Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase and Chemical Composition of Composite Photoanodes
2.2. Microscopic Morphology and Structure of Composite Photoanodes
2.3. The Optical Properties and Band Structure of the Photoanodes
2.4. Photoelectrochemical Performance of Composite Photoanodes
2.5. Phase Changes of the FeOOH/BiVO4/WO3 Photoanode After PEC Application
2.6. Mechanism of PEC Water Splitting Using FeOOH/BiVO4/WO3 Photoanode
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vecchi, P.; Ruani, F.; Mazzanti, M.; Loague, Q.R.; Mazzaro, R.; Boscherini, F.; Ventura, B.; Meyer, G.J.; Armaroli, N.; Caramori, S.; et al. Impact of Co–Fe Overlayers on Charge Carrier Dynamics at WO3/BiVO4 Heterojunctions: A Picosecond-to-Second Spectroscopic Analysis. ACS Energy Lett. 2024, 9, 2193–2200. [Google Scholar] [CrossRef]
- Li, D.; Tian, S.; Qian, Q.; Gao, C.; Shen, H.; Han, F. Architecture of a Long-Wavelength Visible–Light–Driven N-Doped WO3/BiVO4 Heterojunction Structure for Highly Efficient Photoelectrochemical Water Splitting. Ind. Eng. Chem. Res. 2024, 63, 13180–13188. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Q.; Zhu, F.; Wang, T.; Gao, B.; Song, L.; He, J. Preparation of Surface Dispersed WO3/BiVO4 Heterojunction Arrays and Their Photoelectrochemical Performance for Water Splitting. Molecules 2024, 29, 372. [Google Scholar] [CrossRef]
- Nomellini, C.; Polo, A.; Mesa, C.A.; Pastor, E.; Marra, G.; Grigioni, I.; Dozzi, M.V.; Giménez, S.; Selli, E. Improved Photoelectrochemical Performance of WO3/BiVO4 Heterojunction Photoanodes via WO3 Nanostructuring. ACS Appl. Mater. Interfaces 2023, 15, 52436–52447. [Google Scholar] [CrossRef]
- Nguyen Duc, Q.; Phuoc Cao, V.; Sutripto, M.; Jong-Ryul, J.; Dojin, K.; Chunjoong, K. Optimization of photogenerated charge transport using type-II heterojunction structure of CoP/BiVO4:WO3 for high efficient solar-driver water splitting. J. Alloys Compd. 2021, 899, 163292. [Google Scholar] [CrossRef]
- Sang, P.; Kim, J.H. Role of g-C3N4 in Fabrication of BiVO4/WO3 Z-scheme Heterojunction for high Photoelectrochemical Performances with Enhanced Light Harvesting. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1015–1026. [Google Scholar] [CrossRef]
- Ma, Z.; Song, K.; Wang, L.; Gao, F.; Tang, B.; Hou, H.; Yang, W. WO3/BiVO4 Type-II Heterojunction Arrays Decorated with Oxygen-Deficient ZnO Passivation Layer: A Highly Efficient and Stable Photoanode. ACS Appl. Mater. Interfaces 2019, 11, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Yoon, J.W.; Kim, T.-H.; Jo, Y.-M.; Kim, J.-S.; Jeong, S.-Y.; Lee, J.-H. Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances. Chem. Eng. J. 2021, 425, 131496. [Google Scholar] [CrossRef]
- Khan, H.; Kim, M.-J.; Baek, J.-H.; Bera, S.; Woo, H.-J.; Moon, H.-S.; Kwon, S.-H. Sustained Water Oxidation with Surface- and Interface-Engineered WO3/BiVO4 Heterojunction Photoanodes. ACS Appl. Energy Mater. 2022, 5, 15788–15798. [Google Scholar] [CrossRef]
- Selvarajan, S.; Suganthi, A.; Rajarajan, M.; Arunprasath, K. Highly efficient BiVO4/WO3 nanocomposite towards superior photocatalytic performance. Powder Technol. 2017, 307, 203–212. [Google Scholar] [CrossRef]
- Xu, S.; Fu, D.; Song, K.; Wang, L.; Yang, Z.; Yang, W.; Hou, H. One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem. Eng. J. 2018, 349, 368–375. [Google Scholar] [CrossRef]
