Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation
Abstract
:1. Introduction
2. Results
3. Experiments
3.1. Syntheses of Porous Pt/NiO Crystals
3.2. Characterization
3.3. Oxidation Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, G.; Merte, L.R.; Knudsen, J.; Vang, R.T.; Laegsgaard, E.; Besenbacher, F.; Mavrikakis, M. On the Mechanism of Low-Temperature CO Oxidation on Ni(111) and NiO(111) Surfaces. J. Phys. Chem. C 2010, 114, 21579–21584. [Google Scholar] [CrossRef]
- Liu, W.; Tang, K.; Lin, M.; June, L.T.O.; Bai, S.-Q.; Young, D.J.; Li, X.; Yang, Y.-Z.; Hor, T.S.A. Multicomponent (Ce, Cu, Ni) oxides with cage and core–shell structures: Tunable fabrication and enhanced CO oxidation activity. Nanoscale 2016, 8, 9521–9526. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Kim, D.H.; Jeong, M.-G.; Park, K.J.; Kim, Y.D. CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature. Chem. Eng. J. 2016, 283, 992–998. [Google Scholar] [CrossRef]
- Jeong, M.-G.; Kim, I.H.; Han, S.W.; Kim, D.H.; Kim, Y.D. Room temperature CO oxidation catalyzed by NiO particles on mesoporous SiO2 prepared via atomic layer deposition: Influence of pre-annealing temperature on catalytic activity. J. Mol. Catal. A Chem. 2016, 414, 87–93. [Google Scholar] [CrossRef]
- Xu, X.; Fu, Q.; Guo, X.; Bao, X. A Highly Active “NiO-on-Au” Surface Architecture for CO Oxidation. ACS Catal. 2013, 3, 1810–1818. [Google Scholar] [CrossRef]
- Zhu, H.; Ould-Chikh, S.; Anjum, D.H.; Sun, M.; Biausque, G.; Basset, J.-M.; Caps, V. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane. J. Catal. 2012, 285, 292–303. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A. Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. J. Catal. 2006, 237, 162–174. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A. Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling. J. Catal. 2006, 237, 175–189. [Google Scholar] [CrossRef]
- Antolini, E. LixNi1−xO (0<x≤0.3) solid solutions: Formation, structure and transport properties. Mater. Chem. Phys. 2003, 82, 937–948. [Google Scholar] [CrossRef]
- Atanasov, M.; Reinen, D. Non-local electronic effects in core-level photoemission, UV and optical electronic absorption spectra of nickel oxides. J. Electron Spectrosc. Relat. Phenom. 1997, 86, 185–199. [Google Scholar] [CrossRef]
- Al Soubaihi, R.; Saoud, K.; Dutta, J. Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts. Catalysts 2018, 8, 660. [Google Scholar] [CrossRef]
- Deraz, N.M.; Selim, M.M.; Ramadan, M. Processing and properties of nanocrystalline Ni and NiO catalysts. Mater. Chem. Phys. 2009, 113, 269–275. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Singh, A.K.; Tripathi, N.; Goel, B.; Indra, A.; Jain, S.K. Ni–NiO heterojunctions: A versatile nanocatalyst for regioselective halogenation and oxidative esterification of aromatics. New J. Chem. 2021, 45, 14177–14183. [Google Scholar] [CrossRef]
- Park, E.J.; Lee, J.H.; Kim, K.-D.; Kim, D.H.; Jeong, M.-G.; Kim, Y.D. Toluene oxidation catalyzed by NiO/SiO2 and NiO/TiO2/SiO2: Towards development of humidity-resistant catalysts. Catal. Today 2016, 260, 100–106. [Google Scholar] [CrossRef]
- Kim, K.-D.; Nam, J.W.; Seo, H.O.; Kim, Y.D.; Lim, D.C. Oxidation of Toluene on Bare and TiO2-Covered NiO-Ni(OH)2 Nanoparticles. J. Phys. Chem. C 2011, 115, 22954–22959. [Google Scholar] [CrossRef]
- Jeong, H.; Bae, J.; Han, J.W.; Lee, H. Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO2 Catalysts for CO Oxidation. ACS Catal. 2017, 7, 7097–7105. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review. Chem. Eng. J. Adv. 2020, 1, 100008. [Google Scholar] [CrossRef]
- Liu, B.; Ohodnicki, P.R. Fabrication and Application of Single Crystal Fiber: Review and Prospective. Adv. Mater. Technol. 2021, 6, 2100125. [Google Scholar] [CrossRef]
- Fu, Q.; Ai, M.; Duan, Y.; Lu, L.; Tian, X.; Sun, D.; Xu, Y.; Sun, Y. Synthesis of uniform porous NiO nanotetrahedra and their excellent gas-sensing performance toward formaldehyde. RSC Adv. 2017, 7, 52312–52320. [Google Scholar] [CrossRef]
