Advanced Technologies Conciliating Desulfurization and Denitrogenation to Prepare Clean Fuels
Abstract
:1. Introduction
2. Extractive Process
2.1. Ionic Liquids
2.2. Deep Eutectic Solvents
2.3. Other Solvents
3. Adsorptive Process
3.1. Carbon-Based Materials
3.2. Zeolites
3.3. Mesoporous Silica
3.4. Metal–Organic Frameworks
4. Catalytic Oxidation Process
Photocatalytic Process
5. Ultrasound-Assisted Process
6. Overview and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Council, E.-A.B. Energy Transition in ASEAN 2023. 2023. Available online: https://www.eu-asean.eu/wp-content/uploads/2023/04/Energy-Transition-in-ASEAN-2023_5-April-2023.pdf (accessed on 4 April 2023).
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.H.; El-Gayar, M.S. Role of non-hydrocarbon constituents in crude oils correlation and heavy fractions processing studies. Pet. Chem. 2017, 57, 838–842. [Google Scholar] [CrossRef]
- Doney, S.C.; Mahowald, N.; Lima, I.; Feely, R.A.; Mackenzie, F.T.; Lamarque, J.F.; Rasch, P.J. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl. Acad. Sci. USA 2007, 104, 14580–14585. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Zwolinska, E.; Chmielewski, A.G. Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 119–142. [Google Scholar] [CrossRef]
- Syri, S.; Fronzek, S.; Karvosenoja, N.; Forsius, M. Sulphur and nitrogen oxides emissions in Europe and deposition in Finland during the 21st century. Boreal Environ. Res. 2004, 9, 185–198. [Google Scholar]
- Babich, I.V.; Moulijn, J.A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel 2003, 82, 607–631. [Google Scholar] [CrossRef]
- Bello, S.S.; Wang, C.; Zhang, M.J.; Gao, H.; Han, Z.N.; Shi, L.; Su, F.B.; Xu, G.W. A Review on the Reaction Mechanism of Hydrodesulfurization and Hydrodenitrogenation in Heavy Oil Upgrading. Energy Fuels 2021, 35, 10998–11016. [Google Scholar] [CrossRef]
- Drahoradova, A.; Vit, Z.; Zdrazil, M. Carbon Supported Ni-Mo Catalyst—High Hydrodenitrogenation Activity and Low Inhibition of Hydrodesulfurization by Hydrodenitrogenation. Fuel 1992, 71, 455–458. [Google Scholar] [CrossRef]
- Miranda, A.M.; Ocampo, D.; Vargas, G.J.; Ríos, L.A.; Sáez, A.A. Nitrogen content reduction on scenedesmus obliquus biomass used to produce biocrude by hydrothermal liquefaction. Fuel 2021, 305, 121592. [Google Scholar] [CrossRef]
- Ghadiryanfar, M.; Rosentrater, K.A.; Keyhani, A.; Omid, M. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew. Sustain. Energy Rev. 2016, 54, 473–481. [Google Scholar] [CrossRef]
- Abro, R.; Kiran, N.; Ahmed, S.; Muhammad, A.; Jatoi, A.S.; Mazari, S.A.; Salma, U.; Plechkova, N.V. Extractive desulfurization of fuel oils using deep eutectic solvents—A comprehensive review. J. Environ. Chem. Eng. 2022, 10, 107369. [Google Scholar] [CrossRef]
- Haruna, A.; Merican, Z.M.A.; Musa, S.G. Recent advances in catalytic oxidative desulfurization of fuel oil—A review. J. Ind. Eng. Chem. 2022, 112, 20–36. [Google Scholar] [CrossRef]
- Hosseini, A.; Khoshsima, A.; Sabzi, M.; Rostam, A. Toward Application of Ionic Liquids to Desulfurization of Fuels: A Review. Energy Fuels 2022, 36, 4119–4152. [Google Scholar] [CrossRef]
- Majid, M.F.; Zaid, H.F.M.; Kait, C.F.; Jumbri, K.; Yuan, L.C.; Rajasuriyan, S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J. Mol. Liq. 2020, 306, 112870. [Google Scholar] [CrossRef]
