Boosted Photoelectrochemical Water Oxidation Performance with a Quaternary Heterostructure: CoFe2O4/MWCNT-Doped MIL-100(Fe)/TiO2
Abstract
:1. Introduction
2. Results and Discussions
2.1. Physiochemical Characterizations of CoFe2O4/MWCNts@MIL-100(Fe)/TiO2
2.2. Electrochemical Characterizations and Photoelectrochemical Water Splitting
2.3. Proposed Photoelectrochemical Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of CoFe2O4
3.3. MWCNTs Treatment
3.4. Synthesis of MIL-100(Fe)
3.5. Synthesis of CoFe2O4/MWCNTs
3.6. Synthesis of CoFe2O4/MWCNTs@MIL-100(Fe)
3.7. Synthesis of CoFe2O4/MWCNTs@MIL-100(Fe)/TiO2
3.8. Characterization
3.9. Photoelectrochemical Water Splitting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Hu, Y.; Zhang, S.; Sun, Y. Artificial photosynthesis systems for solar energy conversion and storage: Platforms and their realities. Chem. Soc. Rev. 2022, 51, 6704–6737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sun, L. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Xie, J.; Mohamed, A.G.A.; Zhang, X.; Feng, Y.; Jiao, L.; Zhou, E.; Yuan, D.; Wang, Y. Solar utilization beyond photosynthesis. Nat. Rev. Chem. 2023, 7, 91–105. [Google Scholar] [CrossRef]
- Landman, A.; Dotan, H.; Shter, G.E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G.S.; Rothschild, A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 2017, 16, 646–651. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Abdel-Magied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Fu, L.; Dowaidar, M.; Xia, W.; Forsberg, K. Magnetic metal-organic frameworks for efficient removal of cadmium (II), and lead (II) from aqueous solution. J. Environ. Chem. Eng. 2022, 10, 107467. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Sivula, K.; Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010. [Google Scholar] [CrossRef]
- Patil, S.S.; Mali, M.G.; Hassan, M.A.; Patil, D.R.; Kolekar, S.S.; Ryu, S.-W. One-pot in situ hydrothermal growth of BiVO4/Ag/rGO hybrid architectures for solar water splitting and environmental remediation. Sci. Rep. 2017, 7, 8404. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, D.K.; Gamelin, D.R. Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 2010, 3, 1252–1261. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, D.; Tang, Q.; Liu, L.; Zhou, Z. ZnO–GaN heterostructured nanosheets for solar energy harvesting: Computational studies based on hybrid density functional theory. J. Mater. Chem. A 2013, 1, 2231–2237. [Google Scholar] [CrossRef]
- Fang, Y.; Hodgson, R.; Lee, W.C.; Le, H.; Chan, H.W.B.; Hassan, H.M.; Alsohaimi, I.H.; Canciani, G.E.; Qian, R.; Chen, Q. Light trapping by porous TiO2 hollow hemispheres for high efficiency photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2023, 25, 11253–11260. [Google Scholar] [CrossRef]
- Yao, Y.; Li, G.; Ciston, S.; Lueptow, R.M.; Gray, K.A. Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity. Environ. Sci. Technol. 2008, 42, 4952–4957. [Google Scholar] [CrossRef]
- Hafeez, H.Y.; Lakhera, S.K.; Narayanan, N.; Harish, S.; Hayakawa, Y.; Lee, B.-K.; Neppolian, B. Environmentally sustainable synthesis of a CoFe2O4–TiO2/rGO ternary photocatalyst: A highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS Omega 2019, 4, 880–891. [Google Scholar] [CrossRef]
