Sb, Mo, Nb, W). J. Clean. Prod. 2024, 447, 141528. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, H.; Hu, P. Theoretical investigation of NH3-SCR processes over zeolites: A review. Int. J. Quantum Chem. 2015, 115, 618–630. [Google Scholar] [CrossRef]
- Jia, B.; Liu, J.; Kang, J.; Zhang, G.; Lv, D.; Wang, Y. Investigating NH3-SCR coupled with CO oxidation reaction mechanisms on titanium nanotube-loaded CuMnFe composite metal catalysts. Appl. Surf. Sci. 2024, 652, 159299. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, S.; Zhang, C.; Wang, Q.; Louis, B. Synthesis and catalytic performance of Cu1Mn0.5Ti0.5O mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance. Appl. Catal. B Environ. 2018, 238, 236–247. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Q.; Liu, J.; Liu, X.; Li, D.; Xie, S.; Jin, L.; Dong, L.; Logo, B.L.O.; Yaoa, Y. Promotional mechanism of activity via three-dimensional ordered macroporous Cu-doped Ce–Fe mixed oxides for the CO-SCR reaction. Environ. Sci. Nano 2020, 7, 3136–3154. [Google Scholar] [CrossRef]
- Qin, B.; Guo, R.; Zhou, J.; Wei, L.; Yin, T.; Pan, W. Promotional role of Nb modification on CuCeOx catalyst for low temperature selective catalytic reduction of NO with NH3: A mechanism investigation. Fuel 2022, 329, 125390. [Google Scholar] [CrossRef]
- Yao, X.; Gao, F.; Yu, Q.; Qi, L.; Tang, C.; Dong, L.; Chen, Y. NO reduction by CO over CuO–CeO2 catalysts: Effect of preparation methods. Catal. Sci. Technol. 2013, 3, 1355. [Google Scholar] [CrossRef]
- Deng, Y.; Shi, X.; Wei, L.; Liu, H.; Li, J.; Ou, X.; Dong, L.; Li, B. Effect of intergrowth and coexistence CuO-CeO2 catalyst by grinding method application in the catalytic reduction of NOx by CO. J. Alloy. Compd. 2021, 869, 159231. [Google Scholar] [CrossRef]
- Liu, H.; Chu, B.; Wei, L.; Zhao, R.; Li, J.; Zhu, C.; Rong, Y.; Bai, P.; Dong, L.; Li, B. The reduction of copper in LaFeO3, La2CuO4 and CuO three-phase system improves the efficiency of NO removal: Experimental and density functional theory calculation. Surf. Interfaces 2024, 46, 104101. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Z.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. Morphology and Crystal-Plane Effects of Nanoscale Ceria on the Activity of CuO/CeO2 for NO Reduction by CO. ChemCatChem 2011, 3, 978–989. [Google Scholar] [CrossRef]
- Sun, R.; Yu, F.; Wan, Y.; Pan, K.; Li, W.; Zhao, H.; Dan, J.; Dai, B. Reducing N2O Formation over CO-SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021, 13, 2709–2718. [Google Scholar] [CrossRef]
- Hao, W.; Ren, D.; Luo, S.; Zuo, Z. Mechanism ofNO removal in selective catalytic reduction based onγ-Fe2O3 catalyst doped with Mg element. Can. J. Chem. Eng. 2023, 101, 4683–4691. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Zhao, Q.D.; Xiong, W.; Ding, Y.; Sun, J.H.; Huang, Y.L.; Zhao, Z.F. A stable spherical MOF-derived Mnx-Fe2O3/C catalysts for low-temperature CO-SCR. Chem. Eng. J. 2023, 475, 146388. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Xie, Z.; Ng, D.; Shen, B. A novel core-shell structured Fe@CeO2-ZIF-8 catalyst for the reduction of NO by CO. J. Catal. 2023, 421, 240–251. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Wang, F.; Xie, Z.; Hao, Z.; Liu, L.; Shen, B. Promotion effect of Ni doping on the oxygen resistance property of Fe/CeO2 catalyst for CO-SCR reaction: Activity test and mechanism investigation. J. Hazard. Mater. 2022, 431, 128622. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Q.; Zhu, X.; Hu, Q.; Su, W.; Qian, J.; Dong, L.; Li, B.; Fan, M.; Liang, C. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction. Appl. Surf. Sci. 2016, 389, 1033–1049. [Google Scholar] [CrossRef]