- Mendiratta, S.; Ali, A.A.A. Recent Advances in Functionalized Mesoporous Silica Frameworks for Efficient Desulfurization of Fuels. Nanomaterials 2020, 10, 1116. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Vedachalam, S.; Dalai, A.K. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol. 2021, 214, 106685. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Mehrvarz, E.; Taghipour, A. Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: A critical review. Rev. Chem. Eng. 2020, 36, 831–858. [Google Scholar] [CrossRef]
- Yuan, B.; Li, X.L.; Sun, Y.Y. A Short Review of Aerobic Oxidative Desulfurization of Liquid Fuels over Porous Materials. Catalysts 2022, 12, 129. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, T.Y.; Liu, H.; Gao, X.C.; Wang, C.Y.; Wang, G.X. Desulfurization through Photocatalytic Oxidation: A Critical Review. Chemsuschem 2021, 14, 492–511. [Google Scholar] [CrossRef]
- Abro, R.; Abro, M.; Gao, S.R.; Bhutto, A.W.; Ali, Z.M.; Shah, A.; Chen, X.C.; Yu, G.R. Extractive denitrogenation of fuel oils using ionic liquids: A review. Rsc Adv. 2016, 6, 93932–93946. [Google Scholar] [CrossRef]
- Laredo, G.C.; Vega-Merino, P.M.; Trejo-Zárraga, F.; Castillo, J. Denitrogenation of middle distillates using adsorbent materials towards ULSD production: A review. Fuel Process. Technol. 2013, 106, 21–32. [Google Scholar] [CrossRef]
- Leng, L.J.; Yang, L.H.; Chen, J.F.; Leng, S.Q.; Li, H.L.; Li, H.; Yuan, X.Z.; Zhou, W.G.; Huang, H.J. A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresour. Technol. 2020, 315, 123801. [Google Scholar] [CrossRef] [PubMed]
- Li, F.H.; Srivatsa, S.C.; Bhattacharya, S. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew. Sustain. Energy Rev. 2019, 108, 481–497. [Google Scholar] [CrossRef]
- Prado, G.H.C.; Rao, Y.; de Klerk, A. Nitrogen Removal from Oil: A Review. Energy Fuels 2017, 31, 14–36. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2) Secondary Air Quality Standards. 2021. Available online: https://www.epa.gov/naaqs/nitrogen-dioxide-no2-and-sulfur-dioxide-so2-secondary-air-quality-standards (accessed on 31 October 2023).
- Kumari, S.; Sengupta, S. Non-hydrogen processes for simultaneous desulfurization and denitrogenation of light petroleum fuels—An elaborative review. Environ. Sci. Pollut. Res. 2021, 28, 61873–61907. [Google Scholar] [CrossRef] [PubMed]
- Ja’fari, M.; Ebrahimi, S.L.; Khosravi-Nikou, M.R. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review. Ultrason. Sonochemistry 2018, 40, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Paucar, N.E.; Kiggins, P.; Blad, B.; De Jesus, K.; Afrin, F.; Pashikanti, S.; Sharma, K. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: A review. Environ. Chem. Lett. 2021, 19, 1205–1228. [Google Scholar] [CrossRef]
- Roman, F.F.; de Tuesta, J.L.D.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, S.; Abdeltawab, A.A.; Al-Deyab, S.S.; Zhang, J.; Yu, L.; Yu, G. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids. Sep. Purif. Technol. 2014, 133, 187–193. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Zhang, C.Z. Extractive Desulfurization and Denitrogenation of Fuels Using Ionic. Ind. Eng. Chem. Res. 2004, 43, 614–622. [Google Scholar] [CrossRef]
