CO Oxidation over Cu/Ce Binary Oxide Prepared via the Solvothermal Method: Effects of Cerium Precursors on Properties and Catalytic Behavior
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Thermal Decomposition of Catalyst Precursors
2.2. Characterization of Catalysts
2.2.1. Structural and Textural Properties
2.2.2. Surface Characterization (XPS)
2.2.3. CO-IR Analysis
2.2.4. Reducibility of Catalyst (H2-TPR)
2.3. Reaction Performance of Catalysts
2.3.1. Activity of Catalysts
2.3.2. Kinetic Test of Catalysts
2.3.3. Correlation Between Physicochemical Properties and Catalytic Activity
- (1)
- Generally speaking, the larger specific surface area and pore volume of catalysts can provide more active sites for adsorption and activation of reactants, which is conducive to the improvement of catalytic activity [53,54]. N2 adsorption/desorption characterization results (Table 1) indicated that the specific surface area and pore volume of CC-N were significantly larger than those of CC-NH, so the higher activity of CC-N (Figure 7 and Table 4) could be attributed to its larger specific surface area and pore volume to some extent. To further assess the contribution of specific surface area to the catalytic activity, specific surface area-normalized CO conversion for CC-N and CC-NH were calculated and the results are shown in Figure S2. Clearly, the specific surface area-normalized CO conversion of both catalysts was not identical across the tested temperature range, suggesting that factors beyond specific surface area alone contribute to the catalytic activity.
- (2)
- The adsorption of CO on Cu+ species within the CuO/CeO2 catalyst is widely recognized as a crucial step in the CO oxidation reaction. Thus, an increased presence of Cu+ on the catalyst surface enhances CO adsorption, which, in turn, boosts catalytic activity [41,45]. Additionally, highly dispersed CuO species indirectly contribute to this process by serving as precursors to active Cu+ sites. Through interaction with CeO2, these CuO species facilitate both the formation and stabilization of Cu+, thereby enhancing overall catalytic performance [24,29,33]. Based on the TPR characterization results (Table 3), the amount of highly dispersed CuO in CC-N was substantially higher than in CC-NH, favoring Cu+ formation. The data in Table 2, alongside in situ DRIFT analysis results shown in Figure 5, further confirm that CC-N had a higher concentration of Cu+ species on its surface, which accounted for its superior catalytic activity.
- (3)
- According to the mechanism of CO oxidation reaction on CuO/CeO2 catalyst (CO adsorbed by Cu+ reacts with oxygen species on the catalyst surface to generate CO2 [55,56]) it can be inferred that the CO oxidation activity of CuO/CeO2 catalyst may be related to the number and reactivity of oxygen species on the catalyst surface. Therefore, the higher activity of CC-N can be attributed to the higher amount oxygen species on its surface, which were evidenced by the results obtained from XPS analysis (Figure 4 and Table 2).