- Shi, X.; Tao, L.; Tong, Z.; Fan, M.; Dong, L.; Li, B. Ceria-Promoted and stabilized copper and iron oxides cooperatively catalyze NO efficient degradation by CO. Fuel 2023, 340, 127499. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl. Catal. B Environ. 2018, 239, 485–501. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, S.; Zong, X.; Wang, S. Insights into the effect of Cu and Fe dispersion state over Ce0.1Al on the catalytic performance of NO reduction by CO. J. Environ. Chem. Eng. 2023, 11, 110460. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Luo, B.; Ning, S.; Deng, W.; Zhao, B.; Sun, S.; Su, Y. Selective catalytic reduction of NO by CO over MOF-based CuOx@ZIF-67 catalysts and reaction mechanism. Fuel 2023, 348, 128565. [Google Scholar] [CrossRef]
- Fu, Y.; Zhai, X.; Wang, S.; Shao, L.; Bai, X.; Su, Z.; Liu, Y.; Zhang, L.; Chen, J. Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal–Organic Frameworks. Inorg. Chem. 2021, 60, 16447–16454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, L.; Kang, M.; Chen, Z.; Gao, S.; Hao, H. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance. Chem. Eng. J. 2021, 426, 131873. [Google Scholar] [CrossRef]
- Qian, J.; Hou, X.; Wang, F.; Hu, Q.; Yuan, H.; Teng, L.; Li, R.; Tong, Z.; Dong, L.; Li, B. Catalytic Reduction of NO by CO over Promoted Cu3Ce0.2Al0.8 Composite Oxides Derived from Hydrotalcite-Like Compounds. J. Phys. Chem. C 2018, 122, 2097–2106. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, L.; Zhang, D.; Sun, L. Mixed-node A-Cu-BTC and porous carbon based oxides derived from A-Cu-BTC as low temperature NO–CO catalyst. Inorg. Chem. Commun. 2016, 66, 64–68. [Google Scholar] [CrossRef]
- Tao, L.; Wang, J.; Qin, Q.; Chu, B.; Gao, P.; Qiu, J.; Li, Q.; Du, X.; Dong, L.; Li, B. Simple anion-modified layered double oxides use for controlling Cu valence states for low-temperature CO-SCR. Surf. Interfaces 2024, 44, 103654. [Google Scholar] [CrossRef]
- Oton, L.F.; Oliveira, A.C.; de Araujo, J.C.S.; Araujo, R.S.; de Sousa, F.F.; Saraiva, G.D.; Lang, R.; Otubo, L.; Carlos Da Silva Duarte, G.; Campos, A. Selective catalytic reduction of NOx by CO (CO-SCR) over metal-supported nanoparticles dispersed on porous alumina. Adv. Powder Technol. 2020, 31, 464–476. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F. The influence of support composition on the activity of Cu:Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New J. Chem 2020, 44, 709–718. [Google Scholar] [CrossRef]
- Han, S.; Shao, R.; Wang, L.; Zhang, X.; Xuan, C.; Cheng, X.; Wang, Z. Surface Effects of Trace CuMnCe Loading on Coal-Based Carbon Materials and Mechanisms of NOx Adsorption and Removal. Energy Fuels 2023, 37, 14103–14115. [Google Scholar] [CrossRef]
- Wang, D.; Huang, B.; Shi, Z.; Long, H.; Li, L.; Yang, Z.; Dai, M. Influence of cerium doping on Cu-Ni/activated carbon low-temperature CO-SCR denitration catalysts. RSC Adv. 2021, 11, 18458–18467. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, F.; Dong, D.; Gui, R.; Li, W.; Sun, R.; Wan, Y.; Dan, J.; Wang, Q.; Dai, B. Transition-metal-doped ceria carried on two-dimensional vermiculite for selective catalytic reduction of NO with CO: Experiments and density functional theory. Appl. Surf. Sci. 2021, 566, 150704. [Google Scholar] [CrossRef]
- Liu, K.; Yu, Q.; Qin, Q.; Wang, C. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen. Environ. Technol. 2018, 39, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, C.C.; Pomonis, P.J. Synthesis of highly loaded Cu/Ce mesoporous silica. Active catalyst for the simultaneous reduction of SO2 and NO with CO. Chem. Commun. 2006, 12, 1268–1270. [Google Scholar] [CrossRef]
- Zang, P.; Liu, J.; Zhang, G.; Jia, B.; He, Y.; Wang, Y.; Lv, Y. Insights into the highly activity CuMgFe oxides for the selective catalytic reduction of NO by CO: Structure-activity relationships and K/SO2 poisoning mechanism. Fuel 2023, 331, 125800. [Google Scholar] [CrossRef]
