Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Properties of ZnO-NPs
2.2. Structural Properties
2.3. ZnO-NP Morphology and Size Distribution
2.4. Chemical Composition and Surface Properties
2.5. Optical Properties of ZnO-NPs
2.6. Photocatalytic Performance of ZnO-NPs
2.6.1. Effect of Catalyst Dose
2.6.2. Effect of pH on the Rate of QY Removal
2.6.3. Effect of Initial Concentration of QY
2.6.4. Kinetic Study of Photocatalysis
2.7. Antioxidant Activity
2.8. Antibacterial Activity of ZnO-NPs
2.9. Gaussian Process Regression
2.9.1. Residue Analysis
2.9.2. Optimization of the Operating Condition and Validation
2.9.3. Interface for Optimization and Prediction
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Peel Extracts
3.2.2. ZnO-NPs Green Synthesis
3.2.3. Characterization of ZnO-NPs
3.2.4. Photodegradation Experiments
3.2.5. Antibacterial Activity of Biosynthesized ZnO-NPs
3.2.6. Antioxidant Activity
3.2.7. Gaussian Process Regression
- Squared Exponential Kernel
- Exponential Kernel
- Matern 3/2
- Matern 5/2
- Rational Quadratic Kernel
- ARD Squared Exponential Kernel
- ARD Exponential Kernel
- ARD Matern 3/2
- ARD Matern 5/2
- ARD Rational Quadratic Kernel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahraoui, H.; Toumi, S.; Boudoukhani, M.; Touzout, N.; Sid, A.N.E.H.; Amrane, A.; Belhadj, A.-E.; Hadjadj, M.; Laichi, Y.; Aboumustapha, M. Evaluating the Effectiveness of Coagulation–Flocculation Treatment Using Aluminum Sulfate on a Polluted Surface Water Source: A Year-Long Study. Water 2024, 16, 400. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L.; Mancini, L.; Prencipe, S.A.; Ruggeri, M.; Tiradritti, M. The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview. Earth 2021, 2, 894–919. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T. Phytoremediation of Contaminated Water Using Aquatic Plants, Its Mechanism and Enhancement. Curr. Opin. Environ. Sci. Health 2023, 32, 100451. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; UI Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Khan, M.S.; Rehman, M.T.; Bhat, S.A.; Tabrez, S.; Hussain, A.; Husain, F.M.; AlAjmi, M.F.; Alamery, S.F.; Sumbul, S. Food Additive Dye (Quinoline Yellow) Promotes Unfolding and Aggregation of Myoglobin: A Spectroscopic and Molecular Docking Analysis. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 214, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J. Decolorization and Degradation of Various Dyes and Dye-Containing Wastewater Treatment by Electron Beam Radiation Technology: An Overview. Chemosphere 2024, 351, 141255. [Google Scholar] [CrossRef]
- Kumar, V.; Lakkaboyana, S.K.; Sharma, N.; Chakraborty, P.; Umesh, M.; Pasrija, R.; Thomas, J.; Kalebar, V.U.; Jayaraj, I.; Awasthi, M.K.; et al. A Critical Assessment of Technical Advances in Pharmaceutical Removal from Wastewater—A Critical Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100363. [Google Scholar] [CrossRef]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and Microbial Differential Abundance Strategies Depend upon Data Characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef]
- Choudoir, M.J.; DeAngelis, K.M. A Framework for Integrating Microbial Dispersal Modes into Soil Ecosystem Ecology. iScience 2022, 25, 103887. [Google Scholar] [CrossRef]
- Gillings, M.R.; Paulsen, I.T. Microbiology of the Anthropocene. Anthropocene 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Wartalska, K.; Kaźmierczak, B. Review of Water Treatment Methods with a Focus on Energy Consumption. Int. Commun. Heat. Mass. Transf. 2023, 143, 106674. [Google Scholar] [CrossRef]
- Meese, A.F.; Kim, D.J.; Wu, X.; Le, L.; Napier, C.; Hernandez, M.T.; Laroco, N.; Linden, K.G.; Cox, J.; Kurup, P.; et al. Opportunities and Challenges for Industrial Water Treatment and Reuse. ACS EST Eng. 2022, 2, 465–488. [Google Scholar] [CrossRef]
- Kebir, M.; Tahraoui, H.; Chabani, M.; Trari, M.; Noureddine, N.; Assadi, A.A.; Amrane, A.; Ben Hamadi, N.; Khezami, L. Water Cleaning by a Continuous Fixed-Bed Column for Cr (VI) Eco-Adsorption with Green Adsorbent-Based Biomass: An Experimental Modeling Study. Processes 2023, 11, 363. [Google Scholar] [CrossRef]
- Madi, K.; Chebli, D.; Ait Youcef, H.; Tahraoui, H.; Bouguettoucha, A.; Kebir, M.; Zhang, J.; Amrane, A. Green Fabrication of ZnO Nanoparticles and ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: Synthesis, Characterization, and Augmented Photocatalytic Efficiency in Methylene Blue Degradation. Catalysts 2024, 14, 62. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef]