- Davies, K.R.; Allan, M.G.; Nagarajan, S.; Townsend, R.; Dunlop, T.; McGettrick, J.D.; Asokan, V.S.; Ananthraj, S.; Watson, T.; Godfrey, A.R.; et al. Solar light-driven simultaneous pharmaceutical pollutant degradation and green hydrogen production using a mesoporous nanoscale WO3/BiVO4 heterostructure photoanode. J. Environ. Chem. Eng. 2023, 11, 110256. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, D.; Ni, X.; Meng, X.; Zhou, Y.; Sun, Z.; Kuang, Y. Better Charge Separation in CuO Nanowire Array Photocathodes: Micro-/Nanostructure Regulation for Photoelectrochemical Reaction. ACS Appl. Energy Mater. 2020, 3, 6334–6343. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Adv. Energy Mater. 2019, 10, 1900954. [Google Scholar] [CrossRef]
- Wang, W.; Qi, L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Zhan, Y.; Cheng, Q.; Song, Y.; Li, M. Micro-Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Adv. Funct. Mater. 2022, 32, 2200385. [Google Scholar] [CrossRef]
- Cai, M.; Fan, P.; Long, J.; Han, J.; Lin, Y.; Zhang, H.; Zhong, M. Large-Scale Tunable 3D Self-Supporting WO3 Micro-Nano Architectures as Direct Photoanodes for Efficient Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 17856–17864. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Z.; Mao, X.; Dong, Y.; Peng, L.; Sun-Waterhouse, D.; Kennedy, J.V.; Waterhouse, G.I.N. Recent Advances in Self-Supported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting. Small 2022, 18, 2204553. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kong, H.; Kim, J.H.; Yang, W.-G.; Lee, H.; Ko, S.; Lee, H.J.; Piao, G.; Park, H.; Chae, W.-S.; et al. Laser-induced deposition of Ni, Co-doped FeOOH cocatalysts on WO3 photoanodes and elucidating their roles in water oxidation in terms of carrier dynamics. J. Mater. Chem. A 2023, 11, 4598–4607. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, X.; Xu, H.; Wu, W. Fabrication of WO3/RGO/Ni:FeOOH heterostructure for synergistically enhancing photoelectrochemical water oxidation. Appl. Surf. Sci. 2021, 542, 148579. [Google Scholar] [CrossRef]
- Wei, J.; Shen, W. FeOOH quantum dot decorated flower-like WO3 microspheres for visible light driven photo-Fenton degradation of methylene blue and acid red-18. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128754. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Bai, J.; Li, J.; Zhou, C.; Li, L.; Xie, C.; Zhou, T.; Zhu, H.; Zhou, B. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO4. J. Colloid Interface Sci. 2023, 644, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Zhao, X.; Pan, S.; Cao, W.; Zuo, X.; Li, Y. Electrodeposition of FeOOH nanosheets on carbon felt for enhanced sulfamerazine removal via visible light-assisted electro-Fenton process. J. Water Process Eng. 2022, 48, 102883. [Google Scholar] [CrossRef]
- Jian, J.; Shi, Y.; Syväjärvi, M.; Yakimova, R.; Sun, J. Cubic SiC Photoanode Coupling with Ni:FeOOH Oxygen-Evolution Cocatalyst for Sustainable Photoelectrochemical Water Oxidation. Sol. RRL 2019, 4, 1900364. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, H.; Yuan, M.; Li, F.-F.; Zou, X.; Ng, Y.H.; Hsu, H.-Y. Chemical reduction-induced surface oxygen vacancies of BiVO4 photoanodes with enhanced photoelectrochemical performance. Sustain. Energy Fuels 2021, 5, 2284–2293. [Google Scholar] [CrossRef]
- Ge, G.; Liu, M.; Liu, C.; Zhou, W.; Wang, D.; Liu, L.; Ye, J. Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. J. Mater. Chem. A 2019, 7, 9222–9229. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.Z.; Li, J.; Sun, D.B.; Chen, Q.Y. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J. Mater. Chem. 2012, 22, 17744–17752. [Google Scholar] [CrossRef]