- Chang, F.; Chen, J.; Wey, M. Activity and characterization of Rh/Al2O3 and Rh–Na/Al2O3 catalysts for the SCR of NO with CO in the presence of SO2 and HCl. Fuel 2010, 89, 1919–1927. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Wang, Z.; Sun, R.; Zhao, G.; Feng, T.; Ma, C. Reaction of NO + CO over Ce-Modified Cu–FeOx Catalysts at Low Temperature. Energy Fuels 2019, 33, 11688–11704. [Google Scholar] [CrossRef]
- Wen, Z.; Huang, B.; Shi, Z.; Yang, Z.; Dai, M.; Li, W.; Zi, G.; Luo, L. Mechanism of Zn salt-induced deactivation of a Cu/activated carbon catalyst for low-temperature denitration via CO-SCR. RSC Adv. 2022, 12, 14964–14975. [Google Scholar] [CrossRef]
- Wen, Z.; Huang, B.; Shi, Z.; Li, W.; Luo, L.; Zi, G.; Yang, L. Low-temperature CO selective catalytic reduction denitrification and sulfuric acid regeneration mechanism of Cu-Ce/AC catalyst poisoned with zinc salt. Fuel 2024, 356, 129621. [Google Scholar] [CrossRef]
- Li, J.; Zhu, J.; Fu, S.; Tao, L.; Chu, B.; Qin, Q.; Wang, J.; Li, B.; Dong, L. Insight into copper-cerium catalysts with different Cu valence states for CO-SCR and in-situ DRIFTS study on reaction mechanism. Fuel 2023, 339, 126962. [Google Scholar] [CrossRef]
- He, Y.; Liu, J.; Zhang, G.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, Y.; Lv, D. Interfacial effects promote the catalytic performance of CuCoO2-CeO2 metal oxides for the selective reduction of NO by CO. Chem. Eng. J. 2023, 465, 142856. [Google Scholar] [CrossRef]
Catalysts | Preparation Method | Reaction Condition | GHSV (h−1) | NO Conversion | Ref. |
---|---|---|---|---|---|
CuCeO | co-precipitation | [NO] = [NH3] = 1000 ppm, [O2] = 5% | 40,000 | ~100% (160–200 °C) | [40] |
CuO-CeO2-TiO2 | sol-gel | [NO] = [NH3] = 500 ppm, [O2] = 5% | 30,000 | >90% (150–250 °C) | [41] |
CuO/TiCe | impregnation | [NO] = [NH3] = 500 ppm, [O2] = 5% | 120,000 | >80% (200–300 °C) | [42] |
CuO-CeO2-ZrO2 | co-precipitation | [NO] = [NH3] = 600 ppm, [O2] = 5% | 60,000 | ~100% (125–180 °C) | [43] |
CeMnO/Cu-SSZ-39 | ion exchange | [NO] = [NH3] = 500 ppm, [O2] = 5.3% | 100,000 | ~100% (225–600 °C) | [44] |
NbCuCeTiO | wet impregnation. | [NO] = [NH3] = 600 ppm, [O2] = 5% | 40,000 | >90% (180–360 °C) | [45] |
W/Cu-CeO2 | wet impregnation | [NO] = [NH3] = 500ppm, [O2] = 5% | 60,000 | >85% (200–400 °C) | [46] |
CuO-Nb2O5/CeO2 | microwave hydrothermal | [NO] = 500 ppm, [NH3] = 600 ppm, [O2] = 8% | 150,000 | ~100% (225–450 °C) | [47] |
Cu/CeO2 | impregnation | [NO] = [CO] = 5000 ppm, He | 32,000 | ~100% (300–400 °C) | [48] |
Rh/CeCuO | co-crystallization | [NO] = [CO] = 1500 ppm, Ar | 150,000 | ~100% (162–400 °C) | [49] |
3DOM CuCe | colloidal crystal template | [NO] = 1000 ppm, [CO] = 2000 ppm, N2 | 60,000 | ~100% (450–700 °C) | [50] |
CuO-CeO2 | supercritical hydrothermal | [NO] = 600 ppm, [CO] = 1200 ppm, N2 | 40,000 | ~100% (150–300 °C) | [51] |
Cu/MgO-CeO2 | citric acid sol–gel | [NO] = 5000 ppm, [CO] = 6000 ppm, He | 160,000 | >80% (250–400 °C) | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, J.; Zhang, G. Recent Advances in NO Reduction with NH3 and CO over Cu-Ce Bimetallic and Derived Catalysts. Catalysts 2024, 14, 819. https://doi.org/10.3390/catal14110819
Liu J, Liu J, Zhang G. Recent Advances in NO Reduction with NH3 and CO over Cu-Ce Bimetallic and Derived Catalysts. Catalysts. 2024; 14(11):819. https://doi.org/10.3390/catal14110819
Chicago/Turabian StyleLiu, Jiaxuan, Jun Liu, and Guojie Zhang. 2024. "Recent Advances in NO Reduction with NH3 and CO over Cu-Ce Bimetallic and Derived Catalysts" Catalysts 14, no. 11: 819. https://doi.org/10.3390/catal14110819
APA StyleLiu, J., Liu, J., & Zhang, G. (2024). Recent Advances in NO Reduction with NH3 and CO over Cu-Ce Bimetallic and Derived Catalysts. Catalysts, 14(11), 819. https://doi.org/10.3390/catal14110819