High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study
Abstract
:1. Introduction
2. Result and Discussion
2.1. XRD Analysis
2.2. FTIR Analysis
2.3. UV-Vis Spectrum
2.4. Morphological Properties
2.5. Photocatalytic Activity of Zn1−xGdxO (x = 0, 0.025, 0.05 and 0.075)
2.6. Photocatalytic Activity and Mechanism of the Reaction
2.7. Photocatalyst Growth Mechanism
3. Experimental Work
3.1. Zn1−xGdxO Synthesis
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aboraia, A.M.; Al-omoush, M.; Solayman, M.; Saad, H.M.H.; Khabiri, G.; Saad, M.; Alsulaim, G.M.; Soldatov, A.V.; Ismail, Y.A.M.; Gomaa, H. A heterostructural MoS2QDs@UiO-66 nanocomposite for the highly efficient photocatalytic degradation of methylene blue under visible light and simulated sunlight. RSC Adv. 2023, 13, 34598–34609. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, F.; Zhang, Y.; Hu, J. Review on the advancement of SnS 2 in photocatalysis. J. Mater. Chem. A 2023, 11, 7331–7343. [Google Scholar] [CrossRef]
- Ashraf, S.; Sandhu, Z.A.; Raza, M.A.; Bhalli, A.H.; Hamayun, M.; Ashraf, A.; Al-Sehemi, A.G. Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors. J. Sol-Gel Sci. Technol. 2024, 112, 25–43. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef]
- Alsukaibi, A.K.D. Various approaches for the detoxification of toxic dyes in wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018, 198, 1602–1631. [Google Scholar] [CrossRef]
- Behera, M.; Nayak, J.; Banerjee, S.; Chakrabortty, S.; Tripathy, S.K. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J. Environ. Chem. Eng. 2021, 9, 105277. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water 2022, 5, 1–25. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Kumar, J.S.; Kamyab, H.; Sujana, J.A.J.; Al-Khashman, O.A.; Kuslu, Y.; Ene, A.; Kumar, B.S. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. J. Clean. Prod. 2020, 272, 122636. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S. A review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Iqbal, M.; Nadeem, M.A.; Hussain, I.; Yousaf, S.; Mustafa, G.; Zafar, M.I.; Nadeem, M.A. Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J. Environ. Chem. Eng. 2016, 4, 2138–2146. [Google Scholar] [CrossRef]
- Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Hajati, S. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason. Sonochem. 2018, 40, 601–610. [Google Scholar] [CrossRef]
- Uma, B.; Anantharaju, K.S.; Renuka, L.; Nagabhushana, H.; Malini, S.; More, S.S.; Vidya, Y.S.; Meena, S. Controlled synthesis of (CuO-Cu2O) Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity. Ceram. Int. 2021, 47, 14829–14844. [Google Scholar] [CrossRef]
- Elhosiny Ali, H.; Ganesh, V.; Haritha, L.; Aboraia, A.M.; Hegazy, H.H.; Butova, V.; Soldatov, A.V.; Algarni, H.; Guda, A.; Zahran, H.Y.; et al. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films. Opt. Laser Technol. 2021, 135, 106691. [Google Scholar] [CrossRef]
- Alharshan, G.A.; Aboraia, A.M.; Uosif, M.A.M.; Sharaf, I.M.; Shaaban, E.R.; Saad, M.; Almohiy, H.; Elsenety, M.M. Optical band gap tuning, DFT understandings, and photocatalysis performance of ZnO nanoparticle-doped Fe compounds. Materials 2023, 16, 2676. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Bishnoi, A.; Tank, D.; Patel, P.; Chahar, M.; Khaturia, S.; Modi, N.; Khalid, M.; Alam, M.W.; Yadav, V.K. Recent trends in the synthesis, characterization and commercial applications of zinc oxide nanoparticles—A review. Inorganica Chim. Acta 2024, 573, 122350. [Google Scholar] [CrossRef]
- Terna, A.D.; Elemike, E.E.; Mbonu, J.I.; Osafile, O.E.; Ezeani, R.O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B 2021, 272, 115363. [Google Scholar] [CrossRef]
- Gaur, J.; Kumar, S.; Pal, M.; Kaur, H.; Batoo, K.M.; Momoh, J.O. Current trends: Zinc oxide nanoparticles preparation via chemical and green method for the photocatalytic degradation of various organic dyes. Hybrid Adv. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Irede, E.L.; Awoyemi, R.F.; Owolabi, B.; Aworinde, O.R.; Kajola, R.O.; Hazeez, A.; Raji, A.A.; Ganiyu, L.O.; Onukwuli, C.O.; Onivefu, A.P. Cutting-edge developments in zinc oxide nanoparticles: Synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv. 2024, 14, 20992–21034. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.; Pimentel, A.; Santos, L.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R. Metal Oxide Nanostructures: Synthesis, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Jayadevan, K.P.; Tseng, T.-Y. One-dimensional ZnO nanostructures. J. Nanosci. Nanotechnol. 2012, 12, 4409–4457. [Google Scholar] [CrossRef] [PubMed]
