Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rational Design of the Peptide
2.2. Synthesis of Gold Nanoparticles and Peptide Functionalization
2.3. Characterization Using Raman and X-Ray Photoelectron Spectroscopy
2.4. Aldol Reaction Catalyzed by Peptide–AuNPs
3. Structural Analyses of Peptide in Solution and Pep–AuNPs in Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Asymmetric Aminocatalysis—Gold Rush in Organic Chemistry. Angew. Chem.-Int. Ed. 2008, 47, 6138–6171. [Google Scholar] [CrossRef] [PubMed]
- Dalko, P.I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem.-Int. Ed. 2004, 43, 5138–5175. [Google Scholar] [CrossRef] [PubMed]
- Alemán, J.; Cabrera, S. Applications of Asymmetric Organocatalysis in Medicinal Chemistry. Chem. Soc. Rev. 2013, 42, 774–793. [Google Scholar] [CrossRef] [PubMed]
- Susam, Z.D.; Tanyeli, C. Recyclable Organocatalysts in Asymmetric Synthesis. Asian J. Org. Chem. 2021, 10, 1251–1266. [Google Scholar] [CrossRef]
- Kumar, A.; Dewan, M.; De, A.; Saxena, A.; Aerry, S.; Mozumdar, S. Aldol Condensation in PEG-400 Catalyzed by Recyclable l-Proline Supported on Nano Gold Surface. RSC Adv. 2013, 3, 603–607. [Google Scholar] [CrossRef]
- Malkov, A.V.; Figlus, M.; Cooke, G.; Caldwell, S.T.; Rabani, G.; Prestly, M.R.; Kočovský, P. Organocatalysts Immobilised onto Gold Nanoparticles: Application in the Asymmetric Reduction of Imines with Trichlorosilane. Org. Biomol. Chem. 2009, 7, 1878–1883. [Google Scholar] [CrossRef]
- Rodríguez-Llansola, F.; Miravet, J.F.; Escuder, B. A Supramolecular Hydrogel as a Reusable Heterogeneous Catalyst for the Direct Aldol Reaction. Chem. Commun. 2009, 10, 7303–7305. [Google Scholar] [CrossRef]
- Arakawa, Y.; Wiesner, M.; Wennemers, H. Efficient Recovery and Reuse of an Immobilized Peptidic Organocatalyst. Adv. Synth. Catal. 2011, 353, 1201–1206. [Google Scholar] [CrossRef]
- Ayats, C.; Henseler, A.H.; Pericás, M.A. A Solid-Supported Organocatalyst for Continuous-Flow Enantioselective Aldol Reactions. ChemSusChem 2012, 5, 320–325. [Google Scholar] [CrossRef]
- Kong, Y.; Tan, R.; Zhao, L.; Yin, D. L-Proline Supported on Ionic Liquid-Modified Magnetic Nanoparticles as a Highly Efficient and Reusable Organocatalyst for Direct Asymmetric Aldol Reaction in Water. Green Chem. 2013, 15, 2422–2433. [Google Scholar] [CrossRef]
- Surujpaul, P.P.; Gutiérrez-wing, C.; Ocampo-garcía, B.; Ramírez, F.D.M.; De Murphy, C.A. Gold Nanoparticles Conjugated to [ Tyr 3 ] Octreotide Peptide. Biophys. Chem. 2008, 138, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-García, B.E.; de Ramírez, F.M.; Ferro-Flores, G.; De León-Rodríguez, L.M.; Santos-Cuevas, C.L.; Morales-Avila, E.; de Murphy, C.A.; Pedraza-López, M.; Medina, L.A.; Camacho-López, M.A. 99mTc-Labelled Gold Nanoparticles Capped with HYNIC-Peptide/Mannose for Sentinel Lymph Node Detection. Nucl. Med. Biol. 2011, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Marty Ytreberg, F. Effect of Gold Nanoparticle Conjugation on Peptide Dynamics and Structure. Entropy 2012, 14, 630–641. [Google Scholar] [CrossRef]
- Porta, F.; Speranza, G.; Krpetić, Ž.; Dal Santo, V.; Francescato, P.; Scarì, G. Gold Nanoparticles Capped by Peptides. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 140, 187–194. [Google Scholar] [CrossRef]
- Liu, S.; Lämmerhofer, M. Functionalized Gold Nanoparticles for Sample Preparation: A Review. Electrophoresis 2019, 40, 2438–2461. [Google Scholar] [CrossRef]