- Kim, T.W.; Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990–994. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, K.P.; Yang, G.H.; Wang, C.M.; Zhang, J.R.; Zhu, J.J. Fabrication of Graphene–Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing. Adv. Funct. Mater. 2011, 21, 869–878. [Google Scholar] [CrossRef]
- Hosseini, F.; Safaei, E.; Mohebbi, S. Modified WO3 nanorod with Pt nanoparticle as retrievable materials in catalytic and photocatalytic aerobic oxidation of alcohols. J. Nanoparticle Res. 2017, 19, 240. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.; Shi, Y.; Chen, S.; Wang, Y.; Pan, L.; Guan, Z. NH2-MIL-125(Ti-Zr) synergized with WO3 to construct S-Scheme heterojunction photocatalysts for highly efficient degradation of organic dyes and tetracycline in water. FlatChem 2024, 47, 100725. [Google Scholar] [CrossRef]
- Alhabradi, M.; Yang, X.; Alruwaili, M.; Chang, H.; Tahir, A.A. Enhanced Photoelectrochemical Performance Using Cobalt-Catalyst-Loaded PVD/RF-Engineered WO3 Photoelectrodes. Nanomaterials 2024, 14, 259. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, Q.; Zhao, Z.; Gao, L.; Li, X. Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation. Environ. Sci. Pollut. Res. 2020, 27, 15103–15112. [Google Scholar] [CrossRef]
- Bai, Y.; Lu, J.; Bai, H.; Fang, Z.; Wang, F.; Liu, Y.; Sun, D.; Luo, B.; Fan, W.; Shi, W. Understanding the key role of vanadium in p-type BiVO4 for photoelectrochemical N2 fixation. Chem. Eng. J. 2021, 414, 128773–128781. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A.A.; Kang, S.-W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M.; et al. Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts 2021, 11, 460. [Google Scholar] [CrossRef]
- Liu, P.; Yi, J.; Bao, R.; Zhao, H. Construction of MXene–BiVO4–FeOOH composite photoanode with ultra-low onset potential: Performance, DFT calculation and mechanism. Mater. Today Chem. 2022, 23, 100747–100755. [Google Scholar] [CrossRef]
- Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications. J. Am. Chem. Soc. 2001, 123, 10639–10649. [Google Scholar] [CrossRef]
- Thirumalaisamy, L.; Wei, Z.; Davies, K.R.; Allan, M.G.; McGettrick, J.; Watson, T.; Kuehnel, M.F.; Pitchaimuthu, S. Dual Shield: Bifurcated Coating Analysis of Multilayered WO3/BiVO4/TiO2/NiOOH Photoanodes for Sustainable Solar-to-Hydrogen Generation from Challenging Waters. ACS Sustain. Chem. Eng. 2024, 12, 3044–3060. [Google Scholar] [CrossRef]
- Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Visible Light-Driven α-Fe2O3 Nanorod/Graphene/BiV1–xMoxO4 Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting. Nano Lett. 2012, 12, 6464–6473. [Google Scholar] [CrossRef]
- Sivula, K.; Le Formal, F.; Gratzel, M. Solar water splitting: Progress using hematite (alpha-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449. [Google Scholar] [CrossRef]
- Fan, X.; Gao, B.; Wang, T.; Huang, X.; Gong, H.; Xue, H.; Guo, H.; Song, L.; Xia, W.; He, J. Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting. Appl. Catal. A Gen. 2016, 528, 52–58. [Google Scholar] [CrossRef]
- Grigioni, I.; Stamplecoskie, K.G.; Selli, E.; Kamat, P.V. Dynamics of Photogenerated Charge Carriers in WO3/BiVO4 Heterojunction Photoanodes. J. Phys. Chem. C 2015, 119, 20792–20800. [Google Scholar] [CrossRef]
