Hydrogen Production Through Water Splitting Reactions Using Zn-Al-In Mixed Metal Oxide Nanocomposite Photocatalysts Induced by Visible Light
Abstract
:1. Introduction
2. Results
2.1. Crystalline Structure
2.2. Fourier Transform Infrared Spectroscopy
2.3. Elemental Chemical Composition
2.4. Scanning Electron Microscopy (SEM) and Elemental Mapping (XEDS)
2.5. High-Resolution Transmission Electron Microscopy (HRTEM)
2.6. Diffuse Reflectance Spectroscopy
2.7. N2 Adsorption-Desorption
2.8. Photoelectrochemical Characterization
2.9. Photocatalytic H2 Production
3. Discussion
4. Materials and Methods
4.1. Synthesis Procedure
4.2. Characterization Techniques
4.3. Photoelectrochemical Tests
4.4. Photocatalytic Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Gradisher, L.; Dutcher, B.; Fan, M. Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl. Energy 2015, 139, 335–349. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. Development and assessment of a novel integrated nuclear plant for electricity and hydrogen production. Energy Convers. Manag. 2017, 134, 221–234. [Google Scholar] [CrossRef]
- Ipsakis, D.; Kraia, T.; Marnellos, G.; Ouzounidou, M.; Voutetakis, S.; Dittmeyer, R.; Dubbe, A.; Haas-Santo, K.; Konsolakis, M.; Figen, H.; et al. An electrocatalytic membrane-assisted process for hydrogen production from H2S in Black Sea: Preliminary results. Int. J. Hydrogen Energy 2015, 40, 7530–7538. [Google Scholar] [CrossRef]
- Guo, K.; Prévoteau, A.; Rabaey, K. A novel tubular microbial electrolysis cell for high rate hydrogen production. J. Power Sources 2017, 356, 484–490. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef]
- Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef]
- Sreethawong, T.; Suzuki, Y.; Yoshikawa, S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template. Int. J. Hydrogen Energy 2005, 30, 1053–1062. [Google Scholar] [CrossRef]
- Lin, L.; Hisatomi, T.; Chen, S.; Takata, T.; Domen, K. Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends Chem. 2020, 2, 813–824. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Chapter One-Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. In Advances in Catalysis; Song, C., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 60, pp. 1–57. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.; Christopher, P. Chemical Production Using Light: Are Sustainable Photons Cheap Enough? ACS Energy Lett. 2022, 7, 880–884. [Google Scholar] [CrossRef]
- Oros-Ruiz, S.; Zanella, R.; López, R.; Hernández-Gordillo, A.; Gómez, R. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea. J. Hazard. Mater. 2013, 263, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J.; Aguilar-Martínez, O.; Piña-Pérez, Y.; Pérez-Hernández, R.; Santolalla-Vargas, C.; Gómez, R.; Tzompantzi, F. Efficient ZnS–ZnO/ZnAl-LDH composite for H2 production by photocatalysis. Renew. Energy 2020, 145, 124–132. [Google Scholar] [CrossRef]
- Kawawaki, T.; Kawachi, M.; Yazaki, D.; Akinaga, Y.; Hirayama, D.; Negishi, Y. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. Nanomaterials 2022, 12, 344. [Google Scholar] [CrossRef]
- Seftel, E.M.; Niarchos, M.; Vordos, N.; Nolan, J.W.; Mertens, M.; Mitropoulos, A.C.; Vansant, E.F.; Cool, P. LDH and TiO2/LDH-type nanocomposite systems: A systematic study on structural characteristics. Microporous Mesoporous Mater. 2015, 203, 208–215. [Google Scholar] [CrossRef]
- Suárez-Quezada, M.; Romero-Ortiz, G.; Samaniego-Benítez, J.; Suárez, V.; Mantilla, A. H2 production by the water splitting reaction using photocatalysts derived from calcined ZnAl LDH. Fuel 2019, 240, 262–269. [Google Scholar] [CrossRef]
- Xie, Z.-H.; Zhou, H.-Y.; He, C.-S.; Pan, Z.-C.; Yao, G.; Lai, B. Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chem. Eng. J. 2021, 414, 128713. [Google Scholar] [CrossRef]
- Mantilla, A.; Tzompantzi, F.; Fernández-Muñoz, J.L.; Góngora, J.D.; Mendoza, G.; Gomez, R. Photodegradation of 2,4-dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts. Catal. Today 2009, 148, 119–123. [Google Scholar] [CrossRef]
- Rodriguez-Rivas, F.; Pastor, A.; Barriga, C.; Cruz-Yusta, M.; Sánchez, L.; Pavlovic, I. Zn-Al layered double hydroxides as efficient photocatalysts for NOx abatement. Chem. Eng. J. 2018, 346, 151–158. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, B.; Qiu, Y.; He, L.; Chen, Y.; Gao, B. Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets. Int. J. Hydrogen Energy 2015, 40, 4758–4765. [Google Scholar] [CrossRef]
- Ozin, G. Accelerated optochemical engineering solutions to CO2 photocatalysis for a sustainable future. Matter 2022, 5, 2594–2614. [Google Scholar] [CrossRef]
- Poznyak, S.; Golubev, A.; Kulak, A. Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders. Surf. Sci. 2000, 454–456, 396–401. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.; Wang, L. Hierarchical In(OH)3/ZnAlIn-LDHs nanocomposite with extremely low detection limit for NO2 sensing. J. Mater. Sci. Mater. Electron. 2019, 30, 19552–19560. [Google Scholar] [CrossRef]
- Fan, G.; Sun, W.; Wang, H.; Li, F. Visible-light-induced heterostructured Zn–Al–In mixed metal oxide nanocomposite photocatalysts derived from a single precursor. Chem. Eng. J. 2011, 174, 467–474. [Google Scholar] [CrossRef]
- Parida, K.; Baliarsingh, N.; Patra, B.S.; Das, J. Copperphthalocyanine immobilized Zn/Al LDH as photocatalyst under solar radiation for decolorization of methylene blue. J. Mol. Catal. A Chem. 2007, 267, 202–208. [Google Scholar] [CrossRef]
- Fan, X.; Yang, Z.; Wen, R.; Yang, B.; Long, W. The application of Zn–Al-hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J. Power Sources 2013, 224, 80–85. [Google Scholar] [CrossRef]
- Panneerdoss, I.J.; Jeyakumar, S.J.; Ramalingam, S.; Jothibas, M. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV–Visible investigation and optical analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 147, 1–13. [Google Scholar] [CrossRef]
- Chen, Z.; Dinh, H.N.; Miller, E. Springer Briefs in Energy. Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols. Available online: http://www.springer.com/series/8903 (accessed on 10 September 2024).