- Mocanu, A.; Cernica, I.; Tomoaia, G.; Bobos, L.D.; Horovitz, O.; Tomoaia-Cotisel, M. Self-Assembly Characteristics of Gold Nanoparticles in the Presence of Cysteine. Colloids Surf. A Physicochem. Eng. Asp. 2009, 338, 93–101. [Google Scholar] [CrossRef]
- Chai, F.; Wang, C.; Wang, T.; Ma, Z.; Su, Z. L-Cysteine Functionalized Gold Nanoparticles for the Colorimetric Detection of Hg2+ Induced by Ultraviolet Light. Nanotechnology 2010, 21, 025501. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z.; Gao, Y.; Ge, W.; Wang, L.; Xu, B. Enzymatic Hydrogelation to Immobilize an Enzyme for High Activity and Stability. Soft Matter 2008, 4, 550–553. [Google Scholar] [CrossRef]
- Ardao, I.; Comenge, J.; Benaiges, M.D.; Álvaro, G.; Puntes, V.F. Rational Nanoconjugation Improves Biocatalytic Performance of Enzymes: Aldol Addition Catalyzed by Immobilized Rhamnulose-1-Phosphate Aldolase. Langmuir 2012, 28, 6461–6467. [Google Scholar] [CrossRef]
- Pengo, P.; Baltzer, L.; Pasquato, L.; Scrimin, P. Substrate Modulation of the Activity of an Artificial Nanoesterase Made of Peptide-Functionalized Gold Nanoparticles. Angew. Chem. 2007, 119, 404–408. [Google Scholar] [CrossRef]
- Mikolajczak, D.J.; Koksch, B. Carbonic Anhydrase Mimics. Catalysts 2019, 9, 903. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 1998, 120, 1959–1964. [Google Scholar] [CrossRef]
- Slocik, J.M.; Zabinski, J.S.; Phillips, D.M.; Naik, R.R. Colorimetric Response of Peptide-Functionalized Gold Nanoparticles to Metal Ions. Small 2008, 4, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Hill, E.; Shi, X.; Kim, J.; Muniz, M.C.; Baker, J.R. Tumor Microvasculature Targeting with Dendrimer-Entrapped Gold Nanoparticles. Soft Matter 2008, 4, 2160–2163. [Google Scholar] [CrossRef]
- Pengo, P.; Polizzi, S.; Pasquato, L.; Scrimin, P. Carboxylate-Imidazole Cooperativity in Dipeptide-Functionalized Gold Nanoparticles with Esterase-like Activity. J. Am. Chem. Soc. 2005, 127, 1616–1617. [Google Scholar] [CrossRef]
- Mikolajczak, D.J.; Heier, J.L.; Schade, B.; Koksch, B. Catalytic Activity of Peptide-Nanoparticle Conjugates Regulated by a Conformational Change. Biomacromolecules 2017, 18, 3557–3562. [Google Scholar] [CrossRef]
- Sóti, P.L.; Yamashita, H.; Sato, K.; Narumi, T.; Toda, M.; Watanabe, N.; Marosi, G.; Mase, N. Synthesis of a Self-Assembling Gold Nanoparticle-Supported Organocatalyst for Enamine-Based Asymmetric Aldol Reactions. Tetrahedron 2016, 72, 1984–1990. [Google Scholar] [CrossRef]
- Khiar, N.; Navas, R.; Elhalem, E.; Valdivia, V.; Fernández, I. Proline-Coated Gold Nanoparticles as a Highly Efficient Nanocatalyst for the Enantioselective Direct Aldol Reaction in Water. RSC Adv. 2013, 3, 3861–3864. [Google Scholar] [CrossRef]
- Akagawa, K.; Sakamoto, S.; Kudo, K. Direct Asymmetric Aldol Reaction in Aqueous Media Using Polymer-Supported Peptide. Tetrahedron Lett. 2005, 46, 8185–8187. [Google Scholar] [CrossRef]
- Krattiger, P.; Kovasy, R.; Revell, J.D.; Ivan, S.; Wennemers, H. Increased Structural Complexity Leads to Higher Activity: Peptides as Efficient and Versatile Catalysts for Asymmetric Aldol Reactions. Org. Lett. 2005, 7, 1101–1103. [Google Scholar] [CrossRef]
- Wennemers, H. Peptides as Asymmetric Catalysts and Templates for the Controlled Formation of Ag Nanoparticles. J. Pept. Sci. 2012, 18, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Tian, H.; Xu, H.; Zheng, L.; Liu, Q.; Zhang, S. L-Valine Dipeptide Organocatalysts with Two Amide Units for the Direct Asymmetric Aldol Reaction in Brine. Catal. Lett. 2011, 141, 872–876. [Google Scholar] [CrossRef]