- Sivaranjani, T.; Rajakarthihan, S.; Karthigeyan, A.; Bharath, G. Sustainable photoelectrocatalytic oxidation of antibiotics using Ag–CoFe2O4@ TiO2 heteronanostructures for eco-friendly wastewater remediation. Chemosphere 2024, 362, 142736. [Google Scholar]
- Aftabi, A.; Ghasemi, F. Boosting photoelectrochemical performance through appling magnetic field in manganese-doped cobalt ferrite photoanodes. Fuel 2024, 371, 132051. [Google Scholar] [CrossRef]
- Olivares, F.; del Río, R.S.; Reyes, J.; Peón, F.; Henríquez, R.; Hevia, S.A.; Durán, B.; Villalonga, R. Enhanced photoconversion efficiency of hybrid TiO2/nox-MWCNT/Si photoanode for water splitting in neutral medium. Mater. Lett. 2021, 285, 129128. [Google Scholar] [CrossRef]
- Li, W.; Wu, P.; Yang, S.; Zhu, Y.; Kang, C.; Tran, L.T.; Zeng, B. 3D hierarchical honeycomb structured MWCNTs coupled with CoMnAl–LDO: Fabrication and application for ultrafast catalytic degradation of bisphenol A. RSC Adv. 2015, 5, 8859–8867. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jun, H.; Hong, S.J.; Kim, H.G.; Lee, J.S. Charge transfer in iron oxide photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: An electrochemical impedance study. Int. J. Hydrogen Energy 2011, 36, 9462–9468. [Google Scholar] [CrossRef]
- Wysmulek, K.; Sar, J.; Osewski, P.; Orlinski, K.; Kolodziejak, K.; Trenczek-Zajac, A.; Radecka, M.; Pawlak, D.A. A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production. Appl. Catal. B Environ. 2017, 206, 538–546. [Google Scholar] [CrossRef]
- Patil, S.S.; Patil, D.R.; Apte, S.K.; Kulkarni, M.V.; Ambekar, J.D.; Park, C.-J.; Gosavi, S.W.; Kolekar, S.S.; Kale, B.B. Confinement of Ag3PO4 nanoparticles supported by surface plasmon resonance of Ag in glass: Efficient nanoscale photocatalyst for solar H2 production from waste H2S. Appl. Catal. B Environ. 2016, 190, 75–84. [Google Scholar] [CrossRef]
- Rai, S.; Ikram, A.; Sahai, S.; Dass, S.; Shrivastav, R.; Satsangi, V.R. CNT based photoelectrodes for PEC generation of hydrogen: A review. Int. J. Hydrogen Energy 2017, 42, 3994–4006. [Google Scholar] [CrossRef]
- Farooq, A.; Khalil, S.; Basha, B.; Habib, A.; Al-Buriahi, M.S.; Warsi, M.F.; Yousaf, S.; Shahid, M. Electrochemical investigation of C-doped CoFe2O4/Fe2O3 nanostructures for efficient electrochemical water splitting. Int. J. Hydrogen Energy 2024, 51, 1318–1332. [Google Scholar] [CrossRef]
- Sun, A.-C.A.; Thakur, P.; Thakur, A. Heavy metal detection using soft nanoferrites and their hybrids. In Soft Nanoferrites for Biomedical and Environmental Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 194–217. [Google Scholar]
- Gong, Y.-N.; Liu, J.-W.; Shao, B.-Z.; Zhong, D.-C.; Lu, T.-B. Stable metal–organic frameworks for PEC water splitting. FlatChem 2021, 27, 100240. [Google Scholar] [CrossRef]
- Sharma, D.; Sungjemmenla; Kumar, D.; Takhar, D.; Birajdar, B.; Kumar, V.; Khare, N. Stable metal-organic framework (MOF) integrated BCZT for improved photo-electrochemical water splitting. Mater. Sci. Eng. B 2023, 297, 116769. [Google Scholar] [CrossRef]