- Singh, K.; Maurya, S.; Gupta, S.; Ranjan, N.; Ramanathan, G.; Bhattacharya, S. Effect of the Standardized ZnO/ZnO-GO Filter Element Substrate Driven Advanced Oxidation Process on Textile Industry Effluent Stream: Detailed Analysis of Photocatalytic Degradation Kinetics. ACS Omega 2023, 8, 28615–28627. [Google Scholar] [CrossRef]
- Mao, M.; Qi, Y.; Lu, K.; Chen, Q.; Xie, X.; Li, X.; Lin, Z.; Chai, L.; Liu, W. Selective Capacitive Recovery of Rare-Earth Ions from Wastewater over Phosphorus-Modified TiO2 Cathodes via an Electro-Adsorption Process. Environ. Sci. Technol. 2024, 58, 14013–14021. [Google Scholar] [CrossRef]
- Gautam, S.; Das, D.K.; Kaur, J.; Kumar, A.; Ubaidullah, M.; Hasan, M.; Yadav, K.K.; Gupta, R.K. Transition Metal-Based Nanoparticles as Potential Antimicrobial Agents: Recent Advancements, Mechanistic, Challenges, and Future Prospects. Discov. Nano 2023, 18, 84. [Google Scholar] [CrossRef]
- Iyyappan, J.; Gaddala, B.; Gnanasekaran, R.; Gopinath, M.; Yuvaraj, D.; Kumar, V. Critical Review on Wastewater Treatment Using Photo Catalytic Advanced Oxidation Process: Role of Photocatalytic Materials, Reactor Design and Kinetics. Case Stud. Chem. Environ. Eng. 2024, 9, 100599. [Google Scholar] [CrossRef]
- Wang, D.; Tian, H.; Zhu, J.; Lu, Z.; He, Z.; Song, S. Enhanced Photocatalytic Degradation of Toluene on Surface C- and CN-Modified TiO2 Microspheres. Appl. Surf. Sci. 2024, 673, 160862. [Google Scholar] [CrossRef]
- Nyabadza, A.; McCarthy, É.; Makhesana, M.; Heidarinassab, S.; Plouze, A.; Vazquez, M.; Brabazon, D. A Review of Physical, Chemical and Biological Synthesis Methods of Bimetallic Nanoparticles and Applications in Sensing, Water Treatment, Biomedicine, Catalysis and Hydrogen Storage. Adv. Colloid Interface Sci. 2023, 321, 103010. [Google Scholar] [CrossRef]
- Álvarez-Chimal, R.; Ángel Arenas-Alatorre, J. Green Synthesis of Nanoparticles: A Biological Approach. In Green Chemistry for Environmental Sustainability—Prevention-Assurance-Sustainability (P-A-S) Approach; Shah, K., Ed.; IntechOpen: London, UK, 2023; ISBN 978-1-83769-389-4. [Google Scholar]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Sabry, B.A.; Badr, A.N.; Ahmed, K.A.; Desoukey, M.A.; Mohammed, D.M. Utilizing Lemon Peel Extract and Its Nano-Emulsion to Control Aflatoxin Toxicity in Rats. Food Biosci. 2022, 50, 101998. [Google Scholar] [CrossRef]
- Gayathri Devi, K.; Clara Dhanemozhi, A.; Sathya Priya, L. Green Synthesis of Zinc Oxide Nanoparticles Using Lemon Extract for Waste Water Treatment. Mater. Today Proc. 2023, 3, S2214785323016425. [Google Scholar] [CrossRef]
- Shubha, J.P.; Kavalli, K.; Adil, S.F.; Assal, M.E.; Hatshan, M.R.; Dubasi, N. Facile Green Synthesis of Semiconductive ZnO Nanoparticles for Photocatalytic Degradation of Dyes from the Textile Industry: A Kinetic Approach. J. King Saud. Univ. Sci. 2022, 34, 102047. [Google Scholar] [CrossRef]
- Dhananjay, P.; Abhilash, M.R.; Shilpa, N.; Hemanth Kumar, N.K.; Gowtham, H.G.; Aiyaz, M.; Brijesh Singh, S.; Abdul, M.; Suhail, A.; Murali, M. Solar Irradiation Driven Catalytic Dye Degradation by Novel Biosynthesized Zinc Oxide Nanoparticles (ZnO–NPs) from Barleria Mysorensis: Kinetics, Reusability and Mineralization Studies. J. Mol. Struct. 2024, 1303, 137549. [Google Scholar] [CrossRef]
- Barrios-Navarro, F.A.; Vilchis-Nestor, A.R.; Luque, P.A. Photocatalytic Degradation of Organic Dyes in Water Using Semiconductor ZnO Nanoparticles Synthesized Using Crataegus Mexicana Extract. Mater. Chem. Phys. 2024, 318, 129302. [Google Scholar] [CrossRef]
- Assi, N.; Aberoomand Azar, P.; Saber Tehrani, M.; Waqif Husain, S.; Darwish, M.; Pourmand, S. Synthesis of ZnO-Nanoparticles by Microwave-Assisted Sol-Gel Method and Its Role in Photocatalytic Degradation of Food Dye Tartrazine (Acid Yellow 23). Int. J. Nano Dimens. 2014, 8, 3. [Google Scholar]
- Algarni, T.S.; Al-Mohaimeed, A.M.; Abduh, N.A.Y.; Habab, R.A.; Alqahtani, S.M. Green Synthesis of Mixed ZnO-SnO2 Nanoparticles for Solar-Assisted Degradation of Synthetic Dyes. Catalysts 2023, 13, 1509. [Google Scholar] [CrossRef]
- John, D.M.; Pillai, N.S.; Sivan, A.; Lasya, P.; Archana, P.; Sreekanth, K.M.; Sivasubramanian, G.; Sreedhar, K.M. Ferromagnetic ZnO Nanostructures from an Organo Zinc Complex Formulated via Piper Longum L-Assisted Green Synthesis: Multifaceted Prospects in Photocatalysis, Antimicrobial Activity, and Cell Viability Studies. Heliyon 2024, 10, e33360. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Verma, R.; Chauhan, A.; Dhatwalia, J.; Guleria, I.; Ghotekar, S.; Thakur, S.; Mansi, K.; Kumar, R.; Kumari, A.; et al. Antioxidant, Antimicrobial, and Photocatalytic Activity of Green Synthesized ZnO-NPs from Myrica Esculenta Fruits Extract. Inorg. Chem. Commun. 2022, 141, 109518. [Google Scholar] [CrossRef]