- Szollosi, G.; Csámpai, A.; Somlai, C.; Fekete, M.; Bartók, M. Unusual Enantioselectivities in Heterogeneous Organocatalyzed Reactions: Reversal of Direction Using Proline Di- versus Tri-Peptides in the Aldol Addition. J. Mol. Catal. A Chem. 2014, 382, 86–92. [Google Scholar] [CrossRef]
- Aili, D.; Stevens, M.M. Bioresponsive Peptide–Inorganic Hybrid Nanomaterials. Chem. Soc. Rev. 2010, 39, 3528–3540. [Google Scholar] [CrossRef]
- Peme, T.; Brady, D.; Juma, W.; Makatini, M. Development of Fructose-1,6-Bisphosphate Aldolase Enzyme Peptide Mimics as Biocatalysts in Direct Asymmetric Aldol Reactions. RSC Adv. 2021, 11, 36670–36681. [Google Scholar] [CrossRef]
- Lévy, R.; Thanh, N.T.K.; Christopher Doty, R.; Hussain, I.; Nichols, R.J.; Schiffrin, D.J.; Brust, M.; Fernig, D.G. Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126, 10076–10084. [Google Scholar] [CrossRef]
- Pale-Grosdemange, C.; Simon, E.S.; Prime, K.L.; Whitesides, G.M. Formation of Self-Assembled Monolayers by Chemisorption of Derivatives of Oligo(Ethylene Glycol) of Structure HS(CH2)11(OCH2CH2)MOH on Gold. J. Am. Chem. Soc. 1991, 113, 12–20. [Google Scholar] [CrossRef]
- Tullman, J.A.; Finney, W.F.; Lin, Y.J.; Bishnoi, S.W. Tunable Assembly of Peptide-Coated Gold Nanoparticles. Plasmonics 2007, 2, 119–127. [Google Scholar] [CrossRef]
- Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E.; Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward Greener Nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef]
- Natarajan, P.; Sukthankar, P.; Changstrom, J.; Holland, C.S.; Barry, S.; Hunter, W.B.; Sorensen, C.M.; Tomich, J.M. Synthesis and Characterization of Multifunctional Branched Amphiphilic Peptide Bilayer Conjugated Gold Nanoparticles. ACS Omega 2018, 3, 11071–11083. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Guo, X.; Zhou, G.; Liu, P.; Li, Z. One Step Preparation of Peptide-Coated Gold Nanoparticles with Tunable Size. Materials 2019, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Castro-Longoria, E.; Vilchis-Nestor, A.R.; Avalos-Borja, M. Biosynthesis of Silver, Gold and Bimetallic Nanoparticles Using the Filamentous Fungus Neurospora Crassa. Colloids Surf. B Biointerfaces 2011, 83, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Martinsson, E.; Sepulveda, B.; Chen, P.; Elfwing, A.; Liedberg, B.; Aili, D. Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles. Plasmonics 2014, 9, 773–780. [Google Scholar] [CrossRef]
- Chen, C.F.; Tzeng, S.D.; Chen, H.Y.; Lin, K.J.; Gwo, S. Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of near-Field Coupling. J. Am. Chem. Soc. 2008, 130, 824–826. [Google Scholar] [CrossRef]
- Zong, J.; Cobb, S.L.; Cameron, N.R. Peptide-Functionalized Gold Nanoparticles: Versatile Biomaterials for Diagnostic and Therapeutic Applications. Biomater. Sci. 2017, 5, 872–886. [Google Scholar] [CrossRef]
- Aili, D.; Enander, K.; Rydberg, J.; Lundström, I.; Baltzer, L.; Liedberg, B. Aggregation-Induced Folding of a de Novo Designed Polypeptide Immobilized on Gold Nanoparticles. J. Am. Chem. Soc. 2006, 128, 2194–2195. [Google Scholar] [CrossRef]