- Kianpour, E.; Azizian, S. Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions. Fuel 2014, 137, 36–40. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids--Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Zolotareva, D.; Zazybin, A.; Rafikova, K.; Dembitsky, V.M.; Dauletbakov, A.; Yu, V. Ionic liquids assisted desulfurization and denitrogenation of fuels. Vietnam. J. Chem. 2019, 57, 133–163. [Google Scholar] [CrossRef]
- Hansmeier, A.R.; Meindersma, G.W.; de Haan, A.B. Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids. Green Chem. 2011, 13, 1907–1913. [Google Scholar] [CrossRef]
- Meindersma, W.; De Haan, A.B. Separation Processes with Ionic Liquids. In Ionic Liquids Uncoiled; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 119–179. [Google Scholar] [CrossRef]
- Kumar, M.; Trivedi, N.; Reddy, C.R.K.; Jha, B. Toxic Effects of Imidazolium Ionic Liquids on the Green Seaweed Ulva lactuca: Oxidative Stress and DNA Damage. Chem. Res. Toxicol. 2011, 24, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Uerdingen, M.; Treber, C.; Balser, M.; Schmitt, G.; Werner, C. Corrosion behaviour of ionic liquids. Green Chem. 2005, 7, 321–325. [Google Scholar] [CrossRef]
- Wang, B.; Feng, Y.; Qi, X.; Deng, M.; Tian, J.; Zhang, Q. Designing Explosive Poly(Ionic Liquid)s as Novel Energetic Polymers. Chem. A Eur. J. 2018, 24, 15897–15902. [Google Scholar] [CrossRef]
- Martyn, E.; Jose, E.; Manuela, G.; Luis, R.; Kenneth, S.; Joe, M.; Jason, W. The Distillation and Volatility of Ionic Liquids. Nature 2006, 439, 831–834. [Google Scholar]
- Kongpol, K.; Chaihao, P.; Shuapan, P.; Kongduk, P.; Chunglok, W.; Yusakul, G. Therapeutic hydrophobic deep eutectic solvents of menthol and fatty acid for enhancing anti-inflammation effects of curcuminoids and curcumin on RAW264.7 murine macrophage cells. RSC Adv. 2022, 12, 17443–17453. [Google Scholar] [CrossRef]
- Handy, S.; Lavender, K. Organic synthesis in deep eutectic solvents: Paal–Knorr reactions. Tetrahedron Lett. 2013, 54, 4377–4379. [Google Scholar] [CrossRef]
- Nkuku, C.A.; LeSuer, R.J. Electrochemistry in Deep Eutectic Solvents. J. Phys. Chem. B 2007, 111, 13271–13277. [Google Scholar] [CrossRef] [PubMed]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu, X.; Zhang, S. Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chem. 2015, 17, 2473–2479. [Google Scholar] [CrossRef]
- Alli, R.D.; Kroon, M.C. Extraction of benzothiazole and thiophene from their mixtures with n-heptane using tetrahexylammonium bromide-based deep eutectic solvents as extractive denitrogenation and desulfurization agents. Fluid Phase Equilibria 2018, 477, 1–11. [Google Scholar] [CrossRef]
- Lima, F.; Dave, M.; Silvestre, A.J.D.; Branco, L.C.; Marrucho, I.M. Concurrent Desulfurization and Denitrogenation of Fuels Using Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2019, 7, 11341–11349. [Google Scholar] [CrossRef]
- Warrag, S.E.E.; Darwish, A.S.; Abuhatab, F.O.S.; Adeyemi, I.A.; Kroon, M.C.; AlNashef, I.M. Combined Extractive Dearomatization, Desulfurization, and Denitrogenation of Oil Fuels Using Deep Eutectic Solvents: A Parametric Study. Ind. Eng. Chem. Res. 2020, 59, 11723–11733. [Google Scholar] [CrossRef]
- Lemaoui, T.; Benguerba, Y.; Darwish, A.S.; Abu Hatab, F.; Warrag, S.E.E.; Kroon, M.C.; Alnashef, I.M. Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study. Sep. Purif. Technol. 2021, 256, 117861. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, H.L.; Dai, Y.F.; Gao, J.J.; Jiang, X.M. Extractive Desulfurization and Denitrogenation from Fuel Oil by a Polyether-Amine-Based Solvent. Energy Fuels 2020, 34, 8186–8194. [Google Scholar] [CrossRef]