- George, J.M.; Aswani, M.T.; Kumar, M.V.P.; Varghese, B. Green Synthesis of ZnO Nanoparticles. In Proceedings of the International Conference on Science and Technology of Advanced Materials: STAM 20, Kothamangalam, India, 14–16 January 2020; p. 020001. [Google Scholar]
- Negi, A.; Gangwar, R.; Kumar Vishwakarma, R.; Singh Negi, D. Antibacterial, Antioxidant and Photodegradation Potential of ZnO Nanoparticles Mediated via Roots of Taraxacum Officinale Radix. Mater. Today Proc. 2022, 57, 2435–2443. [Google Scholar] [CrossRef]
- Omar, K.A.; Meena, B.I.; Muhammed, S.A. Study on the Activity of ZnO-SnO2 Nanocomposite against Bacteria and Fungi. Physicochem. Probl. Miner. Process. 2016, 52, 945. [Google Scholar] [CrossRef]
- Bakir, H.; Guvenc, U.; Kahraman, H.T.; Duman, S. Improved Lévy Flight Distribution Algorithm with FDB-Based Guiding Mechanism for AVR System Optimal Design. Comput. Ind. Eng. 2022, 168, 108032. [Google Scholar] [CrossRef]
- Eswari, K.M.; Asaithambi, S.; Karuppaiah, M.; Sakthivel, P.; Balaji, V.; Ponelakkia, D.K.; Yuvakkumar, R.; Kumar, P.; Vijayaprabhu, N.; Ravi, G. Green Synthesis of ZnO Nanoparticles Using Abutilon Indicum and Tectona Grandis Leaf Extracts for Evaluation of Anti-Diabetic, Anti-Inflammatory and in-Vitro Cytotoxicity Activities. Ceram. Int. 2022, 48, 33624–33634. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Malik, M.A. Biogenic Fabrication of ZnO Nanoparticles Using Trigonella Foenum-Graecum (Fenugreek) for Proficient Photocatalytic Degradation of Methylene Blue under UV Irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Ahmed Mohamed, H.E.; Maaza, M. ZnO Nanoparticles Prepared via a Green Synthesis Approach: Physical Properties, Photocatalytic and Antibacterial Activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Ameen, F.; Dawoud, T.; AlNadhari, S. Ecofriendly and Low-Cost Synthesis of ZnO Nanoparticles from Acremonium Potronii for the Photocatalytic Degradation of Azo Dyes. Environ. Res. 2021, 202, 111700. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Barzinjy, A.A.; Hamad, A.H.; Hamad, S.M. Green Synthesis of Ni Doped ZnO Nanoparticles Using Dandelion Leaf Extract and Its Solar Cell Applications. Ceram. Int. 2022, 48, 29257–29266. [Google Scholar] [CrossRef]
- Nagaraj, K.; Naman, J.; Dixitkumar, M.; Priyanshi, J.; Thangamuniyandi, P.; Kamalesu, S.; Lokhandwala, S.; Parekh, N.M.; Rekha Panda, S.; Sakthinathan, S.; et al. Green Synthesis of Ag@ZnO Nanocomposites Using Cassia Alata Leaf Extract and Surfactant Complex for Photodegradation of Rhodamin6G. Inorg. Chem. Commun. 2023, 151, 110635. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. Raman Spectra and Microstructure of Zinc Oxide Irradiated with Swift Heavy Ion. Crystals 2019, 9, 395. [Google Scholar] [CrossRef]
- Volkov, V.V.; Oliver, D.J.; Perry, C.C. Polariton Condensation and Surface Enhanced Raman in Spherical ZnO Microcrystals. Nat. Commun. 2020, 11, 4908. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Du, Z.; Dai, S. Analysis of Raman Modes in Mn-doped ZnO Nanocrystals. Phys. Status Solidi B 2009, 246, 2329–2332. [Google Scholar] [CrossRef]
- Konan, F.K.; Hartiti, B.; Batan, A.; Aka, B. X-Ray Diffraction, XPS, and Raman Spectroscopy of Coated ZnO:Al (1–7 At%) Nanoparticles. E J. Surf. Sci. Nanotechnol. 2019, 17, 163–168. [Google Scholar] [CrossRef]
- Cui, S.; Wu, Y.; Cui, Z.; He, P.; Huang, N.; Xu, W.; Hu, J. Low-Frequency Ultrasound-Assisted Biosynthesis and Characterization of ZnO Nanoparticles Using Bacillus Thuringiensis against Tribolium Castaneum(Coleoptera, Tenebrionidae). Mater. Lett. 2023, 341, 134158. [Google Scholar] [CrossRef]
- Bhosale, A.; Kadam, J.; Gade, T.; Sonawane, K.; Garadkar, K. Efficient Photodegradation of Methyl Orange and Bactericidal Activity of Ag Doped ZnO Nanoparticles. J. Indian Chem. Soc. 2023, 100, 100920. [Google Scholar] [CrossRef]
- Pérez Velasco, E.A.; Betancourt Galindo, R.; Valdez Aguilar, L.A.; González Fuentes, J.A.; Puente Urbina, B.A.; Lozano Morales, S.A.; Sánchez Valdés, S. Effects of the Morphology, Surface Modification and Application Methods of ZnO-NPs on the Growth and Biomass of Tomato Plants. Molecules 2020, 25, 1282. [Google Scholar] [CrossRef]
