Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone Under Mild Conditions over Zr-Beta Acidic Zeolite Prepared by Hydrothermal Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characteristic
2.2. Effect of Zr Content and Crystallization Time on Catalytic Performance
2.3. Effect of Reaction Conditions on Conversion of EL to GVL
2.4. Kinetic Experiments
3. Materials and Methods
3.1. Chemicals
3.2. Zr-Beta Zeolite Prepared by Hydrothermal Methods
3.3. Characteristics of Catalysts
3.4. Catalytic Reaction and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbasi, T.; Abbasi, S.A. Decarbonization of fossil fuels as a strategy to control global warming. Renew. Sustain. Energy Rev. 2011, 15, 1828–1834. [Google Scholar] [CrossRef]
- Choudhary, T.V.; Phillips, C.B. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A-Gen. 2011, 397, 1–12. [Google Scholar] [CrossRef]
- Rinaldi, R.; Schüth, F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2010, 3, 296. [Google Scholar] [CrossRef]
- Ma, J.P.; Shi, S.; Jia, X.Q.; Xia, F.; Ma, H.; Gao, J.; Xu, J. Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J. Energy Chem. 2019, 36, 74–86. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Fang, Z.; Smith, R.L. Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catal. Today 2019, 319, 84–92. [Google Scholar] [CrossRef]
- Kang, S.M.; Fu, J.X.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sust. Energ. Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Rehmann, L.; Marzocchella, A. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresour. Technol. 2017, 243, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Klajn, F.; Romero-García, J.M.; Díaz, M.J.; Castro, E. Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind. Crop. Prod. 2018, 122, 98–106. [Google Scholar] [CrossRef]
- Lange, J.P.; Vestering, J.Z.; Haan, R.J. Towards ‘bio-based’ Nylon: Conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem. Commun. 2007, 33, 3488–3490. [Google Scholar] [CrossRef]
- Zeng, F.X.; Liu, H.F.; Deng, L.; Liao, B.; Pang, H.; Guo, Q.X. Ionic-liquid-catalyzed efficient transformation of γ-valerolactone to methyl 3-pentenoate under mild conditions. ChemSusChem 2013, 6, 600–603. [Google Scholar] [CrossRef]
- Bond, J.Q.; Wang, D.; Alonso, D.M.; Dumesic, J.A. Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina. J. Catal. 2011, 281, 290–299. [Google Scholar] [CrossRef]
- Bond, J.Q.; Upadhye, A.A.; Olcay, H.; Tompsett, G.A.; Jae, J.; Xing, R.; Alonso, D.M.; Wang, D.; Zhang, T.Y.; Kumar, R.; et al. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ. Sci. 2014, 7, 1500–1523. [Google Scholar] [CrossRef]
- Du, X.L.; Bi, Q.Y.; Liu, Y.M.; Cao, Y.; Fan, K.N. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts. ChemSusChem 2011, 4, 1838–1843. [Google Scholar] [CrossRef]
- Alonso, D.M.; Gallo, J.M.R.; Mellmer, M.A.; Wettstein, S.G.; Dumesic, J.A. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal. Sci. Technol. 2013, 3, 927–931. [Google Scholar] [CrossRef]
- Ding, D.Q.; Wang, J.J.; Xi, J.X.; Liu, X.H.; Lu, G.Z.; Wang, Y.Q. High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone. Green Chem. 2014, 16, 3846–3853. [Google Scholar] [CrossRef]
- Karanwal, N.; Kurniawan, R.G.; Park, J.; Verma, D.; Oh, S.; Kim, S.M.; Kwak, S.K.; Kim, J. One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru-Cu/zeolite-Y catalyst in supercritical methanol. Appl. Catal. B-Environ. 2022, 314, 121466. [Google Scholar] [CrossRef]