- Chen, K.; Li, W.; Biney, B.W.; Li, Z.; Shen, J.; Wang, Z. Evaluation of adsorptive desulfurization performance and economic applicability comparison of activated carbons prepared from various carbon sources. RSC Adv. 2020, 10, 40329–40340. [Google Scholar] [CrossRef]
- Duan, L.; Gao, X.; Meng, X.; Zhang, H.; Wang, Q.; Qin, Y.; Zhang, X.; Song, L. Adsorption, Co-adsorption, and Reactions of Sulfur Compounds, Aromatics, Olefins over Ce-Exchanged Y Zeolite. J. Phys. Chem. C 2012, 116, 25748–25756. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups. J. Hazard. Mater. 2015, 283, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, S.; Mavrikakis, M. DFT Insights into the Competitive Adsorption of Sulfur- and Nitrogen-Containing Compounds and Hydrocarbons on Co-Promoted Molybdenum Sulfide Catalysts. ACS Catal. 2016, 6, 2904–2917. [Google Scholar] [CrossRef]
- Khan, N.A.; Uddin, N.; Choi, C.H.; Jhung, S.H. Adsorptive Denitrogenation of Model Fuel with CuCl-Loaded Adsorbents: Contribution of Π-Complexation and Direct Interaction between Adsorbates and Cuprous Ions. J. Phys. Chem. C 2017, 121, 11601–11608. [Google Scholar] [CrossRef]
- Suib, S.L. A Review of Recent Developments of Mesoporous Materials. Chem. Rec. 2017, 17, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Kolahdouz, M.; Xu, B.; Nasiri, A.F.; Fathollahzadeh, M.; Manian, M.; Aghababa, H.; Wu, Y.; Radamson, H.H. Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines 2022, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Sikarwar, P.; Gosu, V.; Palla, V.C.S.; Subbaramaiah, V. Central composite design approach for concurrent desulfurization and denitrogenation of model liquid fuel over Mo-AAC. Environ. Qual. Manag. 2023. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.T.; Wu, P.W.; Liu, J.X.; Ji, H.Y.; Huang, Y.; Chao, Y.H.; Liu, H.Y.; Zhu, W.S.; Liu, Z.C. 3D printing of hierarchically porous lightweight activated carbon/alumina monolithic adsorbent for adsorptive desulfurization of hydrogenated diesel. Sep. Purif. Technol. 2024, 330, 125334. [Google Scholar] [CrossRef]
- Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 2017, 243, 291–300. [Google Scholar] [CrossRef]
- Zhou, A.; Ma, X.; Song, C. Liquid-Phase Adsorption of Multi-Ring Thiophenic Sulfur Compounds on Carbon Materials with Different Surface Properties. J. Phys. Chem. B 2006, 110, 4699–4707. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Sandle, N.K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 1999, 37, 1323–1332. [Google Scholar] [CrossRef]
- Ania, C.O.; Bandosz, T.J. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene. Langmuir 2005, 21, 7752–7759. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhu, J.; Ma, X.; Zha, Q.; Song, C. Tailoring of surface oxygen-containing functional groups and their effect on adsorptive denitrogenation of liquid hydrocarbons over activated carbon. AIChE J. 2013, 59, 1236–1244. [Google Scholar] [CrossRef]
- Han, X.; Lin, H.; Zheng, Y. Adsorptive denitrogenation and desulfurization of diesel using activated carbons oxidized by (NH4)2S2O8 under mild conditions. Can. J. Chem. Eng. 2015, 93, 538–548. [Google Scholar] [CrossRef]