- Jowkar, Z.; Moaddeli, A.; Shafiei, F.; Tadayon, T.; Hamidi, S.A. Synthesis and Characterization of Mesoporous Zinc Oxide Nanoparticles and Evaluation of Their Biocompatibility in L929 Fibroblasts. Clin. Exp. Dent. Res. 2024, 10, e844. [Google Scholar] [CrossRef]
- Ahmad, I.; Aslam, M.; Jabeen, U.; Zafar, M.N.; Malghani, M.N.K.; Alwadai, N.; Alshammari, F.H.; Almuslem, A.S.; Ullah, Z. ZnO and Ni-Doped ZnO Photocatalysts: Synthesis, Characterization and Improved Visible Light Driven Photocatalytic Degradation of Methylene Blue. Inorganica Chim. Acta 2022, 543, 121167. [Google Scholar] [CrossRef]
- Mubeen, K.; Irshad, A.; Safeen, A.; Aziz, U.; Safeen, K.; Ghani, T.; Khan, K.; Ali, Z.; Ul Haq, I.; Shah, A. Band Structure Tuning of ZnO/CuO Composites for Enhanced Photocatalytic Activity. J. Saudi Chem. Soc. 2023, 27, 101639. [Google Scholar] [CrossRef]
- Ghareib, M.; Abu Tahon, M.; Abdallah, W.E.; Hussein, M. Free Radical Scavenging Activity of Zinc Oxide Nanoparticles Biosynthesised Using Aspergillus Carneus. Micro Nano Lett. 2019, 14, 1157–1162. [Google Scholar] [CrossRef]
- Kureshi, A.A.; Vaghela, H.M.; Kumar, S.; Singh, R.; Kumari, P. Green Synthesis of Gold Nanoparticles Mediated by Garcinia Fruits andTheir Biological Applications. Pharm. Sci. 2020, 27, 238–250. [Google Scholar] [CrossRef]
- Shaghaghi, Z.; Mollaei, S.; Amani-Ghadim, A.R.; Abedini, Z. Green Synthesis of ZnO Nanoparticles Using the Aqueous Extract of Platanus Orientalis: Structural Characterization and Photocatalytic Activity. Mater. Chem. Phys. 2023, 305, 127900. [Google Scholar] [CrossRef]
- Mallakpour, S.; Madani, M. Use of Silane Coupling Agent for Surface Modification of Zinc Oxide as Inorganic Filler and Preparation of Poly(Amide-Imide)/Zinc Oxide Nanocomposite Containing Phenylalanine Moieties. Bull. Mater. Sci. 2012, 35, 333–339. [Google Scholar] [CrossRef]
- Rafique, S.; Bashir, S.; Akram, R.; Jawaid, S.; Bashir, M.; Aftab, A.; Attique, A.; Awan, S.U. In Vitro Anticancer Activity and Comparative Green Synthesis of ZnO/Ag Nanoparticles by Moringa Oleifera, Mentha Piperita, and Citrus Lemon. Ceram. Int. 2023, 49, 5613–5620. [Google Scholar] [CrossRef]
- Mustafa, G.; Srivastava, S.; Kashif Aziz, M.; Kanaoujiya, R.; Rajkumar, C. Photosensitivity and Structural Properties of Vanadium-Doped ZnO and ZnO Nanoparticle at Various Calcined Temperature. Mater. Today Proc. 2023, 8, S2214785323046424. [Google Scholar] [CrossRef]
- Malebadi, K.A.; Seheri, N.H.; Ojelere, O.; Onwudiwe, D.C. ZnO Nanoparticles Modified with G-C3N4: Optical and Structural Properties. Mater. Sci. Eng. B 2024, 310, 117676. [Google Scholar] [CrossRef]
- Nath, M.R.; Ahmed, A.N.; Gafur, M.A.; Miah, M.Y.; Bhattacharjee, S. ZnO Nanoparticles Preparation from Spent Zinc–Carbon Dry Cell Batteries: Studies on Structural, Morphological and Optical Properties. J. Asian Ceram. Soc. 2018, 6, 262–270. [Google Scholar] [CrossRef]
- Badawi, E.A.; Ibrahim, H.; Ebied, M.R.; Abdel-Rahman, M.; Khallaf, H.; Abdel Rahman, M.A. Study of the Optical Properties of Zno Nano-Structure at Different Ti Content. Int. J. Thin Film. Sci. Technol. 2022, 11, 257–266. [Google Scholar] [CrossRef]
- Upadhyay, P.K.; Jain, V.K.; Sharma, K.; Sharma, R. Synthesis and Applications of ZnO Nanoparticles in Biomedicine. Res. J. Pharm. Technol. 2020, 13, 1636. [Google Scholar] [CrossRef]
- Chen, R.; Zou, C.; Yan, X.; Gao, W. Zinc Oxide Nanostructures and Porous Films Produced by Oxidation of Zinc Precursors in Wet-Oxygen Atmosphere. Prog. Nat. Sci. Mater. Int. 2011, 21, 81–96. [Google Scholar] [CrossRef]
- Perrotta, A.; Pilz, J.; Milella, A.; Coclite, A.M. Opto-Chemical Control through Thermal Treatment of Plasma Enhanced Atomic Layer Deposited ZnO: An in Situ Study. Appl. Surf. Sci. 2019, 483, 10–18. [Google Scholar] [CrossRef]
- Sowmya, S.R.; Madhu, G.M.; Hashir, M. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012026. [Google Scholar] [CrossRef]
- Mohamed, A.; Yousef, S.; Nasser, W.S.; Osman, T.A.; Knebel, A.; Sánchez, E.P.V.; Hashem, T. Rapid Photocatalytic Degradation of Phenol from Water Using Composite Nanofibers under UV. Environ. Sci. Eur. 2020, 32, 160. [Google Scholar] [CrossRef]
- Güell, F.; Galdámez-Martínez, A.; Martínez-Alanis, P.R.; Catto, A.C.; Da Silva, L.F.; Mastelaro, V.R.; Santana, G.; Dutt, A. ZnO-Based Nanomaterials Approach for Photocatalytic and Sensing Applications: Recent Progress and Trends. Mater. Adv. 2023, 4, 3685–3707. [Google Scholar] [CrossRef]