- Ande, C.K.; Knoops, H.C.M.; de Peuter, K.; van Drunen, M.; Elliott, S.D.; Kessels, W.M.M. Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride. J. Phys. Chem. Lett. 2015, 6, 3610–3614. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Coudert, F.-X.; James, S.L.; Cooper, A.I. The changing state of porous materials. Nat. Mater. 2021, 20, 1179–1187. [Google Scholar] [CrossRef]
- Mellot-Draznieks, C.; Cheetham, A.K. Encoding evolution of porous solids. Nat. Chem. 2016, 9, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Neagu, D.; Tsekouras, G.; Miller, D.N.; Ménard, H.; Irvine, J.T.S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Ouyang, S.; Xu, H.; Li, D.; Zhang, X.; Li, Y.; Ye, J. Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Appl. Mater. Interfaces 2016, 8, 9506–9513. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Li, S.; Li, J.; Deng, Y.; Peng, S.; Chen, J.; Chen, Y. Rich surface Co(iii) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIIIlayered double hydroxide. Nanoscale 2016, 8, 15763–15773. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Lin, G.; Hu, X.; Xi, S.; Xie, K. Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nat. Commun. 2019, 10, 3618. [Google Scholar] [CrossRef]
- Tsukada, M.; Adachi, H.; Satoko, C. Theory of Electronic Structure of Oxide Surfaces. Prog. Surf. Sci. 1983, 14, 113–173. [Google Scholar] [CrossRef]
- Liu, B.; Wang, M.; Liu, S.; Zheng, H.; Yang, H. The sensing reaction on the Ni-NiO (111) surface at atomic and molecule level and migration of electron. Sens. Actuators B Chem. 2018, 273, 794–803. [Google Scholar] [CrossRef]
- Afanasev, D.S.; Yakovina, O.A.; Kuznetsova, N.I.; Lisitsyn, A.S. High activity in CO oxidation of Ag nanoparticles supported on fumed silica. Catal. Commun. 2012, 22, 43–47. [Google Scholar] [CrossRef]
- Feng, C.; Liu, X.; Zhu, T.; Tian, M. Catalytic oxidation of CO on noble metal-based catalysts. Environ. Sci. Pollut. Res. 2021, 28, 24847–24871. [Google Scholar] [CrossRef] [PubMed]
- An, A.-F.; Lu, A.-H.; Sun, Q.; Wang, J.; Li, W.-C. Gold nanoparticles stabilized by a flake-like Al2O3 support. Gold Bull. 2011, 44, 217–222. [Google Scholar] [CrossRef]
- Allian, A.D.; Takanabe, K.; Fujdala, K.L.; Hao, X.; Truex, T.J.; Cai, J.; Buda, C.; Neurock, M.; Iglesia, E. Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters. J. Am. Chem. Soc. 2011, 133, 4498–4517. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, W.; Luo, Q.; Yin, R.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z.; et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Alayoglu, S.; Musselwhite, N.; Plamthottam, S.; Melaet, G.; Lindeman, A.E.; Somorjai, G.A. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. J. Am. Chem. Soc. 2013, 135, 16689–16696. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, C.; Zhang, B.; Jiao, Z.; Zhang, J.; Yang, J.; Qin, Y. Tuning the selectivity of Pt-catalyzed tandem hydrogenation of nitro compounds via controllable NiO decoration by atomic layer deposition. Catal. Commun. 2019, 121, 48–52. [Google Scholar] [CrossRef]
- Abdullah Mirzaie, R.; Anaraki Firooz, A.; Ghorbani, P. The effect of reaction layer composition on Pt/NiO function for glucose oxidation reaction in neutral media. Mater. Sci. Eng. C 2020, 114, 111061. [Google Scholar] [CrossRef]
- Frati, F.; Hunault, M.O.J.Y.; de Groot, F.M.F. Oxygen K-edge X-ray Absorption Spectra. Chem. Rev. 2020, 120, 4056–4110. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.; Waterhouse, G.I.N.; Huang, W.; Zhang, T. Defect-Engineered Ultrathin δ-MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1700005. [Google Scholar] [CrossRef]
- Chen, J.; Qi, Y.; Lu, M.; Niu, Y.; Zhang, B. Identify fine microstructure of multifarious iron oxides via O K-edge EELS spectra. Chin. Chem. Lett. 2022, 33, 4375–4379. [Google Scholar] [CrossRef]
- Pollak, M.; Gautier, M.; Thromat, N.; Gota, S.; Mackrodt, W.; Saunders, V. An in-situ study of the surface phase transitions of α-Fe2O3 by X-ray absorption spectroscopy at the oxygen K edge. Nucl. Instrum. Methods Phys. Res. Sect. B 1995, 97, 383–386. [Google Scholar] [CrossRef]