- Vidya, R.; Ravindran, P.; Fjellvåg, H.; Svensson, B.G.; Monakhov, E.; Ganchenkova, M.; Nieminen, R.M. Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Phys. Rev. B—Condens. Matter Mater. Phys. 2011, 83, 045206. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, W.; Fu, X. The Role of the Defects on the Photocatalytic Reactions on ZnO. In UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation: Materials, Reaction Mechanisms, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 59–75. [Google Scholar]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Punia, K.; Lal, G.; Dolia, S.N.; Kumar, S. Defects and oxygen vacancies tailored structural, optical, photoluminescence and magnetic properties of Li doped ZnO nanohexagons. Ceram. Int. 2020, 46, 12296–12317. [Google Scholar] [CrossRef]
- Nguyen, X.-S.; Nguyen, M.-Q.; Trinh, X.-T.; Joita, A.C.; Nistor, S.V. Correlation of native point defects and photocatalytic activity of annealed ZnO nanoparticle studied by electron spin resonance and photoluminescence emission. Semicond. Sci. Technol. 2020, 35, 095035. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yin, Y.; Xia, D.; Ding, H.; Ding, C.; Wu, J.; Yan, Y.; Liu, Y.; Chen, N. Facile synthesis of highly efficient ZnO/ZnFe2O4 photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity. Appl. Catal. B Environ. 2018, 226, 324–336. [Google Scholar] [CrossRef]
- Nami, M.; Sheibani, S.; Rashchi, F. Photocatalytic performance of coupled semiconductor ZnO–CuO nanocomposite coating prepared by a facile brass anodization process. Mater. Sci. Semicond. Process. 2021, 135, 106083. [Google Scholar] [CrossRef]
- Chanu, L.A.; Singh, W.J.; Singh, K.J.; Devi, K.N. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys. 2019, 12, 1230–1237. [Google Scholar] [CrossRef]
- Nami, M.; Rakhsha, A.; Sheibani, S.; Abdizadeh, H. The enhanced photocatalytic activity of ZnO nanorods/CuO nanourchins composite prepared by chemical bath precipitation. Mater. Sci. Eng. B 2021, 271, 115262. [Google Scholar] [CrossRef]
- Zare, A.; Saadati, A.; Sheibani, S. Modification of a Z-scheme ZnO-CuO nanocomposite by Ag loading as a highly efficient visible light photocatalyst. Mater. Res. Bull. 2023, 158, 112048. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, S.; Kim, K.-j.; Kim, C.; Jang, J.H.; Kim, Y.-M.; Lee, H. Multiscale probing of the influence of the defect-induced variation of oxygen vacancies on the photocatalytic activity of doped ZnO nanoparticles. J. Mater. Chem. A 2020, 8, 25345–25354. [Google Scholar] [CrossRef]
- Danilenko, I.; Gorban, O.; Maksimchuk, P.; Viagin, O.; Malyukin, Y.; Gorban, S.; Volkova, G.; Glasunova, V.; Mendez-Medrano, M.G.; Colbeau-Justin, C. Photocatalytic activity of ZnO nanopowders: The role of production techniques in the formation of structural defects. Catal. Today 2019, 328, 99–104. [Google Scholar] [CrossRef]
- Jabri, S.; Souissi, H.; Sallet, V.; Lusson, A.; Meftah, A.; Galtier, P.; Oueslati, M. Adsorbed Molecules and Surface Treatment Effect on Optical Properties of ZnO Nanowires Grown by MOCVD. J. Electron. Mater. 2017, 46, 4690–4694. [Google Scholar] [CrossRef]
Samples | Rate Constant | R2 |
---|---|---|
ZnO | 0.00654 | 98 |
2.5% Gd-doped ZnO | 0.00683 | 96 |
5% Gd-doped ZnO | 0.00696 | 99 |
7.5% Gd-doped ZnO | 0.00723 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmari, A.; Alresheedi, N.M.; Alzahrani, M.A.; Aldosari, F.M.; Ghasemi, M.; Ismail, A.; Aboraia, A.M. High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study. Catalysts 2024, 14, 946. https://doi.org/10.3390/catal14120946
Alasmari A, Alresheedi NM, Alzahrani MA, Aldosari FM, Ghasemi M, Ismail A, Aboraia AM. High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study. Catalysts. 2024; 14(12):946. https://doi.org/10.3390/catal14120946
Chicago/Turabian StyleAlasmari, Aeshah, Nadi Mlihan Alresheedi, Mohammed A. Alzahrani, Fahad M. Aldosari, Mostafa Ghasemi, Atef Ismail, and Abdelaziz M. Aboraia. 2024. "High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study" Catalysts 14, no. 12: 946. https://doi.org/10.3390/catal14120946
APA StyleAlasmari, A., Alresheedi, N. M., Alzahrani, M. A., Aldosari, F. M., Ghasemi, M., Ismail, A., & Aboraia, A. M. (2024). High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study. Catalysts, 14(12), 946. https://doi.org/10.3390/catal14120946