- Jalali, N.; Rakhsha, A.; Nami, M.; Rashchi, F.; Mastelaro, V.R. Photocatalytic Activity and pH-Induced Morphological Changes of ZnO/CuO Nanocomposites Prepared by Chemical Bath Precipitation. Energy Adv. 2023, 2, 1051–1063. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nam, S.-N.; Kim, J.; Oh, J. Photocatalytic Degradation of Dissolved Organic Matter under ZnO-Catalyzed Artificial Sunlight Irradiation System. Sci. Rep. 2020, 10, 13090. [Google Scholar] [CrossRef]
- Ayu, D.G.; Gea, S.; Andriayani, D.J.; Telaumbanua, D.J.; Piliang, A.F.R.; Harahap, M.; Yen, Z.; Goei, R.; Tok, A.I.Y. Photocatalytic Degradation of Methylene Blue Using N-Doped ZnO/Carbon Dot (N-ZnO/CD) Nanocomposites Derived from Organic Soybean. ACS Omega 2023, 8, 14965–14984. [Google Scholar] [CrossRef]
- Rajamanickam, D.; Shanthi, M. Photocatalytic Degradation of an Organic Pollutant by Zinc Oxide—Solar Process. Arab. J. Chem. 2016, 9, S1858–S1868. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2: A Review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef]
- Jida, S.M.; Zerefa, E.A. Preparation and Photocatalysis of ZnO/Bentonite Based on Adsorption and Photocatalytic Activity. Mater. Res. Express 2023, 10, 035502. [Google Scholar] [CrossRef]
- Gul, T.; Khan, I.; Ahmad, B.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Abdulaziz, O.; Alsharif, A.; Khan, I.; Saeed, K. Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities. Heliyon 2023, 9, e16738. [Google Scholar] [CrossRef]
- Saeed, M.; Akram, N.; Atta-ul-Haq; Naqvi, S.A.R.; Usman, M.; Abbas, M.A.; Adeel, M.; Nisar, A. Green and Eco-Friendly Synthesis of Co3O4 and Ag-Co3O4: Characterization and Photo-Catalytic Activity. Green Process. Synth. 2019, 8, 382–390. [Google Scholar] [CrossRef]
- Magar, M.H.; Adole, V.A.; Waghchaure, R.H.; Pawar, T.B. Efficient Photocatalytic Degradation of Eosin Blue Dye and Antibacterial Study Using Nanostructured Zinc Oxide and Nickel Modified Zinc Oxide. Results Chem. 2022, 4, 100537. [Google Scholar] [CrossRef]
- Xu, Z.; Zada, N.; Habib, F.; Ullah, H.; Hussain, K.; Ullah, N.; Bibi, M.; Bibi, M.; Ghani, H.; Khan, S.; et al. Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles. Molecules 2023, 28, 6241. [Google Scholar] [CrossRef]
- Tran, H.D.; Nguyen, D.Q.; Do, P.T.; Tran, U.N.P. Kinetics of Photocatalytic Degradation of Organic Compounds: A Mini-Review and New Approach. RSC Adv. 2023, 13, 16915–16925. [Google Scholar] [CrossRef]
- Zhan, X.; Yan, C.; Zhang, Y.; Rinke, G.; Rabsch, G.; Klumpp, M.; Schäfer, A.I.; Dittmeyer, R. Investigation of the Reaction Kinetics of Photocatalytic Pollutant Degradation under Defined Conditions with Inkjet-Printed TiO2 Films—From Batch to a Novel Continuous-Flow Microreactor. React. Chem. Eng. 2020, 5, 1658–1670. [Google Scholar] [CrossRef]
- Nasrallah, N.; Kebir, M.; Koudri, Z.; Trari, M. Photocatalytic Reduction of Cr(VI) on the Novel Hetero-System CuFe2O4/CdS. J. Hazard. Mater. 2011, 185, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Rini, N.P.; Istiqomah, N.I.; Sunarta; Suharyadi, E. Enhancing Photodegradation of Methylene Blue and Reusability Using CoO/ZnO Composite Nanoparticles. Case Stud. Chem. Environ. Eng. 2023, 7, 100301. [Google Scholar] [CrossRef]
- Fernández, A.; Lassaletta, G.; Jiménez, V.M.; Justo, A.; González-Elipe, A.R.; Herrmann, J.-M.; Tahiri, H.; Ait-Ichou, Y. Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quartz and Stainless Steel, Comparative Studies of Photocatalytic Activity in Water Purification. Appl. Catal. B Environ. 1995, 7, 49–63. [Google Scholar] [CrossRef]
- Uribe-López, M.C.; Hidalgo-López, M.C.; López-González, R.; Frías-Márquez, D.M.; Núñez-Nogueira, G.; Hernández-Castillo, D.; Alvarez-Lemus, M.A. Photocatalytic Activity of ZnO Nanoparticles and the Role of the Synthesis Method on Their Physical and Chemical Properties. J. Photochem. Photobiol. A Chem. 2021, 404, 112866. [Google Scholar] [CrossRef]
- Zambrano, J.; García-Encina, P.A.; Jiménez, J.J.; López-Serna, R.; Irusta-Mata, R. Photolytic and Photocatalytic Removal of a Mixture of Four Veterinary Antibiotics. J. Water Process. Eng. 2022, 48, 102841. [Google Scholar] [CrossRef]
- Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In Vitro Antioxidant and Antidiabetic Activities of Zinc Oxide Nanoparticles Synthesized Using Different Plant Extracts. Bioprocess. Biosyst. Eng. 2017, 40, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Shabbir Awan, S.; Taj Khan, R.; Mehmood, A.; Hafeez, M.; Rizwan Abass, S.; Nazir, M.; Raffi, M. Ailanthus Altissima Leaf Extract Mediated Green Production of Zinc Oxide (ZnO) Nanoparticles for Antibacterial and Antioxidant Activity. Saudi J. Biol. Sci. 2023, 30, 103487. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ali, S.; Abbas, M.; Fazal, H.; Saqib, S.; Ali, A.; Ullah, Z.; Zaman, S.; Sawati, L.; Zada, A.; et al. Antimicrobial Efficacy of Mentha Piperata-Derived Biogenic Zinc Oxide Nanoparticles against UTI-Resistant Pathogens. Sci. Rep. 2023, 13, 14972. [Google Scholar] [CrossRef]
- Batool, S.; Hasan, M.; Dilshad, M.; Zafar, A.; Tariq, T.; Wu, Z.; Chen, R.; Gul Hassan, S.; Munawar, T.; Iqbal, F.; et al. Green Synthesis of Cordia Myxa Incubated ZnO, Fe2O3, and Co3O4 Nanoparticle: Characterization, and Their Response as Biological and Photocatalytic Agent. Adv. Powder Technol. 2022, 33, 103780. [Google Scholar] [CrossRef]
- Arumugam, V.; Subramaniam, S.; Krishnan, V. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Berberis Tinctoria Lesch. leaves and fruits extract of multi-biological applications. Nanomed. Res. J. 2021, 6, 128–147. [Google Scholar] [CrossRef]
- Yagoub, A.E.A.; Al-Shammari, G.M.; Al-Harbi, L.N.; Subash-Babu, P.; Elsayim, R.; Mohammed, M.A.; Yahya, M.A.; Fattiny, S.Z.A. Antimicrobial Properties of Zinc Oxide Nanoparticles Synthesized from Lavandula Pubescens Shoot Methanol Extract. Appl. Sci. 2022, 12, 11613. [Google Scholar] [CrossRef]
- Mahmure, Ü.Ö.; Özgür, D.; Melda, A.Y. Investigation of Antibacterial and Photo Catalytic Efficiency of Green ZnO Nanoparticles That Synthesized with Celosia Cristata Flower Extract. Turk. J. Chem. 2021, 46, 59–85. [Google Scholar] [CrossRef]
- Umavathi, S.; Mahboob, S.; Govindarajan, M.; Al-Ghanim, K.A.; Ahmed, Z.; Virik, P.; Al-Mulhm, N.; Subash, M.; Gopinath, K.; Kavitha, C. Green Synthesis of ZnO Nanoparticles for Antimicrobial and Vegetative Growth Applications: A Novel Approach for Advancing Efficient High Quality Health Care to Human Wellbeing. Saudi J. Biol. Sci. 2021, 28, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, L.; Wen, D.; Ding, Y. Role of Physical and Chemical Interactions in the Antibacterial Behavior of ZnO Nanoparticles against E. Coli. Mater. Sci. Eng. C 2016, 69, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, B.; Cormier, S.A. Copper Oxide Nanoparticles Induce Oxidative Stress and Cytotoxicity in Airway Epithelial Cells. Toxicol. Vitr. 2009, 23, 1365–1371. [Google Scholar] [CrossRef]
- Li, D.; Ding, Z.; Du, K.; Ye, X.; Cheng, S. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. Oxid. Med. Cell. Longev. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Ong, K.S.; Cheow, Y.L.; Lee, S.M. The Role of Reactive Oxygen Species in the Antimicrobial Activity of Pyochelin. J. Adv. Res. 2017, 8, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Syed-Ab-Rahman, S.F.; Arkhipov, A.; Wass, T.J.; Xiao, Y.; Carvalhais, L.C.; Schenk, P.M. Rhizosphere Bacteria Induce Programmed Cell Death Defence Genes and Signalling in Chilli Pepper. J. Appl. Microbiol. 2022, 132, 3111–3124. [Google Scholar] [CrossRef]
- Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological Impact Studies Based on Escherichia Coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006, 6, 866–870. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Cellular Uptake and Mutagenic Potential of Metal Oxide Nanoparticles in Bacterial Cells. Chemosphere 2011, 83, 1124–1132. [Google Scholar] [CrossRef]
- Singh, R.; Cheng, S.; Singh, S. Oxidative Stress-Mediated Genotoxic Effect of Zinc Oxide Nanoparticles on Deinococcus Radiodurans. 3 Biotech. 2020, 10, 66. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO2 Nanoparticles Induce Oxidative Stress and DNA Damage Leading to Reduced Viability of Escherichia Coli. Free Radic. Biol. Med. 2011, 51, 1872–1881. [Google Scholar] [CrossRef]
- Jones, R.M.; Wu, H.; Wentworth, C.; Luo, L.; Collier-Hyams, L.; Neish, A.S. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe 2008, 3, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Stuehr, D.J. Soluble Guanylyl Cyclase Requires Heat Shock Protein 90 for Heme Insertion during Maturation of the NO-Active Enzyme. Proc. Natl. Acad. Sci. USA 2012, 109, 12998–13003. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, H.; Belhadj, A.-E.; Hamitouche, A.-E. Prediction of the Bicarbonate Amount in Drinking Water in the Region of Médéa Using Artificial Neural Network Modelling. Kem. U Ind. Časopis Kemičara Kem. Inženjera Hrvat. 2020, 69, 595–602. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Moula, N.; Bouranene, S.; Amrane, A. Optimisation and Prediction of the Coagulant Dose for the Elimination of Organic Micropollutants Based on Turbidity. Kem. U Ind. 2021, 70, 675–691. [Google Scholar] [CrossRef]
