Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials
3.1. Instruments
3.2. Experimental Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Styring, P.; McCord, S.; Rackley, S. Chapter 17—Carbon dioxide utilization. In Negative Emissions Technologies for Climate Change Mitigation; Rackley, S., Andrews, G., Clery, D., De Richter, R., Dowson, G., Knops, P., Li, W., McCord, S., Ming, T., Sewel, A., et al., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 391–413. [Google Scholar]
- Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. Chem. Rev. 2007, 107, 2365–2387. [Google Scholar] [CrossRef] [PubMed]
- Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A.W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.M.; Ellis, J.A.; Lee, J.; Fulton, A.; Wilson, S.L.; Dupart, P.S.; Dastoori, R. Thermochemical Studies of Epoxides and Related Compounds. J. Org. Chem. 2013, 78, 4303–4311. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Fiorani, G.; Kleij, A.W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5, 1353–1370. [Google Scholar] [CrossRef]
- Wu, X.; Chen, C.; Guo, Z.; North, M.; Whitwood, A.C. Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catal. 2019, 9, 1895–1906. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B.K.; Lee, U. Review of carbon dioxide utilization technologies and their potential for industrial application. J. CO2 Util. 2022, 65, 102239. [Google Scholar] [CrossRef]
- Hazari, N.; Iwasawa, N.; Hopmann, K.H. Organometallic Chemistry for Enabling Carbon Dioxide Utilization. Organometallics 2020, 39, 1457–1460. [Google Scholar] [CrossRef]
- Gonsalvi, L.; Mordini, A.; Peruzzini, M. Organometallic Chemistry and Challenges in CO2 Activation and Utilization. Chem. Int. 2019, 41, 46–48. [Google Scholar] [CrossRef]
- Xie, W.; Xu, J.; Idros, U.M.; Katsuhira, J.; Fuki, M.; Hayashi, M.; Yamanaka, M.; Kobori, Y.; Matsubara, R. Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat. Chem. 2023, 15, 794–802. [Google Scholar] [CrossRef]
- Sreejyothi, P.; Mandal, S.K. From CO2 activation to catalytic reduction: A metal-free approach. Chem. Sci. 2020, 11, 10571–10593. [Google Scholar] [CrossRef]
- Singh, G.; Nagaraja, C. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. J. CO2 Util. 2021, 53, 101716. [Google Scholar] [CrossRef]
- Pescarmona, P.P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Curr. Opin. Green Sustain. Chem. 2021, 29, 100457. [Google Scholar] [CrossRef]
- Yan, T.; Liu, H.; Zeng, Z.; Pan, W. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 2023, 68, 102355. [Google Scholar] [CrossRef]
- Vagnoni, M.; Samorì, C.; Galletti, P. Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO2. J. CO2 Util. 2020, 42, 101302. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, F.; Xing, H.; Yang, Q.; Bao, Z.; Ren, Q. Efficient Synthesis of Cyclic Carbonates from Atmospheric CO2 Using a Positive Charge Delocalized Ionic Liquid Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 2841–2846. [Google Scholar] [CrossRef]
- Seong, Y.; Lee, S.; Cho, S.; Kim, Y.; Kim, Y. Organocatalysts for the Synthesis of Cyclic Carbonates under the Conditions of Ambient Temperature and Atmospheric CO2 Pressure. Catalysts 2024, 14, 90. [Google Scholar] [CrossRef]
- Deacy, A.C.; Kilpatrick, A.F.R.; Regoutz, A.; Williams, C.K. Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat. Chem. 2020, 12, 372–380. [Google Scholar] [CrossRef]
- Trott, G.; Saini, P.K.; Williams, C.K. Catalysts for CO2/epoxide ring-opening copolymerization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150085. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.-Y.; Hu, L.-F.; Zhang, X.-H.; Du, B.-Y.; Xu, J.-T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157. [Google Scholar] [CrossRef]
- Darensbourg, D.J. Chain transfer agents utilized in epoxide and CO2 copolymerization processes. Green Chem. 2019, 21, 2214–2223. [Google Scholar] [CrossRef]
- Zhang, D.; Boopathi, S.K.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Metal-Free Alternating Copolymerization of CO2 with Epoxides: Fulfilling “Green” Synthesis and Activity. J. Am. Chem. Soc. 2016, 138, 11117–11120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Guo, W.; Zhang, C.; Zhang, X. Phosphine-Borane Frustrated Lewis Pairs for Metal-Free CO2/Epoxide Copolymerization. Macromolecules 2023, 56, 4901–4909. [Google Scholar] [CrossRef]
- Yang, G.-W.; Xu, C.-K.; Xie, R.; Zhang, Y.-Y.; Lu, C.; Qi, H.; Yang, L.; Wang, Y.; Wu, G.-P. Precision copolymerization of CO2 and epoxides enabled by organoboron catalysts. Nat. Synth. 2022, 1, 892–901. [Google Scholar] [CrossRef]
Entry | [trans-CHD]:[P4] | Time/h | Conversion/mol% | trans-CHC/ mol% | cis-CHC/ mol% | Oligocarbonate | Mn SEC g/mol | Đ |
---|---|---|---|---|---|---|---|---|
1 | 1:1 | 24 | 53 | 18 | 33 | 56 | 600 | 1.45 |
2 | 1:0 | 24 | N.A. f | N.A. | N.A. | N.A. | N.A. | N.A. |
3 | 0:1 | 24 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
4 b | 1:1 | 24 | 91 | <1 | 90 | <1 | N.A. | N.A. |
5 c | 1:1 | 24 | 32 | 46 | 28 | 26 | 300 | 1.26 |
6 | 1:1 | 48 | 59 | 42 | 42 | 16 | 450 | 1.30 |
7 | 1:1 | 72 | 80 | 18 | 50 | 32 | 390 | 1.35 |
8 d | 1:1 | 24 | 80 | 10 | 62 | 28 | 330 | 1.42 |
9 e | 1:1 | 24 | 92 | 10 | 85 | 5 | N.A. | N.A. |
10 | 1:2 | 24 | 60 | <1 | >99 | <1 | N.A. | N.A. |
11 | 16:1 | 24 | 54 | <1 | <1 | >99 | 670 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Pan, W. Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions. Catalysts 2024, 14, 822. https://doi.org/10.3390/catal14110822
Ma X, Pan W. Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions. Catalysts. 2024; 14(11):822. https://doi.org/10.3390/catal14110822
Chicago/Turabian StyleMa, Xuesuo, and Weiqing Pan. 2024. "Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions" Catalysts 14, no. 11: 822. https://doi.org/10.3390/catal14110822
APA StyleMa, X., & Pan, W. (2024). Coupling Carbon Dioxide and Cyclohexane Oxide Using Metal-Free Catalyst with Tunable Selectivity of Product Under Mild Conditions. Catalysts, 14(11), 822. https://doi.org/10.3390/catal14110822