- Thaligari, S.K.; Srivastava, V.C.; Prasad, B. Simultaneous Adsorptive Desulfurization and Denitrogenation by Zinc Loaded Activated Carbon: Optimization of Parameters. Pet. Sci. Technol. 2015, 33, 1667–1675. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Rangel-Mendez, J.R. Model diesel denitrogenation by modified activated carbon with iron nanoparticles: Sulfur compounds effect. Chem. Eng. J. 2013, 230, 439–446. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; khan, A.U. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Svinterikos, E.; Zuburtikudis, I.; Al-Marzouqi, M. Carbon Nanomaterials for the Adsorptive Desulfurization of Fuels. J. Nanotechnol. 2019, 2019, 2809867. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Li, X.; Yang, C.; Ge, B.; Xiong, S.; Zhang, H.; Wang, T.; Yuan, P. Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels. Chem. Eng. Sci. 2020, 228, 115963. [Google Scholar] [CrossRef]
- Ahmed, I.; Jhung, S.H. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding. J. Hazard. Mater. 2016, 314, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Li, Z.; Zheng, Z.; Li, J.; Qi, X.; Zhou, J.; Wei, H.; He, Y.; Xue, M.; Chu, H. Enhanced adsorption performance for aromatic sulfur compounds over a hierarchical structured AgX zeolite. Environ. Sci. Atmos. 2021, 1, 569–576. [Google Scholar] [CrossRef]
- Zhao, X. 17—Porous materials for direct and indirect evaporative cooling in buildings. In Materials for Energy Efficiency and Thermal Comfort in Buildings; Hall, M.R., Ed.; Woodhead Publishing: Sawston, UK, 2010. [Google Scholar] [CrossRef]
- Dehghan, R.; Anbia, M. Zeolites for adsorptive desulfurization from fuels: A review. Fuel Process. Technol. 2017, 167, 99–116. [Google Scholar] [CrossRef]
- Mguni, L.L.; Ndhlovu, A.; Liu, X.; Hildebrandt, D.; Yao, Y. Insight into Adsorptive Desulfurization by Zeolites: A Machine Learning Exploration. Energy Fuels 2022, 36, 4427–4438. [Google Scholar] [CrossRef]
- Hernández-Maldonado, A.J.; Yang, R.T. Denitrogenation of Transportation Fuels by Zeolites at Ambient Temperature and Pressure. Angew. Chem. Int. Ed. 2004, 43, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Shi, T.B.; Jia, C.Z.; Ji, W.J.; Chen, Y.; He, M.Y. Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. Appl. Catal. B Environ. 2008, 82, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.; Lin, X.; Wang, Y.; Yu, Y.; Qi, T. Effective Adsorptive Denitrogenation from Model Fuels over CeY Zeolite. Ind. Eng. Chem. Res. 2022, 61, 14586–14597. [Google Scholar] [CrossRef]
- Velu, S.; Ma, X.; Song, C. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents. Ind. Eng. Chem. Res. 2003, 42, 5293–5304. [Google Scholar] [CrossRef]
- Xue, M.; Chitrakar, R.; Sakane, K.; Hirotsu, T.; Ooi, K.; Yoshimura, Y.; Toba, M.; Feng, Q. Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. J. Colloid Interface Sci. 2006, 298, 535–542. [Google Scholar] [CrossRef]
- Tian, F.; Sun, X.; Liu, X.; Zhang, H.; Liu, J.; Guo, H.; Zhang, Y.; Meng, C. Effective adsorptive denitrogenation from model fuels over yttrium ion-exchanged Y zeolite. Chin. J. Chem. Eng. 2020, 28, 414–419. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Moon, J.-H.; Bae, Y.-S.; Lee, D.-G.; Sohn, H.-C.; Lee, C.-H. Adsorptive Desulfurization and Denitrogenation of Refinery Fuels Using Mesoporous Silica Adsorbents. ChemSusChem 2008, 1, 307–309. [Google Scholar] [CrossRef]