- Khan, A.U.R.; Khan, S.U.R.; Al-Mohaimeed, A.M.; Al-onazi, W.A.; Chen, T.-W.; Imran, M. Green Mediated Approach to Investigate the Optical, Structural, Photocatalytic, Magnetic and Dielectric Properties of Cr3+ Doped ZnO Nanoparticles for Energy Applications. Ceram. Int. 2024, 50, 42809–42817. [Google Scholar] [CrossRef]
- Goudjil, M.B.; Zighmi, S.; Hamada, D.; Mahcene, Z.; Bencheikh, S.E.; Ladjel, S. Biological Activities of Essential Oils Extracted from Thymus Capitatus (Lamiaceae). South Afr. J. Bot. 2020, 128, 274–282. [Google Scholar] [CrossRef]
- Mousavi-Khattat, M.; Keyhanfar, M.; Razmjou, A. A Comparative Study of Stability, Antioxidant, DNA Cleavage and Antibacterial Activities of Green and Chemically Synthesized Silver Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1022–1031. [Google Scholar] [CrossRef]
- Islam, M.F.; Islam, S.; Miah, M.A.S.; Huq, A.K.O.; Saha, A.K.; Mou, Z.J.; Mondol, M.M.H.; Bhuiyan, M.N.I. Green Synthesis of Zinc Oxide Nano Particles Using Allium Cepa L. Waste Peel Extracts and Its Antioxidant and Antibacterial Activities. Heliyon 2024, 10, e25430. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Triki, Z.; Boudellal, N.R.; Seder, S.; Amrane, A.; Zhang, J.; Moula, N.; Tifoura, A.; Ferhat, R. Mixed Coagulant-Flocculant Optimization for Pharmaceutical Effluent Pretreatment Using Response Surface Methodology and Gaussian Process Regression. Process Saf. Environ. Prot. 2023, 169, 909–927. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Amrane, A.; Houssein, E.H. Predicting the Concentration of Sulfate Using Machine Learning Methods. Earth Sci. Inform. 2022, 15, 1–22. [Google Scholar] [CrossRef]
- Bouchelkia, N.; Tahraoui, H.; Amrane, A.; Belkacemi, H.; Bollinger, J.-C.; Bouzaza, A.; Zoukel, A.; Zhang, J.; Mouni, L. Jujube Stones Based Highly Efficient Activated Carbon for Methylene Blue Adsorption: Kinetics and Isotherms Modeling, Thermodynamics and Mechanism Study, Optimization via Response Surface Methodology and Machine Learning Approaches. Process Saf. Environ. Prot. 2023, 170, 513–535. [Google Scholar] [CrossRef]
- Mechati, S.; Zamouche, M.; Tahraoui, H.; Filali, O.; Mazouz, S.; Bouledjemer, I.N.E.; Toumi, S.; Triki, Z.; Amrane, A.; Kebir, M. Modeling and Optimization of Hybrid Fenton and Ultrasound Process for Crystal Violet Degradation Using AI Techniques. Water 2023, 15, 4274. [Google Scholar] [CrossRef]
- Smara, M.; Khalladi, R.; Moulai-Mostefa, N.; Madi, K.; Mansour, D.; Lekmine, S.; Benslama, O.; Tahraoui, H.; Zhang, J.; Amrane, A. Efficiency of Hydrogen Peroxide and Fenton Reagent for Polycyclic Aromatic Hydrocarbon Degradation in Contaminated Soil: Insights from Experimental and Predictive Modeling. Processes 2024, 12, 621. [Google Scholar] [CrossRef]
- Hamri, N.; Imessaoudene, A.; Hadadi, A.; Cheikh, S.; Boukerroui, A.; Bollinger, J.-C.; Amrane, A.; Tahraoui, H.; Tran, H.N.; Ezzat, A.O. Enhanced Adsorption Capacity of Methylene Blue Dye onto Kaolin through Acid Treatment: Batch Adsorption and Machine Learning Studies. Water 2024, 16, 243. [Google Scholar] [CrossRef]
- Nedjhioui, M.; Nasrallah, N.; Kebir, M.; Tahraoui, H.; Bouallouche, R.; Assadi, A.A.; Amrane, A.; Jaouadi, B.; Zhang, J.; Mouni, L. Designing an Efficient Surfactant–Polymer–Oil–Electrolyte System: A Multi-Objective Optimization Study. Processes 2023, 11, 1314. [Google Scholar] [CrossRef]
- Tahraoui, H.; Amrane, A.; Belhadj, A.-E.; Zhang, J. Modeling the Organic Matter of Water Using the Decision Tree Coupled with Bootstrap Aggregated and Least-Squares Boosting. Environ. Technol. Innov. 2022, 27, 102419. [Google Scholar] [CrossRef]
- Kebir, M.; Benramdhan, I.-K.; Nasrallah, N.; Tahraoui, H.; Bait, N.; Benaissa, H.; Ameraoui, R.; Zhang, J.; Assadi, A.A.; Mouni, L. Surface Response Modeling of Homogeneous Photo Fenton Fe (III) and Fe (II) Complex for Sunlight Degradation and Mineralization of Food Dye. Catal. Commun. 2023, 183, 106780. [Google Scholar] [CrossRef]
- Yahoum, M.M.; Toumi, S.; Hentabli, S.; Tahraoui, H.; Lefnaoui, S.; Hadjsadok, A.; Amrane, A.; Kebir, M.; Moula, N.; Assadi, A.A. Experimental Analysis and Neural Network Modeling of the Rheological Behavior of Xanthan Gum and Its Derivatives. Materials 2023, 16, 2565. [Google Scholar] [CrossRef] [PubMed]