- Aili, D.; Enander, K.; Rydberg, J.; Nesterenko, I.; Björefors, F.; Baltzer, L.; Liedberg, B. Folding Induced Assembly of Polypeptide Decorated Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 5780–5788. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis HHS Public Access. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Mlambo, M.; Harris, R.A.; Mashazi, P.; Sabela, M.; Kanchi, S.; Madikizela, L.M.; Shumbula, P.N.; Moloto, N.; Hlatshwayo, T.T.; Mdluli, P.S. Computational and Experimental Evaluation of Selective Substitution of Thiolated Coumarin Derivatives on Gold Nanoparticles: Surface Enhancing Raman Scattering and Electrochemical Studies. Appl. Surf. Sci. 2017, 396, 695–704. [Google Scholar] [CrossRef]
- Chow, M.K.; Zukoski, C.F. Gold Sol Formation Mechanisms: Role of Colloidal Stability. J. Colloid Interface Sci. 1994, 165, 97–109. [Google Scholar] [CrossRef]
- Tran, M.; DePenning, R.; Turner, M.; Padalkar, S. Effect of Citrate Ratio and Temperature on Gold Nanoparticle Size and Morphology. Mater. Res. Express 2016, 3, 105027. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Wang, S.; Qian, K.; Bi, X.; Huang, W. Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids. J. Phys. Chem. C 2009, 113, 6505–6510. [Google Scholar] [CrossRef]
- Puddu, V.; Perry, C.C. Interactions at the Silica-Peptide Interface: The Influence of Particle Size and Surface Functionality. Langmuir 2014, 30, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Celentano, M.; Jakhmola, A.; Profeta, M.; Battista, E.; Guarnieri, D.; Gentile, F.; Netti, P.A.; Vecchione, R. Diffusion Limited Green Synthesis of Ultra-Small Gold Nanoparticles at Room Temperature. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 548–557. [Google Scholar] [CrossRef]
- Chenakin, S.P.; Kruse, N. Au 4f spin–orbit coupling effects in supported gold nanoparticles. Phys. Chem. Chem. Phys. 2016, 18, 22778–22782. [Google Scholar] [CrossRef]
- Yah, C.S. The toxicity of Gold Nanoparticles in relation to their physiochemicalproperties. Biomed. Res. 2013, 24, 400–413. [Google Scholar]
- Casaletto, M.P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A.M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface. Anal. 2006, 38, 215–218. [Google Scholar] [CrossRef]
- Tran, N.T.T.; Wang, T.-H.; Lin, C.-Y.; Tsai, Y.-C.; Lai, C.-H.; Tai, Y.; Yung, B.Y.M. Direct Synthesis of Rev Peptide-Conjugated Gold Nanoparticles and Their Application in Cancer Therapeutics. Bioconjug. Chem. 2011, 22, 1394–1401. [Google Scholar] [CrossRef]
- Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.-F.; Taha, E.I.; Elbagory, I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022, 12, 1333. [Google Scholar] [CrossRef]
- Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Jin, Z.; Yeung, J.; Zhou, J.; Retout, M.; Yim, W.; Fajtová, P.; Gosselin, B.; Jabin, I.; Bruylants, G.; Mattoussi, H.; et al. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS Appl. Mater. Interfaces 2023, 15, 20483–20494. [Google Scholar] [CrossRef] [PubMed]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 52. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Knoll, W.; Liedberg, B.; Wang, Y. Rational Design of Functional Peptide–Gold Hybrid Nanomaterials for Molecular Interactions. Adv. Mater. 2020, 32, 1–37. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, H.; Han, X.; Luo, J.; Wong, M.W.; Lu, Y. Direct Asymmetric Aldol Reactions between Aldehydes and Ketones Catalyzed by L-Tryptophan in the Presence of Water. Org. Biomol. Chem. 2010, 8, 1368–1377. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.; Geng, X.; Li, Z.; Gao, R. Real-Time Regulation of Catalysis by Remote-Controlled Enzyme-Conjugated Gold Nanorod Composites for Aldol Reaction-Based Applications. Catal. Sci. Technol. 2019, 9, 2221–2230. [Google Scholar] [CrossRef]
- Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R. Dipeptide-Catalyzed Direct Asymmetric Aldol Reactions in the Presence of Water. Tetrahedron 2007, 63, 7892–7898. [Google Scholar] [CrossRef]
- Knowles, R.R.; Jacobsen, E.N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links between Enzymes and Small Molecule Catalysts. Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685. [Google Scholar] [CrossRef]
- D’Elia, V.; Zwicknagl, H.; Reiser, O. Short α/β-Peptides as Catalysts for Intra- and Intermolecular Aldol Reactions. J. Org. Chem. 2008, 73, 3262–3265. [Google Scholar] [CrossRef]
- Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chem.—Eur. J. 2006, 12, 5383–5397. [Google Scholar] [CrossRef]
- Lin, J.H.; Zhang, C.P.; Xiao, J.C. Enantioselective Aldol Reaction of Cyclic Ketones with Aryl Aldehydes Catalyzed by a Cyclohexanediamine Derived Salt in the Presence of Water. Green Chem. 2009, 11, 1750–1753. [Google Scholar] [CrossRef]
- Wu, C.S.; Wu, C.T.; Yang, Y.S.; Ko, F.H. An Enzymatic Kinetics Investigation into the Significantly Enhanced Activity of Functionalized Gold Nanoparticles. Chem. Commun. 2008, 42, 5327–5329. [Google Scholar] [CrossRef] [PubMed]
- Pallares, R.M.; Stilson, T.; Choo, P.; Hu, J.; Odom, T.W. Using Good’s Buffers to Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing. ACS Appl. Nano Mater. 2019, 2, 5266–5271. [Google Scholar] [CrossRef]
- Sangwan, S.; Seth, R. Synthesis, Characterization and Stability of Gold Nanoparticles (AuNPs) in Different Buffer Systems. J. Clust. Sci. 2022, 33, 749–764. [Google Scholar] [CrossRef]
- Barreto, Â.; Luis, L.G.; Girão, A.V.; Trindade, T.; Soares, A.M.V.M.; Oliveira, M. Behavior of Colloidal Gold Nanoparticles in Different Ionic Strength Media. J. Nanopart. Res. 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Birolli, W.G.; Fonseca, L.P.; Porto, A.L.M. Aldol Reactions by Lipase From Rhizopus Niveus, an Example of Unspecific Protein Catalysis. Catal. Lett. 2017, 147, 1977–1987. [Google Scholar] [CrossRef]
- Harrison, E.; Hamilton, J.W.J.; Macias-Montero, M.; Dixon, D. Peptide Functionalized Gold Nanoparticles: The Influence of PH on Binding Efficiency. Nanotechnology 2017, 28, 295602. [Google Scholar] [CrossRef]
- Xie, Z.B.; Wang, N.; Jiang, G.F.; Yu, X.Q. Biocatalytic Asymmetric Aldol Reaction in Buffer Solution. Tetrahedron Lett. 2013, 54, 945–948. [Google Scholar] [CrossRef]
- Dziedzic, P.; Zou, W.; Háfren, J.; Córdova, A. The Small Peptide-Catalyzed Direct Asymmetric Aldol Reaction in Water. Org. Biomol. Chem. 2006, 4, 38–40. [Google Scholar] [CrossRef]
- Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. [Google Scholar] [CrossRef]
- Biggs, S.; Mulvaney, P.; Zukoski, C.F.; Grieser, F. Study of Anion Adsorption at the Gold-Aqueous Solution Interface by Atomic Force Microscopy. J. Am. Chem. Soc. 1994, 116, 9150–9157. [Google Scholar] [CrossRef]
- Pandey, P.; Singh, S.P.; Arya, S.K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B.D. Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity. Langmuir 2007, 23, 3333–3337. [Google Scholar] [CrossRef] [PubMed]
- Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.R.; Mandale, A.B.; Rao, M.; Sastry, M. Pepsin-Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 2001, 17, 1674–1679. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Prasad, P.N.; Knecht, M.R.; Swihart, M.T. Peptide-Mediated Synthesis of Gold Nanoparticles: Effects of Peptide Sequence and Nature of Binding on Physicochemical Properties. Nanoscale 2014, 6, 3165–3172. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Soon, G.K.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem.-Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Z.; Wu, C. Artificial Enzymes Combining Proteins with Proline Polymers for Asymmetric Aldol Reactions in Water. ACS Catal. 2022, 12, 4777–4783. [Google Scholar] [CrossRef]
- Pelin, J.N.B.D.; Gerbelli, B.B.; Soares, B.M.; Aguilar, A.M.; Alves, W.A. Amyloidogenic Model Peptides as Catalysts for Stereoselective Aldol Reactions. Catal. Sci. Technol. 2019, 9, 4304–4313. [Google Scholar] [CrossRef]
Entry | Particle Size (nm) | Solvent | Peptide.Cat (mol%) | Time (h) | Yield (%) b | ee (%) c | dr (Anti:Syn) d |
---|---|---|---|---|---|---|---|
1 | 16 | Ketone a | 6 | 96 | |||
2 | 15 | 4 | 96 | Trace | – | – | |
3 | 6 | 96 | Trace | – | – | ||
4 | 12 | 4 | 96 | Trace | – | – | |
5 | 6 | 96 | 15 | 26 | 26:74 | ||
6 f | - | Ketone e | 4 | 48 | 15 | 5 | 49:51 |
7 f | - | 8 | 48 | 40 | 6 | 59:41 | |
8 | 16 | DMSO g | 6 | 96 | Trace | – | – |
9 | 15 | 4 | 96 | Trace | – | – | |
10 | 6 | 96 | 16 | 51 | 62:38 | ||
11 | 12 | 4 | 96 | 15 | 48 | 46:54 | |
12 | 6 | 96 | 17 | 39 | 44:56 | ||
13 f | - | DMSO h | 8 | 72 | 20 | 6 | 58:42 |
14 f | - | DMSO/H2O i | 8 | 72 | 27 | 31 | 64:36 |
15 | 16 | Buffer j | 6 | 72 | 21 | 76 | 57:43 |
16 | 15 | 6 | 72 | 39 | 94 | 59:41 | |
17 | 12 | 6 | 72 | 44 | 78 | 56:44 | |
18 f | - | Buffer k | 8 | 72 | 38 | 80 | 57:43 |
Entry | Buffer | pH | Time (h) | Yield b | ee(%) c | dr (Anti:Syn) d |
---|---|---|---|---|---|---|
1 | Phosphate | 5.6 | 72 | 70 | 69 | 67:30 |
2 | 6.5 | 72 | 78 | 86 | 64:36 | |
3 | 7.0 | 72 | 81 | 89 | 62:38 | |
4 | Citrate | 5.6 | 72 | 68 | 80 | 61:39 |
5 | 6.5 | 72 | 75 | 74 | 62:38 | |
6 | 7.0 | 72 | 80 | 86 | 60:40 | |
7 | Tris | 5.6 | 72 | 42 | 63 | 55:45 |
8 | 6.5 | 72 | 53 | 60 | 58:42 | |
9 | 7.0 | 72 | 65 | 65 | 50:50 | |
10 | Control-Phosphate e | 5.6 | 72 | Trace | - | - |
11 | 6.5 | 72 | Trace | - | - | |
12 | 7.0 | 72 | Trace | - | - | |
13 | Control-citrate e | 5.6 | 72 | Trace | - | - |
14 | 6.5 | 72 | Trace | - | - | |
15 | 7.0 | 72 | Trace | - | - | |
16 | Control-Tris e | 5.6 | 72 | Trace | - | - |
17 | 6.5 | 72 | Trace | - | - | |
18 | 7.0 | 72 | Trace | - | - |
Entry | Particle Size (nm) | Time (h) | Yield (%) b | ee (%) c | dr (Anti:Syn) d |
---|---|---|---|---|---|
1 | 16 | 48 | 77 | 88 | 62:38 |
2 | 15 | 48 | 81 | 79 | 49:51 |
3 | 12 | 48 | 85 | 74 | 47:53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peme, T.; Brady, D.; Shumbula, N.P.; Machumele, K.; Moloto, N.; Adams, T.; Makatini, M.M. Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions. Catalysts 2024, 14, 826. https://doi.org/10.3390/catal14110826
Peme T, Brady D, Shumbula NP, Machumele K, Moloto N, Adams T, Makatini MM. Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions. Catalysts. 2024; 14(11):826. https://doi.org/10.3390/catal14110826
Chicago/Turabian StylePeme, Thabo, Dean Brady, Ndivhuwo P. Shumbula, Khanani Machumele, Nosipho Moloto, Taryn Adams, and Maya M. Makatini. 2024. "Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions" Catalysts 14, no. 11: 826. https://doi.org/10.3390/catal14110826
APA StylePeme, T., Brady, D., Shumbula, N. P., Machumele, K., Moloto, N., Adams, T., & Makatini, M. M. (2024). Peptide-Functionalized Gold Nanoparticles as Organocatalysts for Asymmetric Aldol Reactions. Catalysts, 14(11), 826. https://doi.org/10.3390/catal14110826