- Montanari, T.; Sisani, M.; Nocchetti, M.; Vivani, R.; Delgado, M.C.H.; Ramis, G.; Busca, G.; Costantino, U. Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catal. Today 2010, 152, 104–109. [Google Scholar] [CrossRef]
- Nagendra, B.; Rosely, C.V.S.; Leuteritz, A.; Reuter, U.; Gowd, E.B. Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene. ACS Omega 2017, 2, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Piña-Pérez, Y.; Aguilar-Martínez, O.; Acevedo-Peña, P.; Santolalla-Vargas, C.; Oros-Ruíz, S.; Galindo-Hernández, F.; Gómez, R.; Tzompantzi, F. Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent. Appl. Catal. B Environ. 2018, 230, 125–134. [Google Scholar] [CrossRef]
- Lan, M.; Fan, G.; Sun, W.; Li, F. Synthesis of hybrid Zn–Al–In mixed metal oxides/carbon nanotubes composite and enhanced visible-light-induced photocatalytic performance. Appl. Surf. Sci. 2013, 282, 937–946. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Boumeriame, H.; Da Silva, E.S.; Cherevan, A.S.; Chafik, T.; Faria, J.L.; Eder, D. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. J. Energy Chem. 2022, 64, 406–431. [Google Scholar] [CrossRef]
- Aguilar, O.; Tzompantzi, F.; Pérez-Hernández, R.; Gómez, R.; Hernández-Gordillo, A. Novel preparation of ZnS from Zn5(CO3)2(OH)6 by the hydro- or solvothermal method for H2 production. Catal. Today 2017, 287, 91–98. [Google Scholar] [CrossRef]
Sample | Atomic % | Zn/Al | In/(Al + In) | ||||
---|---|---|---|---|---|---|---|
Zn | Al | O | C | In | |||
ZnAl-C | 25.02 | 8.08 | 31.57 | 35.33 | ---- | 3.09 | 0 |
ZnAlIn-0.3-C | 42.13 | 13.09 | 27.77 | 9.96 | 7.05 | 3.22 | 0.35 |
ZnAlIn-0.5-C | 45.05 | 14.70 | 19.88 | 4.38 | 15.99 | 3.06 | 0.52 |
ZnAlIn-0.7-C | 50.07 | 14.89 | 10.13 | 1.04 | 23.87 | 3.36 | 0.62 |
Sample | Zn/Al Molar Ratio | In/(Al + In) Molar Ratio | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | Band Gap (eV) |
---|---|---|---|---|---|---|
ZnAl-C | 3.12 | 0 | 34.19 | 0.06 | 8.17 | 3.45 |
ZnAlIn-0.3-C | 3.30 | 0.26 | 73.23 | 0.16 | 10.12 | 2.91 |
ZnAlIn-0.5-C | 2.77 | 0.49 | 80.16 | 0.25 | 12.15 | 2.77 |
ZnAlIn-0.7-C | 3.45 | 0.64 | 66.53 | 0.10 | 9.73 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Quezada, M.; Suárez-Quezada, V.M.; Tobola-Inchaurregui, F.; Oros-Ruiz, S.; Cipagauta-Díaz, S. Hydrogen Production Through Water Splitting Reactions Using Zn-Al-In Mixed Metal Oxide Nanocomposite Photocatalysts Induced by Visible Light. Catalysts 2024, 14, 835. https://doi.org/10.3390/catal14110835
Suárez-Quezada M, Suárez-Quezada VM, Tobola-Inchaurregui F, Oros-Ruiz S, Cipagauta-Díaz S. Hydrogen Production Through Water Splitting Reactions Using Zn-Al-In Mixed Metal Oxide Nanocomposite Photocatalysts Induced by Visible Light. Catalysts. 2024; 14(11):835. https://doi.org/10.3390/catal14110835
Chicago/Turabian StyleSuárez-Quezada, Monserrat, Víctor Manuel Suárez-Quezada, Fernando Tobola-Inchaurregui, Socorro Oros-Ruiz, and Sandra Cipagauta-Díaz. 2024. "Hydrogen Production Through Water Splitting Reactions Using Zn-Al-In Mixed Metal Oxide Nanocomposite Photocatalysts Induced by Visible Light" Catalysts 14, no. 11: 835. https://doi.org/10.3390/catal14110835
APA StyleSuárez-Quezada, M., Suárez-Quezada, V. M., Tobola-Inchaurregui, F., Oros-Ruiz, S., & Cipagauta-Díaz, S. (2024). Hydrogen Production Through Water Splitting Reactions Using Zn-Al-In Mixed Metal Oxide Nanocomposite Photocatalysts Induced by Visible Light. Catalysts, 14(11), 835. https://doi.org/10.3390/catal14110835