- Ke, J.; Xiao, J.-W.; Zhu, W.; Liu, H.; Si, R.; Zhang, Y.-W.; Yan, C.-H. Dopant-Induced Modification of Active Site Structure and Surface Bonding Mode for High-Performance Nanocatalysts: CO Oxidation on Capping-free (110)-oriented CeO2:Ln (Ln = La–Lu) Nanowires. J. Am. Chem. Soc. 2013, 135, 15191–15200. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, S.; Ill-Min, C.; Vanaraj, R.; Ramaganthan, B.; Mayakrishnan, G. Highly active and reducing agent-free preparation of cost-effective NiO-based carbon nanocomposite and its application in reduction reactions under mild conditions. J. Ind. Eng. Chem. 2018, 60, 91–101. [Google Scholar] [CrossRef]
- Ipsakis, D.; Heracleous, E.; Silvester, L.; Bukur, D.B.; Lemonidou, A.A. Reaction-based kinetic model for the reduction of supported NiO oxygen transfer materials by CH4. Catal. Today 2020, 343, 72–79. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, C.; Xu, T.; Sun, M.; Zhang, J.; Wang, Y.; Wan, H. NiO–polyoxometalate nanocomposites as efficient catalysts for the oxidative dehydrogenation of propane and isobutane. Chem. Commun. 2009, 17, 2376–2378. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Liu, C.; Chang, Q.; Zhao, C.; Tan, R.; Peng, H.; Liu, D.; Zhang, P.; Gui, J. TiO2-nanosheet-assembled microspheres as Pd-catalyst support for highly-stable low-temperature CO oxidation. New J. Chem. 2018, 42, 18066–18076. [Google Scholar] [CrossRef]
- Liu, J.; Ding, T.; Zhang, H.; Li, G.; Cai, J.; Zhao, D.; Tian, Y.; Xian, H.; Bai, X.; Li, X. Engineering surface defects and metal–support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO. Catal. Sci. Technol. 2018, 8, 4934–4944. [Google Scholar] [CrossRef]
- Jung, C.-H.; Yun, J.; Qadir, K.; Naik, B.; Yun, J.-Y.; Park, J.Y. Catalytic activity of Pt/SiO2 nanocatalysts synthesized via ultrasonic spray pyrolysis process under CO oxidation. Appl. Catal. B Environ. 2014, 154–155, 171–176. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Y.; Jiang, H.; Yu, J.; Jiang, R.; Li, C. Engineering TiO2 supported Pt sub-nanoclusters via introducing variable valence Co ion in high-temperature flame for CO oxidation. Nanoscale 2018, 10, 13384–13392. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Cao, C.; Hammedi, T.; Waheed, A.; Sami, B.; Zhao, Z.; Li, G. Support Effects on Nickel Hydroxide and Oxide Nanorods Supported Au Nanoparticles for CO Oxidation. Catal. Lett. 2023, 1–11. [Google Scholar] [CrossRef]
- Sreethawong, T.; Sitthiwechvijit, N.; Rattanachatchai, A.; Ouraipryvan, P.; Schwank, J.W.; Chavadej, S. Preparation of Au/Y2O3 and Au/NiO catalysts by co-precipitation and their oxidation activities. Mater. Chem. Phys. 2010, 126, 212–219. [Google Scholar] [CrossRef]
- Djani, F.; Omari, M.; Martínez-Arias, A. Synthesis, characterization and catalytic properties of La(Ni,Fe)O3–NiO nanocomposites. J. Sol-Gel Sci. Technol. 2015, 78, 1–10. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, P.; Qin, Z.; Yu, C.; Li, W.; Qin, Q.; Li, B.; Fan, M.; Liang, X.; Dong, L. Low temperature CO oxidation catalysed by flower-like Ni–Co–O: How physicochemical properties influence catalytic performance. RSC Adv. 2018, 8, 7110–7122. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Xu, T.; Zheng, Y.; Liang, S.; Gochoo, B.; Gu, X.; Zong, R.; Yao, W.; Zhu, Y. Formation of hollow NiO single crystals and Ag/NiO flowers. Mater. Res. Bull. 2008, 43, 3562–3569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Xie, K. Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation. Catalysts 2024, 14, 130. https://doi.org/10.3390/catal14020130
Wen X, Xie K. Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation. Catalysts. 2024; 14(2):130. https://doi.org/10.3390/catal14020130
Chicago/Turabian StyleWen, Xin, and Kui Xie. 2024. "Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation" Catalysts 14, no. 2: 130. https://doi.org/10.3390/catal14020130
APA StyleWen, X., & Xie, K. (2024). Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation. Catalysts, 14(2), 130. https://doi.org/10.3390/catal14020130