- Ravensbergen, J.; Abdi, F.F.; van Santen, J.H.; Frese, R.N.; Dam, B.; van de Krol, R.; Kennis, J.T.M. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 2014, 118, 27793–27800. [Google Scholar] [CrossRef]
- Nareejun, W.; Ponchio, C. Novel photoelectrocatalytic/solar cell improvement for organic dye degradation based on simple dip coating WO3/BiVO4 photoanode electrode. Sol. Energy Mater. Sol. Cells 2020, 212, 110556. [Google Scholar] [CrossRef]
- Smilyk, V.O.; Fomanyuk, S.S.; Kolbasov, G.Y.; Rusetskyi, I.A.; Vorobets, V.S. Electrodeposition, optical and photoelectrochemical properties of BiVO4 and BiVO4/WO3 films. Res. Chem. Intermed. 2019, 45, 4149–4161. [Google Scholar] [CrossRef]
- Ma, M.; Ruan, M.; Cao, W.; Yang, K. Modification with FeOOH magnificent enhanced the photoelectrochemical degradation activity of oxygen vacancy-containing BiVO4. J. Mater. Sci. Mater. Electron. 2023, 34, 1648. [Google Scholar] [CrossRef]
- Kim, J.H.; Jo, Y.H.; Kim, J.H.; Lee, J.S. Ultrafast fabrication of highly active BiVO4 photoanodes by hybrid microwave annealing for unbiased solar water splitting†. Nanoscale 2016, 40, 17623–17631. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.L.; Lee, C.C.; Messinger, J. Transparent Nanoparticulate FeOOH Improves the Performance of a WO3 Photoanode in a Tandem Water-Splitting Device. J. Phys. Chem. C 2016, 120, 10941–10950. [Google Scholar] [CrossRef]
Serial Number | Samples | Preparation Method | Electrolyte | J (mA/cm2) | Ref. |
---|---|---|---|---|---|
1 | BiVO4/WO3 | Spin coating | 0.1 M phosphate buffer | 0.8 at 1.2 V vs. RHE | [41] |
2 | BiVO4/WO3 | Spin coating | 0.5 M Na2SO4 | 1.0 at 1.23 V vs. RHE | [42] |
3 | BiVO4/WO3 | WO3: hydrothermal BiVO4: spin coating | 0.1 M phosphate buffer | 0.80 at 1 V vs. Pt | [43] |
4 | BiVO4/WO3 | Dip coating | 0.1 M Na2SO4 | 0.25 at 1.0 V vs. Ag/AgCl | [44] |
5 | BiVO4/WO3 | Electrodeposition | 0.1 M Na2SO4 | 0.70 at 0.8 V vs. Ag/AgCl | [45] |
6 | BiVO4/WO3 | WO3: hydrothermal BiVO4: electrodeposition | 0.5 M Na2SO4 | 1.09 at 1.23 V vs. RHE | This work |
7 | FeOOH/BiVO4-Ov | Hydrothermal | 0.2 M Na2SO4 | 1.18 at 1.23 V vs. RHE | [46] |
8 | NiOOH/FeOOH/BiVO4/WO3 | Microwave annealing | 0.5 M Na2SO4 | 1.50 at 1.2 V vs. RHE | [47] |
9 | FeOOH/WO3 | Electrodeposition | 0.5 M K2SO4 | 1.90 at 1.8 V vs. RHE | [48] |
10 | FeOOH/BiVO4/WO3 | Impregnation | 0.5 M Na2SO4 | 2.04 at 1.23 V vs. RHE | This work |
Photoanodes | R1 (Ω) | R2 (Ω) |
---|---|---|
WO3 | 32.33 | 486.0 |
BiVO4/WO3 | 26.85 | 306.5 |
FeOOH/BiVO4/WO3 | 22.99 | 201.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhan, F.; Wen, G.; Wang, B.; Qi, J.; Liu, Y.; Feng, C.; La, P. Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance. Catalysts 2024, 14, 828. https://doi.org/10.3390/catal14110828
Li R, Zhan F, Wen G, Wang B, Qi J, Liu Y, Feng C, La P. Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance. Catalysts. 2024; 14(11):828. https://doi.org/10.3390/catal14110828
Chicago/Turabian StyleLi, Ruixin, Faqi Zhan, Guochang Wen, Bing Wang, Jiahao Qi, Yisi Liu, Chenchen Feng, and Peiqing La. 2024. "Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance" Catalysts 14, no. 11: 828. https://doi.org/10.3390/catal14110828
APA StyleLi, R., Zhan, F., Wen, G., Wang, B., Qi, J., Liu, Y., Feng, C., & La, P. (2024). Facile Synthesis of a Micro–Nano-Structured FeOOH/BiVO4/WO3 Photoanode with Enhanced Photoelectrochemical Performance. Catalysts, 14(11), 828. https://doi.org/10.3390/catal14110828