2.3.4. Anti-Toxicity of Catalysts
3. Experimental Section
3.1. Catalyst Preparation
- (1)
- Materials
- (2)
- Synthesis
3.2. Catalyst Characterization
3.3. Evaluation of Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, C.L.; Liu, X.L.; Zhu, T.Y.; Tian, M.K. Catalytic oxidation of CO on noble metal-based catalysts. Environ. Sci. Pollut. Res. 2021, 28, 24847–24871. [Google Scholar] [CrossRef] [PubMed]
- Ghiassee, M.; Rezaei, M.; Meshkani, F.; Mobini, S. Preparation of the Mn/Co mixed oxide catalysts for low-temperature CO oxidation reaction. Environ. Sci. Pollut. Res. 2020, 28, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L.; Mao, D.S.; Sun, S.S.; Fu, G.Y. Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO2 catalysts. J. Mater. Sci. 2016, 51, 917–925. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.M.; Mao, D.S.; Yu, J.; Zheng, Y.L.; Guo, X.M.; Ma, Z. Facile cyclodextrin-assisted synthesis of highly active CuO-CeO2/MCF catalyst for CO oxidation. J. Taiwan Inst. Chem. Eng. 2020, 113, 16–26. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, X.H.; Shao, Q.; Xu, B.W.; Liang, X.Y.; Long, C. Nonthermal plasma-assisted catalytic oxidation of carbon monoxide over CuOx@γ-Al2O3: Understanding plasma modification of catalysts and plasma-catalyst synergy. J. Phys. Chem. C 2019, 123, 16721–16730. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, L.L.; Chen, M.D.; Lian, X.B.; Wu, C.E.; Yang, B.; Miao, Z.C.; Wang, F.G.; Hu, X. Facilely fabricating mesoporous nanocrystalline Ce-Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catal. Sci. Technol. 2019, 9, 5605–5625. [Google Scholar] [CrossRef]
- Waikar, J.; Lavande, N.; More, R.; More, P. Improvement in low temperature CO oxidation activity of CuOx/CeO2−δ by Cs2O doping: Mechanistic aspects. Catal. Surv. Asia 2020, 24, 269–277. [Google Scholar] [CrossRef]
- Waikar, J.M.; More, R.K.; Lavande, N.R.; More, P.M. Lattice expansion and smaller CuOxCeO2−δ particles formation by magnesium interaction for low temperature CO oxidation. J. Rare Earths 2021, 39, 434–439. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X.L.; Xiao, P.; Zhu, J.J.; Liu, X.Y. Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation. Front. Chem. Sci. Eng. 2021, 15, 1524–1536. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wu, Z.; Peng, X.H.; Binder, A.; Chai, S.H.; Dai, S. Origin of active oxygen in a ternary CuOx/Co3O4-CeO2 catalyst for CO oxidation. J. Phys. Chem. C 2014, 118, 27870–27877. [Google Scholar] [CrossRef]
- Lin, J.; Guo, Y.F.; Chen, X.; Li, C.H.; Lu, S.X.; Liew, K.M. CO oxidation over nanostructured ceria supported bimetallic Cu-Mn oxides catalysts: Effect of Cu/Mn ratio and calcination temperature. Catal. Lett. 2018, 148, 181–193. [Google Scholar] [CrossRef]
- Ma, S.M.; Lu, G.Z.; Shen, Y.X.; Guo, Y.; Wang, Y.Q.; Guo, Y.L. Effect of Fe doping on the catalytic performance of CuO-CeO2 for low temperature CO oxidation. Catal. Sci. Technol. 2011, 1, 669–674. [Google Scholar] [CrossRef]