- Bae, Y.-S.; Kim, M.-B.; Lee, H.-J.; Lee, C.-H.; Wook Ryu, J. Adsorptive denitrogenation of light gas oil by silica-zirconia cogel. AIChE J. 2006, 52, 510–521. [Google Scholar] [CrossRef]
- Koriakin, A.; Ponvel, K.M.; Lee, C.-H. Denitrogenation of raw diesel fuel by lithium-modified mesoporous silica. Chem. Eng. J. 2010, 162, 649–655. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Nuzhdin, A.L.; Kovalenko, K.A.; Dybtsev, D.N.; Bukhtiyarova, G.A. Removal of nitrogen compounds from liquid hydrocarbon streams by selective sorption on metal-organic framework MIL-101. Mendeleev Commun. 2010, 20, 57–58. [Google Scholar] [CrossRef]
- Ahmed, I.; Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): Effect of acidity and basicity of MOFs. Appl. Catal. B Environ. 2013, 129, 123–129. [Google Scholar] [CrossRef]
- Ahmed, I.; Khan, N.A.; Yoon, J.W.; Chang, J.-S.; Jhung, S.H. Protonated MIL-125-NH2: Remarkable Adsorbent for the Removal of Quinoline and Indole from Liquid Fuel. ACS Appl. Mater. Interfaces 2017, 9, 20938–20946. [Google Scholar] [CrossRef] [PubMed]
- Mondol, M.M.H.; Bhadra, B.N.; Park, J.M.; Jhung, S.H. A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chem. Eng. J. 2021, 404, 126491. [Google Scholar] [CrossRef]
- Sarker, M.; An, H.J.; Jhung, S.H. Adsorptive Removal of Indole and Quinoline from Model Fuel over Various UiO-66s: Quantitative Contributions of H-Bonding and Acid–Base Interactions to Adsorption. J. Phys. Chem. C 2018, 122, 4532–4539. [Google Scholar] [CrossRef]
- Wei, S.; He, H.; Cheng, Y.; Yang, C.; Zeng, G.; Qiu, L. Performances, kinetics and mechanisms of catalytic oxidative desulfurization from oils. RSC Adv. 2016, 6, 103253–103269. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A. Oxidative desulfurization of fuels using ionic liquids: A review. Front. Chem. Sci. Eng. 2015, 9, 262–279. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Zhang, H.; Du, W.; Liu, Z. Development of microwave assisted oxidative desulfurization of petroleum oils: A review. J. Ind. Eng. Chem. 2013, 19, 1426–1432. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Abro, R.; Gao, S.; Abbas, T.; Chen, X.; Yu, G. Oxidative desulfurization of fuel oils using ionic liquids: A review. J. Taiwan Inst. Chem. Eng. 2016, 62, 84–97. [Google Scholar] [CrossRef]
- Choi, A.E.S.; Roces, S.; Dugos, N.; Wan, M.-W. Oxidation by H2O2 of bezothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization. Fuel 2016, 180, 127–136. [Google Scholar] [CrossRef]
- Zhu, M.; Luo, G.; Kang, L.; Dai, B. Novel catalyst by immobilizing a phosphotungstic acid on polymer brushes and its application in oxidative desulfurization. RSC Adv. 2014, 4, 16769–16776. [Google Scholar] [CrossRef]
- Qin, Y.; Xun, S.; Zhan, L.; Lu, Q.; He, M.; Jiang, W.; Li, H.; Zhang, M.; Zhu, W.; Li, H. Synthesis of mesoporous WO3/TiO2 catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New J. Chem. 2017, 41, 569–578. [Google Scholar] [CrossRef]
- Sarker, M.; Bhadra, B.N.; Shin, S.; Jhung, S.H. TiO2-Integrated Carbon Prepared via Pyrolysis of Ti-Loaded Metal–Organic Frameworks for Redox Catalysis. ACS Appl. Nano Mater. 2019, 2, 191–201. [Google Scholar] [CrossRef]