- Koyale, P.A.; Dongale, T.D.; Sutar, S.S.; Mullani, N.B.; Dhodamani, A.G.; Takale, P.S.; Gunjakar, J.L.; Parale, V.G.; Park, H.-H.; Delekar, S.D. Boosting the photoelectrochemical performance of ZnO nanorods with Co-doped Zn-ZIFs metal-organic frameworks for water splitting studies. Int. J. Hydrogen Energy 2024, 61, 1294–1304. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.; Liu, M.; Liao, R.; Zhan, H.; Qi, X.; Wang, Y.; Huang, Y. The enhanced photocatalytic activity of TiO2 (B)/MIL-100 (Fe) composite via Fe–O clusters. New J. Chem. 2022, 46, 739–746. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, Y.-W. GaN/ZnO superlattice nanowires as photocatalyst for hydrogen generation: A first-principles study on electronic and magnetic properties. Nano Energy 2012, 1, 488–493. [Google Scholar] [CrossRef]
- Wang, Z.; Han, J.; Li, Z.; Li, M.; Wang, H.; Zong, X.; Li, C. Moisture-Assisted Preparation of Compact GaN: ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2016, 6, 1600864. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Xu, B.; Jiang, L.-C. Functional hybrid materials based on carbon nanotubes and metal oxides. J. Mater. Chem. 2010, 20, 6383–6391. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, J.; Tian, N.; Wang, M.; Huang, J.; Yu, D.; Wu, M.; Ni, H.; Ye, P. Highly efficient heterogeneous photo-Fenton BiOCl/MIL-100 (Fe) nanoscaled hybrid catalysts prepared by green one-step coprecipitation for degradation of organic contaminants. RSC Adv. 2021, 11, 32383–32393. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Liu, C.; Sun, Y.; Yan, Z.; Zhang, X.; Hu, X.; Zhang, H. Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal–organic framework MIL-100 (Fe) for the catalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2020, 3, 2302–2309. [Google Scholar] [CrossRef]
- Xiang, Z.; Qi, Y.; Lu, Y.; Hu, Z.; Wang, X.; Jia, W.; Hu, J.; Ji, J.; Lu, W. MOF-derived novel porous Fe3O4@ C nanocomposites as smart nanomedical platforms for combined cancer therapy: Magnetic-triggered synergistic hyperthermia and chemotherapy. J. Mater. Chem. B 2020, 8, 8671–8683. [Google Scholar] [CrossRef]
- Wang, H.; Gao, H.; Chen, M.; Xu, X.; Wang, X.; Pan, C.; Gao, J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 2015, 360, 840–848. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, H.; Wang, J.; Yu, D.; Li, Z.; Liu, R. Facile synthesis of silver nanocatalyst decorated Fe3O4@ PDA core–shell nanoparticles with enhanced catalytic properties and selectivity. RSC Adv. 2022, 12, 3847–3855. [Google Scholar] [CrossRef]
- Zhang, H.; Nai, J.; Yu, L.; Lou, X.W.D. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107. [Google Scholar] [CrossRef]
- Mondschein, J.S.; Callejas, J.F.; Read, C.G.; Chen, J.Y.; Holder, C.F.; Badding, C.K.; Schaak, R.E. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions. Chem. Mater. 2017, 29, 950–957. [Google Scholar] [CrossRef]
- Samanta, A.; Raj, C.R. Catalyst support in oxygen electrocatalysis: A case study with CoFe alloy electrocatalyst. J. Phys. Chem. C 2018, 122, 15843–15852. [Google Scholar] [CrossRef]
- Chang, Y.; Shi, N.-E.; Zhao, S.; Xu, D.; Liu, C.; Tang, Y.-J.; Dai, Z.; Lan, Y.-Q.; Han, M.; Bao, J. Coralloid Co2P2O7 nanocrystals encapsulated by thin carbon shells for enhanced electrochemical water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 22534–22544. [Google Scholar] [CrossRef]
- Helm, M.L.; Stewart, M.P.; Bullock, R.M.; DuBois, M.R.; DuBois, D.L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 2011, 333, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2016, 26, 4661–4672. [Google Scholar] [CrossRef]
- Dionigi, F.; Strasser, P. NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Adv. Energy Mater. 2016, 6, 1600621. [Google Scholar] [CrossRef]