- Luo, Y.P.; Yi, J.; Tong, D.M.; Hu, C.W. Production of γ-valerolactone via selective catalytic conversion of hemicellulose in pubescens without addition of external hydrogen. Green Chem. 2016, 18, 848–857. [Google Scholar] [CrossRef]
- Heeres, H.; Handana, R.; Chunai, D.; Rasrendra, C.B.; Girisuta, B.; Heeres, H.J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem. 2009, 11, 1247–1255. [Google Scholar] [CrossRef]
- Son, P.A.; Nishimura, S.; Ebitani, K. Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RCS Adv. 2014, 4, 10525–10530. [Google Scholar] [CrossRef]
- Hernández, B.; Iglesias, J.; Morales, G.; Paniagua, M.; López-Aguado, C.; Fierro, J.L.G.; Wolf, P.; Hermans, I.; Melero, J.A. One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Bronsted-Lewis Zr-Al -beta zeolite. Green Chem. 2016, 18, 5777–5781. [Google Scholar] [CrossRef]
- Li, X.C.; Yuan, X.H.; Xia, G.P.; Liang, J.; Liu, C.; Wang, Z.D.; Yang, W.M. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. J. Catal. 2020, 392, 175–185. [Google Scholar] [CrossRef]
- Qi, L.; Horváth, I.T. Catalytic conversion of fructose to γ-valerolactone in γ-valerolactone. ACS Catal. 2012, 2, 2247–2249. [Google Scholar] [CrossRef]
- Lu, T.; You, X.; Zong, Y.; Xu, Y.; Yang, X.; Zhou, L. Production of γ-valerolactone from ethyl levulinate over hydrothermally synthesized Sn-Beta under mild conditions. Fuel 2023, 332, 126262. [Google Scholar] [CrossRef]
- García, A.; Miguel, P.J.; Pico, M.P.; Álvarez-Serrano, I.; López, M.L.; García, T.; Solsona, B. γ-Valerolactone from levulinic acid and its esters: Substrate and reaction media determine the optimal catalyst. Appl. Catal. A-Gen. 2021, 623, 118276. [Google Scholar] [CrossRef]
- Biancalana, L.; Di Fidio, N.; Licursi, D.; Zacchini, S.; Cinci, A.; Raspolli Galletti, A.M.; Marchetti, F.; Antonetti, C. New ruthenium(II) isocyanide catalysts for the transfer hydrogenation of ethyl levulinate to γ-valerolactone in C2-C6 alcohols. J. Catal. 2024, 439, 115761. [Google Scholar] [CrossRef]
- Bunrit, A.; Butburee, T.; Liu, M.; Huang, Z.; Meeporn, K.; Phawa, C.; Zhang, J.; Kuboon, S.; Liu, H.; Faungnawakij, K.; et al. Photo–thermo-dual catalysis of levulinic acid and levulinate ester to γ-valerolactone. ACS Catal. 2022, 12, 1677–1685. [Google Scholar] [CrossRef]
- Chen, C.B.; Chen, M.Y.; Zada, B.; Ma, Y.J.; Yan, L.; Xu, Q.; Li, W.Z.; Guo, Q.X.; Fu, Y. Effective conversion of biomass-derived ethyl levulinate into γ-valerolactone over commercial zeolite supported Pt catalysts. RCS Adv. 2016, 6, 112477–112485. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.J.; Ren, Y.; Hao, S.J.; Jiang, D.Q. New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability. Sci. Rep. 2014, 4, 4540. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.J.; Lou, J.T.; Su, C.M.; Guo, D.C.; Liu, Y.X.; Deng, S.G. An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to γ-valerolactone. ChemSusChem 2017, 10, 1720–1732. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Xie, C.; Li, X.; Nie, J.B.; Yang, H.M.; Zhang, Z.H. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions. Chem. Commun. 2022, 58, 4067–4070. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Revisiting the Meerwein-Ponndorf-Verley reduction: A sustainable protocol for transfer hydrogenation of aldehydes and ketones. Green Chem. 2009, 11, 1313–1316. [Google Scholar] [CrossRef]