- Reddy, L.H.; Reddy, G.K.; Devaiah, D.; Reddy, B.M. A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2–MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation. Appl. Catal. A Gen. 2012, 445-446, 297–305. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, G.; Jang, M.G.; Noh, K.J.; Han, J.W. Rational design of transition metal Co-doped ceria catalysts for low-temperature CO oxidation. ChemCatChem 2019, 11, 2288–2296. [Google Scholar] [CrossRef]
- Cui, X.Z.; Wang, Y.X.; Chen, L.S.; Shi, J.L. Synergetic catalytic effects in tri-component mesostructured Ru-Cu-Ce oxide nanocomposite in CO oxidation. ChemCatChem 2014, 6, 2860–2871. [Google Scholar] [CrossRef]
- Cwele, T.; Mahadevaiah, N.; Singh, S.; Friedrich, H.B.; Yadav, A.K.; Jha, S.N.; Bhattacharyya, D.; Sahoo, N.K. CO oxidation activity enhancement of Ce0.95Cu0.05O2−δ induced by Pd co-substitution. Catal. Sci. Technol. 2016, 6, 8104–8116. [Google Scholar] [CrossRef]
- Wu, K.; Fu, X.P.; Yu, W.Z.; Wang, W.W.; Jia, C.J.; Du, P.P.; Si, R.; Wang, Y.H.; Li, L.D.; Zhou, L.; et al. Pt-embedded CuOx-CeO2 multicore-shell composites: Interfacial redox reaction-directed synthesis and composition-dependent performance for CO oxidation. ACS Appl. Mater. Interfaces 2018, 10, 34172–34183. [Google Scholar] [CrossRef]
- Yang, W.T.; Wang, X.; Song, S.Y.; Zhang, H.J. Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts. Chem 2019, 5, 1743–1774. [Google Scholar] [CrossRef]
- Du, Y.; Gao, F.Y.; Zhou, Y.S.; Yi, H.H.; Tang, X.L.; Qi, Z.Y. Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO. J. Environ. Chem. Eng. 2021, 9, 106372. [Google Scholar] [CrossRef]
- Sun, S.S.; Mao, D.S.; Yu, J. Enhanced CO oxidation activity of CuO/CeO2 catalyst prepared by surfactant-assisted impregnation method. J. Rare Earths 2015, 33, 1268–1274. [Google Scholar] [CrossRef]
- Gurbani, A.; Ayastuy, J.; Gonzalezmarcos, M.; Herrero, J.; Guil, J.; Gutierrezortiz, M. Comparative study of CuO-CeO2 catalysts prepared by wet impregnation and deposition-precipitation. Int. J. Hydrogen Energy 2009, 34, 547–553. [Google Scholar] [CrossRef]
- Jung, C.R.; Han, J.; Nam, S.W.; Lim, T.H.; Hong, S.A.; Lee, H.I. Selective oxidation of CO over CuO-CeO2 catalyst: Effect of calcination temperature. Catal. Today 2004, 93–95, 183–190. [Google Scholar] [CrossRef]
- Pu, Z.Y.; Liu, X.S.; Jia, A.P.; Xie, Y.L.; Lu, J.Q.; Luo, M.F. Enhanced activity for CO oxidation over Pr- and Cu-doped CeO2 catalysts: Effect of oxygen vacancies. J. Phys. Chem. C 2008, 112, 15045–15051. [Google Scholar] [CrossRef]
- Liu, Y.M.; Mao, D.S.; Yu, J.; Zheng, Y.L.; Guo, X.M. Facile preparation of highly active and stable CuO-CeO2 catalysts for low-temperature CO oxidation via a direct solvothermal method. Catal. Sci. Technol. 2020, 10, 8383–8395. [Google Scholar] [CrossRef]
- Cam, T.S.; Vishnevskaya, T.A.; Omarov, S.O.; Nevedomskiy, V.N.; Popkov, V.I. Urea-nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: The effect of Red/Ox ratio. J. Mater. Sci. 2020, 55, 11891–11906. [Google Scholar] [CrossRef]
- Pitman, C.L.; Pennington, A.M.; Brintlinger, T.H.; Barlow, D.E.; Esparraguera, L.F.; Stroud, R.M.; Pietron, J.J.; DeSario, P.A.; Rolison, D.R. Stabilization of reduced copper on ceria aerogels for CO oxidation. Nanoscale Adv. 2020, 2, 4547–4556. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhang, X.L.; Song, L.; Hou, F.L.; Yang, Y.Q.; Wang, Y.X.; Liu, N. Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: Effects of preparation methods. Int. J. Hydrogen Energy 2018, 43, 18279–18288. [Google Scholar] [CrossRef]