- Zamouche, M.; Tahraoui, H.; Laggoun, Z.; Mechati, S.; Chemchmi, R.; Kanjal, M.I.; Amrane, A.; Hadadi, A.; Mouni, L. Optimization and Prediction of Stability of Emulsified Liquid Membrane (ELM): Artificial Neural Network. Processes 2023, 11, 364. [Google Scholar] [CrossRef]
- Zamouche, M.; Chermat, M.; Kermiche, Z.; Tahraoui, H.; Kebir, M.; Bollinger, J.-C.; Amrane, A.; Mouni, L. Predictive Model Based on K-Nearest Neighbor Coupled with the Gray Wolf Optimizer Algorithm (KNN_GWO) for Estimating the Amount of Phenol Adsorption on Powdered Activated Carbon. Water 2023, 15, 493. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Hamitouche, A.; Bouhedda, M.; Amrane, A. Predicting the Concentration of Sulfate (So42−) in Drinking Water Using Artificial Neural Networks: A Case Study: Médéa-Algeria. Desalination Water Treat. 2021, 217, 181–194. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Bouzaza, A.; Amrane, A.; Tahraoui, H.; Mouni, L. Aleppo Pine Seeds (Pinus halepensis Mill.) as a Promising Novel Green Coagulant for the Removal of Congo Red Dye: Optimization via Machine Learning Algorithm. J. Environ. Manag. 2023, 331, 117286. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, H.; Toumi, S.; Hassein-Bey, A.H.; Bousselma, A.; Sid, A.N.E.H.; Belhadj, A.-E.; Triki, Z.; Kebir, M.; Amrane, A.; Zhang, J. Advancing Water Quality Research: K-Nearest Neighbor Coupled with the Improved Grey Wolf Optimizer Algorithm Model Unveils New Possibilities for Dry Residue Prediction. Water 2023, 15, 2631. [Google Scholar] [CrossRef]
Sample | Frequency (cm−1) | Vibration Mode |
---|---|---|
ZnO (würtzite) | 100 | E2 |
240 | B1 | |
422 | E1(TO) | |
437 | E2 | |
540 | B1 | |
575 | E1(LO) | |
686 | A1(LO) |
C (mg L−1) | Kapp (min−1) | t1/2 (min) | R2 | KC (L mg−1) | KH (mg L−1 min−1) | θ |
---|---|---|---|---|---|---|
10 | 0.0036 | 192.54 | 0.9417 | 6.632 × 10−2 | 7.104 × 10−2 | 3.587 × 10−3 |
20 | 0.0017 | 407.73 | 0.9921 | 1.697 × 10−3 | ||
30 | 0.0014 | 495.105 | 0.9884 | 1.398 × 10−3 | ||
40 | 0.0012 | 577.62 | 0.9971 | 1.198 × 10−3 | ||
50 | 0.0011 | 630.13 | 0.9457 | 1.098 × 10−3 |
Bacterial Strains | Diameters of Growth Inhibition Zones [mm] at Different Concentrations [mg mL−1] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ZnO-NPs | Gentamicin | AcZn | ||||||||
1.25 | 2.5 | 5 | 10 | 25 | 50 | 75 | 100 | 1 | 5 | |
S. aureus | 13 | 15 | 18 | 20 | 17 | 19 | 17 | 22 | 30 | 34 |
B. subtilis | 13 | 13 | 15 | 16 | 15 | 20 | 20 | 20 | 36 | 32 |
L. monocytogenes | 10 SZ * | 10 SZ * | 8.5 | 10 | 12 | 14 | 16.5 | 18.5 | 28 | 30 |
E. coli | <6 | <6 | <6 | <6 | 9 | 12 | 11 | 13 | 28 | 30 |
P. aeruginosa | <6 | <6 | <6 | <6 | <6 | <6 | <6 | <6 | 34 | 12 |
Kernel Function | Basis Function | Kernel Scale | Sigma | R | RMSE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SigmaM | SigmaF | Train | Test | Val | ALL | Train | Test | Val | ALL | |||
ARD- Exponential | Constant | 1.0374 | 4.1118 | 0.2500 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.0160 | 0.0250 | 0.0244 | 0.0179 |
7.8652 | ||||||||||||
6.9035 | ||||||||||||
5.2877 |
Agent Search Number: 50 Number of Iterations: 100 | |
---|---|
Concentration of QY: 15 mg L−1 | |
Optimal condition | X1 = 300 min, X2 = 15 mg L−1, X3 = 0.3 g, and X4 = 9 |
Predicted QY photodegradation rate | 98.1428% |
Experimental QY photodegradation rate | 98.1316% |
Error | 0.0112% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelghoum, H.; Nasrallah, N.; Tahraoui, H.; Seleiman, M.F.; Bouhenna, M.M.; Belmeskine, H.; Zamouche, M.; Djema, S.; Zhang, J.; Mendil, A.; et al. Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models. Catalysts 2024, 14, 831. https://doi.org/10.3390/catal14110831
Chelghoum H, Nasrallah N, Tahraoui H, Seleiman MF, Bouhenna MM, Belmeskine H, Zamouche M, Djema S, Zhang J, Mendil A, et al. Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models. Catalysts. 2024; 14(11):831. https://doi.org/10.3390/catal14110831
Chicago/Turabian StyleChelghoum, Hayet, Noureddine Nasrallah, Hichem Tahraoui, Mahmoud F. Seleiman, Mustapha Mounir Bouhenna, Hayet Belmeskine, Meriem Zamouche, Souhila Djema, Jie Zhang, Amina Mendil, and et al. 2024. "Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models" Catalysts 14, no. 11: 831. https://doi.org/10.3390/catal14110831
APA StyleChelghoum, H., Nasrallah, N., Tahraoui, H., Seleiman, M. F., Bouhenna, M. M., Belmeskine, H., Zamouche, M., Djema, S., Zhang, J., Mendil, A., Dergal, F., Kebir, M., & Amrane, A. (2024). Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models. Catalysts, 14(11), 831. https://doi.org/10.3390/catal14110831