- Chuah, G.K.; Jaenicke, S.; Zhu, Y.Z.; Liu, S.H. Meerwein-Ponndorf-Verley reduction over heterogeneous catalysts. Curr. Org. Chem. 2006, 10, 1639–1654. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Hasan, M.A. Pd/C catalyzed conversion of levulinic acid to γ-valerolactone using alcohol as a hydrogen donor under microwave conditions. Catal. Commun. 2015, 60, 5–7. [Google Scholar] [CrossRef]
- Du, X.L.; He, L.; Zhao, S.; Liu, Y.M.; Cao, Y.; He, H.Y.; Fan, K.N. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angew. Chem.-Int. Edit. 2011, 50, 7815–7819. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Kaburagi, W.; Fujitani, T. Catalytic transfer hydrogenation of levulinate esters to γ-valerolactone over supported ruthenium hydroxide catalysts. RCS Adv. 2014, 4, 45848–45855. [Google Scholar] [CrossRef]
- Cai, B.; Kang, R.; Feng, J.; Eberhardt, T.L.; Ma, Z.; Zhu, Q.; Pan, H. Construction of Cu–Ru bimetallic catalyst for the selective catalytic transfer hydrogenation of carbonyl (C=O) in biomass-derived compounds. Renew. Energy 2024, 222, 119833. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Yang, Q.; Guan, Y. Mesoporous SBA-15 supported Ru nanoparticles for effective hydrogenation of ethyl levulinate at room temperature. J. Porous Mater. 2024, 31, 727–736. [Google Scholar] [CrossRef]
- Ban, L.; Zhao, J.; Zhang, Y.; Huang, X.; Chen, Y.; Li, H.; Zhao, Y.; Liu, H. Atomically dispersed Zn-NxCy sites on N-doped carbon for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Chem. Eng. J. 2024, 494, 153113. [Google Scholar] [CrossRef]
- Qu, H.; Lu, T.; Yang, X.; Zhou, L. Promoting tin into the framework of β zeolite via stabilizing Sn species and its catalytic performance for the conversion of ethyl levulinate to γ-valerolactone. Renew. Energy 2024, 229, 120746. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Y.B.; Guo, Q.X.; Fu, Y. RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chem. Commun. 2013, 49, 5328–5330. [Google Scholar] [CrossRef]
- Liu, M.R.; Li, S.Q.; Fan, G.L.; Yang, L.; Li, F. Hierarchical flower-like bimetallic NiCu catalysts for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Ind. Eng. Chem. Res. 2019, 58, 10317–10327. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Liu, Z.H.; Gu, Z.Y.; Wen, Z.; Xue, B. Selective production of γ-valerolactone from ethyl levulinate by catalytic transfer hydrogenation over Zr-based catalyst. Res. Chem. Intermed. 2022, 48, 1181–1198. [Google Scholar] [CrossRef]
- Yun, W.C.; Yang, M.T.; Lin, K.Y.A. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. J. Colloid Interface Sci. 2019, 543, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhang, H.; Zhang, J.; Xu, Q.; Liu, X.; Yin, D. Sustainable synthesis of a novel zirconium-coordinated biochar catalyst from sawdusts for conversion of ethyl levulinate to γ-valerolactone. Catal. Lett. 2023, 154, 1931–1944. [Google Scholar] [CrossRef]
- He, X.; Liu, H.; Wang, Y.; Peng, L.; Zhang, J. Magnetic N-doped carbon nanotubes immobilized zirconium-based biomass-derived hybrid for catalytic transfer hydrogenation of ethyl levulinate. Catal. Lett. 2024, 154, 3121–3131. [Google Scholar] [CrossRef]