- Gorlin, M.; Chernev, P.; Ferreira de Araujo, J.; Reier, T.; Dresp, S.; Paul, B.; Krahnert, R.; Dau, H.; Strasser, P. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614. [Google Scholar] [CrossRef]
- Peng, P.; Lin, X.-M.; Liu, Y.; Filatov, A.S.; Li, D.; Stamenkovic, V.R.; Yang, D.; Prakapenka, V.B.; Lei, A.; Shevchenko, E.V. Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2018, 10, 24715–24724. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Ren, X.; Lyu, F.; Yang, J.; Wang, F.; Xue, L.; Wang, L.; Zhang, X.; Wang, Q. Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation. Electrochim. Acta 2019, 296, 418–426. [Google Scholar] [CrossRef]
- Shang, N.-Z.; Feng, C.; Gao, S.-T.; Wang, C. Ag/Pd nanoparticles supported on amine-functionalized metal–organic framework for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 944–950. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Yang, M.; Wang, Z.; Ren, Y.; Cui, J.; Zhao, Y.; Du, J.; Li, K.; Wang, W.; et al. Synthesis of porous MoS2/CdSe/TiO2 photoanodes for photoelectrochemical water splitting. Microporous Mesoporous Mater. 2019, 284, 403–409. [Google Scholar] [CrossRef]
- Babar, P.; Lokhande, A.; Shin, H.H.; Pawar, B.; Gang, M.G.; Pawar, S.; Kim, J.H. Cobalt Iron Hydroxide as a Precious Metal-Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Small 2018, 14, 1702568. [Google Scholar] [CrossRef]
- Chaudhary, D.; Singh, S.; Vankar, V.D.; Khare, N. A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation. Int. J. Hydrogen Energy 2017, 42, 7826–7835. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-Q.; Xu, Y.-J. Basic Principles for Observing the Photosensitizer Role of Graphene in the Graphene–Semiconductor Composite Photocatalyst from a Case Study on Graphene–ZnO. J. Phys. Chem. C 2013, 117, 21724–21734. [Google Scholar] [CrossRef]
- Oh, W.; Chen, M. Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium (IV) n-Butoxide. Bull. Korean Chem. Soc. 2008, 29, 159. [Google Scholar]
- Wang, W.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer. ACS Nano 2012, 6, 9777–9789. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V.; Gevaert, M.; Vinodgopal, K. Photochemistry on Semiconductor Surfaces. Visible Light Induced Oxidation of C60 on TiO2 Nanoparticles. J. Phys. Chem. B 1997, 101, 4422–4427. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Yu, W.; Huang, Z.; Fang, Y.; Long, L.; Song, Y.; Cifuentes, M.P.; Humphrey, M.G.; Zhang, L.; et al. TiO2–multi-walled carbon nanotube nanocomposites: Hydrothermal synthesis and temporally-dependent optical properties. RSC Adv. 2016, 6, 20120–20127. [Google Scholar] [CrossRef]
- Jia, L.; Arain, M.; Ahmed, A.; Yikai, F.; Zhenda, C.; Hussain, I.; Ashraf, G.A.; Ahmed, S.B.; Dai, H. Emerging trends in metal-organic framework (MOFs) photocatalysts for hydrogen energy using water splitting: A state-of-the-art review. J. Ind. Eng. Chem. 2024, 131, 54–135. [Google Scholar] [CrossRef]
- Saeed, F.; Ahmad, M.; Zada, A.; Qi, D.; Wang, Y. Phosphorus-doped CoFe2O4 nanoparticles decorated nitrogen-doped graphene for efficient and stable electrocatalytic water splitting. Int. J. Hydrogen Energy 2024, 59, 1196–1204. [Google Scholar] [CrossRef]
- He, X.; Fang, H.; Gosztola, D.J.; Jiang, Z.; Jena, P.; Wang, W.-N. Mechanistic insight into photocatalytic pathways of MIL-100 (Fe)/TiO2 composites. ACS Appl. Mater. Interfaces 2019, 11, 12516–12524. [Google Scholar] [CrossRef]