- Li, R.G.; Yang, Y.X.; Sun, N.; Kuai, L. Mesoporous Cu-Ce-Ox solid solutions from spray pyrolysis for superior low-temperature CO oxidation. Chem. Eur. J. 2019, 25, 15586–15593. [Google Scholar] [CrossRef]
- Shang, H.H.; Zhang, X.M.; Xu, J.; Han, Y.F. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation. Front. Chem. Sci. Eng. 2017, 11, 603–612. [Google Scholar] [CrossRef]
- Zhan, W.C.; Yang, S.Z.; Zhang, P.F.; Guo, Y.L.; Lu, G.Z.; Chisholm, M.F.; Dai, S. Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry. Chem. Mater. 2017, 29, 7323–7329. [Google Scholar] [CrossRef]
- Wang, J.; Pu, H.P.; Wan, G.P.; Chen, K.Z.; Lu, J.C.; Lei, Y.Q.; Zhong, L.P.; He, S.F.; Han, C.Y.; Luo, Y.M. Promoted the reduction of Cu2+ to enhance CuO-CeO2 catalysts for CO preferential oxidation in H2-rich streams: Effects of preparation methods and copper precursors. Int. J. Hydrogen Energy 2017, 42, 21955–21968. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, J.; Sun, J.; Zhang, J.; Li, C.; Lu, S. Precursor effects on catalytic behaviors of copper-manganese-cerium ternary oxides pellets for low-temperature CO oxidation. Catal. Lett. 2020, 150, 979–991. [Google Scholar] [CrossRef]
- Jin, W.; Liu, Y.M.; Yu, J.; Guo, X.M.; Mao, D.S. Effect of copper precursors on CO oxidation catalyzed by CuO-CeO2 prepared by solvothermal method. J. Rare Earths 2023, 41, 1953–1962. [Google Scholar] [CrossRef]
- Qi, L.; Yu, Q.; Dai, Y.; Tang, C.J.; Liu, L.J.; Zhang, H.L.; Gao, F.; Dong, L.; Chen, Y. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl. Catal. B Environ. 2012, 119–120, 308–320. [Google Scholar] [CrossRef]
- Wang, L.B.; Wang, D.Z.; Zhang, L.; Qing, S.J.; Han, J.; Zhang, C.S.; Gao, Z.X.; Zhang, H.J.; Feng, X.H. Influence of cerium sources on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol. J. Fuel Chem. Technol. 2020, 48, 852–859. [Google Scholar]
- Liu, Y.M.; Mao, D.S.; Yu, J.; Guo, X.M.; Ma, Z. Low-temperature CO oxidation on CuO-CeO2 catalyst prepared by facile one-step solvothermal synthesis: Improved activity and moisture resistance via optimizing the activation temperature. Fuel 2023, 332, 126196. [Google Scholar] [CrossRef]
- Hossain, S.T.; Azeeva, E.; Zhang, K.; Zell, E.T.; Bernard, D.T.; Balaz, S.; Wang, R. A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts. Appl. Surf. Sci. 2018, 455, 132–143. [Google Scholar] [CrossRef]
- Hu, C.Q. Enhanced catalytic activity and stability of Cu0.13Ce0.87Oy catalyst for acetone combustion: Effect of calcination temperature. Chem. Eng. J. 2010, 159, 129–137. [Google Scholar] [CrossRef]
- Song, X.Z.; Su, Q.F.; Li, S.J.; Liu, S.H.; Zhang, N.; Meng, Y.L.; Chen, X.; Tan, Z.Q. Triple-shelled CuO/CeO2 hollow nanospheres derived from metal-organic frameworks as highly efficient catalysts for CO oxidation. New J. Chem. 2019, 43, 16096–16102. [Google Scholar] [CrossRef]
- Fu, G.Y.; Mao, D.S.; Sun, S.S.; Yu, J.; Yang, Z.Q. Preparation, characterization and CO oxidation activity of Cu-Ce-Zr mixed oxide catalysts via facile dry oxalate-precursor synthesis. J. Ind. Eng. Chem. 2015, 31, 283–290. [Google Scholar] [CrossRef]