- Corma, A.; Renz, M. A general method for the preparation of ethers using water-resistant solid Lewis acids. Angew. Chem.-Int. Edit. 2007, 46, 298–300. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases. with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Nie, Y.T.; Jaenicke, S.; Chuah, G.K. Cyclisation of citronellal over zirconium zeolite beta-a highly diastereoselective catalyst to (±)-isopulegol. J. Catal. 2005, 229, 404–413. [Google Scholar] [CrossRef]
- Yang, X.M.; Wang, L.Y.; Lu, T.L.; Gao, B.B.; Su, Y.L.; Zhou, L.P. Seed-assisted hydrothermal synthesis of Sn-Beta for conversion of glucose to methyl lactate: Effects of the H2O amount in the gel and crystallization time. Catal. Sci. Technol. 2020, 10, 8437–8444. [Google Scholar] [CrossRef]
- Wang, J.; Jaenicke, S.; Chuah, G.K. Zirconium-Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein-Ponndorf-Verley reduction. RCS Adv. 2014, 4, 13481–13489. [Google Scholar] [CrossRef]
- Bonino, F.; Damin, A.; Bordiga, S.; Lamberti, C.; Zecchina, A. Interaction of CD3CN and pyridine with the Ti(IV) centers of TS-1 catalysts: A spectroscopic and computational study. Langmuir 2003, 19, 2155–2161. [Google Scholar] [CrossRef]
- Li, H.; Zhao, S.; Zhang, W.; Du, H.; Yang, X.; Peng, Y.; Han, D.; Wang, B.; Li, Z. Efficient esterification over hierarchical Zr-Beta zeolite synthesized via liquid-state ion-exchange strategy. Fuel 2023, 342, 127786. [Google Scholar] [CrossRef]
- Novodárszki, G.; Szabó, B.; Auer, R.; Tóth, K.; Leveles, L.; Barthos, R.; Turczel, G.; Pászti, Z.; Valyon, J.; Mihályi, M.R.; et al. Propylene synthesis via isomerization-metathesis of 1-hexene and FCC olefins. Catal. Commun. 2021, 11, 6257–6270. [Google Scholar] [CrossRef]
- Li, G.; Fu, W.H.; Wang, Y.M. Meervvein-Ponndorf-Verley reduction of cyclohexanone catalyzed by partially crystalline zirconosilicate. Catal. Commun. 2015, 62, 10–13. [Google Scholar] [CrossRef]
- Harris, J.W.; Cordon, M.J.; Di Iorio, J.R.; Vega-Vila, J.C.; Ribeiro, F.H.; Gounder, R. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J. Catal. 2016, 335, 141–154. [Google Scholar] [CrossRef]
Sample * | SBET (m2/g) | Vt (cm3/g) | Vmicro (cm3/g) | Vmeso (cm3/g) |
---|---|---|---|---|
H-Beta-7d | 416 | 0.434 | 0.357 | 0.077 |
0.5%Zr-Beta-7d | 465 | 0.254 | 0.205 | 0.049 |
1%Zr-Beta-7d | 463 | 0.260 | 0.207 | 0.053 |
2%Zr-Beta-7d | 462 | 0.267 | 0.214 | 0.053 |
3%Zr-Beta-7d | 451 | 0.330 | 0.190 | 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Zhu, G.; Liu, M.; Zhu, Y.; Ji, W.; Si, X.; Lu, T. Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone Under Mild Conditions over Zr-Beta Acidic Zeolite Prepared by Hydrothermal Method. Catalysts 2024, 14, 924. https://doi.org/10.3390/catal14120924
Yue Y, Zhu G, Liu M, Zhu Y, Ji W, Si X, Lu T. Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone Under Mild Conditions over Zr-Beta Acidic Zeolite Prepared by Hydrothermal Method. Catalysts. 2024; 14(12):924. https://doi.org/10.3390/catal14120924
Chicago/Turabian StyleYue, Yu, Guozhi Zhu, Min Liu, Yue Zhu, Weilong Ji, Xiaoqin Si, and Tianliang Lu. 2024. "Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone Under Mild Conditions over Zr-Beta Acidic Zeolite Prepared by Hydrothermal Method" Catalysts 14, no. 12: 924. https://doi.org/10.3390/catal14120924
APA StyleYue, Y., Zhu, G., Liu, M., Zhu, Y., Ji, W., Si, X., & Lu, T. (2024). Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone Under Mild Conditions over Zr-Beta Acidic Zeolite Prepared by Hydrothermal Method. Catalysts, 14(12), 924. https://doi.org/10.3390/catal14120924