- Wang, L.; Xing, H.; Liu, Z.; Shen, Z.; Sun, X.; Xu, G. Facile synthesis of net-like Fe3O4/MWCNTs decorated by SnO2 nanoparticles as a highly efficient microwave absorber. RSC Adv. 2016, 6, 97142–97151. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Elseman, A.M.; Mohamed, M.M.; Ren, Y.; Salama, T.M.; Mohamed, M.B.I. Magnetic TiO2/CoFe2O4 photocatalysts for degradation of organic dyes and pharmaceuticals without oxidants. Nanomaterials 2022, 12, 3290. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, H.; Duan, H.; Guo, Y.; Liu, X.; Zhang, Y.; Liu, H. A green method to prepare TiO2/MWCNT nanocomposites with high photocatalytic activity and insights into the effect of heat treatment on photocatalytic activity. RSC Adv. 2015, 5, 13430–13436. [Google Scholar] [CrossRef]
- Ziylan-Yavas, A.; Mizukoshi, Y.; Maeda, Y.; Ince, A.H. Supporting of pristine TiO2 with noble metals to enhance the oxidation and mineralization of paracetamol by sonolysis and sonophotolysis. Appl. Catal. B Environ. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Malara, F.; Minguzzi, A.; Marelli, M.; Morandi, S.; Psaro, R.; Santo, V.D.; Naldoni, A. α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal. 2015, 5, 5292–5300. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.-n.; Zhao, G.; Tian, H.; Shi, H.; Zhou, T. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2, 4, 6-trichlorophenol. ACS Appl. Mater. Interfaces 2012, 4, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Mohapatra, L.; Parida, K. Visible light-driven novel gC3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 2015, 3, 18622–18635. [Google Scholar] [CrossRef]
- Jia, P.-Y.; Guo, R.-T.; Pan, W.-G.; Huang, C.-Y.; Tang, J.-Y.; Liu, X.-Y.; Qin, H.; Xu, Q.-Y. The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 306–316. [Google Scholar] [CrossRef]
Elements | Atomic Number | Normalized Mass % | Atomic % | Abs. Error Mass% (3σ) |
---|---|---|---|---|
C | 6 | 14.11 | 24.91 | 1.99 |
O | 8 | 42.20 | 55.91 | 6.39 |
Ti | 22 | 41.28 | 18.28 | 2.17 |
Fe | 26 | 1.82 | 0.69 | 0.14 |
Co | 27 | 0.58 | 0.21 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, W.; Saeed, F.; Zhao, Y.; Maryam, B.; Arain, S.; Ayaz, M.; Jamil, A.; Liu, X. Boosted Photoelectrochemical Water Oxidation Performance with a Quaternary Heterostructure: CoFe2O4/MWCNT-Doped MIL-100(Fe)/TiO2. Catalysts 2024, 14, 901. https://doi.org/10.3390/catal14120901
Rehman W, Saeed F, Zhao Y, Maryam B, Arain S, Ayaz M, Jamil A, Liu X. Boosted Photoelectrochemical Water Oxidation Performance with a Quaternary Heterostructure: CoFe2O4/MWCNT-Doped MIL-100(Fe)/TiO2. Catalysts. 2024; 14(12):901. https://doi.org/10.3390/catal14120901
Chicago/Turabian StyleRehman, Waheed, Faiq Saeed, Yong Zhao, Bushra Maryam, Samia Arain, Muhammad Ayaz, Asad Jamil, and Xianhua Liu. 2024. "Boosted Photoelectrochemical Water Oxidation Performance with a Quaternary Heterostructure: CoFe2O4/MWCNT-Doped MIL-100(Fe)/TiO2" Catalysts 14, no. 12: 901. https://doi.org/10.3390/catal14120901
APA StyleRehman, W., Saeed, F., Zhao, Y., Maryam, B., Arain, S., Ayaz, M., Jamil, A., & Liu, X. (2024). Boosted Photoelectrochemical Water Oxidation Performance with a Quaternary Heterostructure: CoFe2O4/MWCNT-Doped MIL-100(Fe)/TiO2. Catalysts, 14(12), 901. https://doi.org/10.3390/catal14120901