- Sun, S.S.; Mao, D.S.; Yu, J.; Yang, Z.Q.; Lu, G.Z.; Ma, Z. Low-temperature CO oxidation on CuO/CeO2 catalysts: The significant effect of copper precursor and calcination temperature. Catal. Sci. Technol. 2015, 5, 3166–3181. [Google Scholar] [CrossRef]
- Lu, J.H.; Zhong, J.P.; Ren, Q.M.; Li, J.Q.; Song, L.H.; Mo, S.P.; Zhang, M.Y.; Chen, P.R.; Fu, M.L.; Ye, D.Q. Construction of Cu-Ce interface for boosting toluene oxidation: Study of Cu-Ce interaction and intermediates identified by in situ DRIFTS. Chin. Chem. Lett. 2021, 32, 3435–3439. [Google Scholar] [CrossRef]
- Wang, L.; Peng, H.; Shi, S.L.; Hu, Z.; Zhang, B.Z.; Ding, S.M.; Wang, S.H.; Chen, C. Metal-organic framework derived hollow CuO/CeO2 nano-sphere: To expose more highly dispersed Cu-O-Ce interface for enhancing preferential CO oxidation. Appl. Surf. Sci. 2022, 573, 151611. [Google Scholar] [CrossRef]
- Li, W.; Hu, Y.; Jiang, H.; Jiang, N.; Bi, W.; Li, C. Litchi-peel-like hierarchical hollow copper-ceria microspheres: Aerosol-assisted synthesis and high activity and stability for catalytic CO oxidation. Nanoscale 2018, 10, 22775–22786. [Google Scholar] [CrossRef]
- Zhao, F.; Li, S.D.; Wu, X.F.; Yue, R.L.; Li, W.M.; Zha, X.C.; Deng, Y.Z.; Chen, Y.F. Catalytic behaviour of flame-made CuO-CeO2 nanocatalysts in efficient CO oxidation. Catalysts 2019, 9, 256–273. [Google Scholar] [CrossRef]
- Dong, L.H.; Tang, Y.X.; Li, B.; Zhou, L.Y.; Gong, F.Z.; He, H.X.; Sun, B.Z.; Tang, C.J.; Gao, F.; Dong, L. Influence of molar ratio and calcination temperature on the properties of TixSn1−xO2 supporting copper oxide for CO oxidation. Appl. Catal. B Environ. 2016, 180, 451–462. [Google Scholar] [CrossRef]
- Zhang, X.M.; Tian, P.F.; Tu, W.F.; Zhang, Z.Z.; Xu, J.; Han, Y.F. Tuning the dynamic iterfacial structure of copper-ceria catalysts by indium oxide during CO oxidation. ACS Catal. 2018, 8, 5261–5275. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhang, B.C.; Li, Y.; Xu, Y.D.; Xin, Q.; Shen, W.J. Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal. Today 2004, 93–95, 191–198. [Google Scholar] [CrossRef]
- Luo, M.F.; Ma, J.M.; Lu, J.Q.; Song, Y.P.; Wang, Y.J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. J. Catal. 2007, 246, 52–59. [Google Scholar] [CrossRef]
- Chen, G.Z.; Xu, Q.H.; Yang, Y.; Li, C.C.; Huang, T.Z.; Sun, G.X.; Zhang, S.X.; Ma, D.L.; Li, X. Facile and mild strategy to construct mesoporous CeO2-CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 23538–23544. [Google Scholar] [CrossRef]
- Luo, M.F.; Song, Y.P.; Lu, J.Q.; Wang, X.Y.; Pu, Z.Y. Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation. J. Phys. Chem. C 2007, 111, 12686–12692. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Andana, T.; Russo, N.; Pirone, R.; Fino, D. Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: From powder catalysts to structured reactors. Appl. Catal. B Environ. 2017, 205, 455–468. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Dong, F.; Han, W.L.; Zhao, H.J.; Tang, Z.C. Construction of Cu-Ce/graphene catalysts via a one-step hydrothermal method and their excellent CO catalytic oxidation performance. RSC Adv. 2018, 8, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.M.; Zeng, J.; Zhou, G.L. CeCu composite oxide for chlorophenol effective removal by heterogeneous catalytic wet peroxide oxidation. Environ. Sci. Pollut. Res. 2020, 27, 846–860. [Google Scholar] [CrossRef] [PubMed]
- Lykaki, M.; Pachatouridou, E.; Carabineiro, S.A.C.; Iliopoulou, E.; Andriopoulou, C.; Kallithrakas-Kontos, N.; Boghosian, S.; Konsolakis, M. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Appl. Catal. B Environ. 2018, 230, 18–28. [Google Scholar] [CrossRef]
- Zhang, X.; Su, L.F.; Kong, Y.L.; Ma, D.; Ran, Y.; Peng, S.J.; Wang, L.H.; Wang, Y.D. CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity. J. Phys. Chem. Solids 2020, 147, 109651. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Arango-Díaz, A.; Franco, F.; Jiménez-Jiménez, J.; Storaro, L.; Moretti, E.; Rodríguez-Castellón, E. CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream. Catal. Today 2015, 253, 126–136. [Google Scholar] [CrossRef]
- He, K.L.; Wang, Q.; Wei, J.C. A robust Cu catalyst for low-temperature CO oxidation in flue gas: Mitigating deactivation via Co-doping. Catal. Lett. 2021, 151, 2302–2312. [Google Scholar] [CrossRef]
Sample | Cu/(Cu + Ce) a /mol% | DCeO2 b /nm | DCuO c /nm | Vpd /(cm3/g) | Dpd /(Å) | SBET /(m2/g) | Lattice Constant b /nm |
---|---|---|---|---|---|---|---|
CC-N | 18.9 | 8.1 | 16.8 | 0.12 | 76.5 | 61 | 0.5447 |
CC-NH | 18.0 | 7.9 | 19.9 | 0.08 | 78.9 | 38 | 0.5472 |
Sample | Cu/(Cu + Ce)/at% | OA a/% | Ce3+ b/% | Cu+ c/% |
---|---|---|---|---|
CC-N | 38.6 | 24.8 | 14.0 | 21.3 |
CC-NH | 39.8 | 22.7 | 13.4 | 17.1 |
Catalyst | Temperature of Peaks/°C | H2 Consumption Amounts (mmol/g) and Relative Ratio */% | ||||
---|---|---|---|---|---|---|
Tα | Tβ | Tγ | Aα | Aβ | Aγ | |
CC-N | 165 | 191 | 212 | 3.16 (27) | 3.68 (32) | 4.81 (41) |
CC-NH | 160 | 186 | 200 | 1.90 (16) | 2.97 (26) | 6.80 (58) |
Sample | T30/°C | T50/°C | T90/°C |
---|---|---|---|
CC-N | 59 | 68 | 86 |
CC-NH | 76 | 84 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Liu, Y.; Xue, H.; Yu, J.; Mao, D. CO Oxidation over Cu/Ce Binary Oxide Prepared via the Solvothermal Method: Effects of Cerium Precursors on Properties and Catalytic Behavior. Catalysts 2024, 14, 856. https://doi.org/10.3390/catal14120856
Jin W, Liu Y, Xue H, Yu J, Mao D. CO Oxidation over Cu/Ce Binary Oxide Prepared via the Solvothermal Method: Effects of Cerium Precursors on Properties and Catalytic Behavior. Catalysts. 2024; 14(12):856. https://doi.org/10.3390/catal14120856
Chicago/Turabian StyleJin, Wen, Yanmin Liu, Hongyan Xue, Jun Yu, and Dongsen Mao. 2024. "CO Oxidation over Cu/Ce Binary Oxide Prepared via the Solvothermal Method: Effects of Cerium Precursors on Properties and Catalytic Behavior" Catalysts 14, no. 12: 856. https://doi.org/10.3390/catal14120856
APA StyleJin, W., Liu, Y., Xue, H., Yu, J., & Mao, D. (2024). CO Oxidation over Cu/Ce Binary Oxide Prepared via the Solvothermal Method: Effects of Cerium Precursors on Properties and Catalytic Behavior. Catalysts, 14(12), 856. https://doi.org/10.3390/catal14120856