- Hasan, Z.; Jeon, J.; Jhung, S.H. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: Effect of calcination temperature of catalysts. J. Hazard. Mater. 2012, 205–206, 216–221. [Google Scholar] [CrossRef]
- Houda, S.; Lancelot, C.; Blanchard, P.; Poinel, L.; Lamonier, C. Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts 2018, 8, 344. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I. A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 3. Denitrogenation Behavior of Light Oil Feedstocks. Ind. Eng. Chem. Res. 2001, 40, 3390–3397. [Google Scholar] [CrossRef]
- Carnaroglio, D.; Gaudino, E.C.; Mantegna, S.; Moreira, E.M.; Vicente de Castro, A.; Flores, E.M.M.; Cravotto, G. Ultrasound-Assisted Oxidative Desulfurization/Denitrification of Liquid Fuels with Solid Oxidants. Energy Fuels 2014, 28, 1854–1859. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, H. Ultrasound assisted oxidative denitrification of diesel by formic acid/hydrogen peroxide. Pet. Sci. Technol. 2016, 34, 268–273. [Google Scholar] [CrossRef]
- Ishihara, A.; Wang, D.; Dumeignil, F.; Amano, H.; Qian, E.W.; Kabe, T. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl. Catal. A Gen. 2005, 279, 279–287. [Google Scholar] [CrossRef]
- Zhou, X.-r.; Ma, H.; Fu, X.-m.; Yao, C.-b.; Xiao, J.-q. Catalytic oxidation of carbazole using t-butyl hydroperoxide over molybdenum catalysts. J. Fuel Chem. Technol. 2010, 38, 75–79. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, H.L. Oxidative Denitrification of Diesel by Phosphomolybdic Acid/Hydrogen Peroxide. Pet. Sci. Technol. 2015, 33, 968–974. [Google Scholar] [CrossRef]
- Ogunlaja, A.S.; Alade, O.S. Catalysed oxidation of quinoline in model fuel and the selective extraction of quinoline-N-oxide with imidazoline-based ionic liquids. Egypt. J. Pet. 2018, 27, 159–168. [Google Scholar] [CrossRef]
- Ogunlaja, A.S.; Abdul-quadir, M.S.; Kleyi, P.E.; Ferg, E.E.; Watts, P.; Tshentu, Z.R. Towards oxidative denitrogenation of fuel oils: Vanadium oxide-catalysed oxidation of quinoline and adsorptive removal of quinoline-N-oxide using 2,6-pyridine-polybenzimidazole nanofibers. Arab. J. Chem. 2019, 12, 198–214. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Song, J.Y.; Uddin, N.; Khan, N.A.; Kim, S.; Choi, C.H.; Jhung, S.H. Oxidative denitrogenation with TiO2@porous carbon catalyst for purification of fuel: Chemical aspects. Appl. Catal. B Environ. 2019, 240, 215–224. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts. Appl. Catal. B Environ. 2019, 259, 118021. [Google Scholar] [CrossRef]
- Mirante, F.; Mendes, R.F.; Paz, F.A.A.; Balula, S.S. High Catalytic Efficiency of a Layered Coordination Polymer to Remove Simultaneous Sulfur and Nitrogen Compounds from Fuels. Catalysts 2020, 10, 731. [Google Scholar] [CrossRef]
- Silva, D.F.; Viana, A.M.; Santos-Vieira, I.; Balula, S.S.; Cunha-Silva, L. Ionic Liquid-Based Polyoxometalate Incorporated at ZIF-8: A Sustainable Catalyst to Combine Desulfurization and Denitrogenation Processes. Molecules 2022, 27, 1711. [Google Scholar] [CrossRef] [PubMed]
- Guth, E.; Diaz, A. Method for Removing Sulfur and Nitrogen in Petroleum Oils. U.S. Patent 3,847,800, 12 November 1974. [Google Scholar]
- Guimarães, I.R.; Giroto, A.S.; de Souza, W.F.; Guerreiro, M.C. Highly reactive magnetite covered with islands of carbon: Oxidation of N and S-containing compounds in a biphasic system. Appl. Catal. A Gen. 2013, 450, 106–113. [Google Scholar] [CrossRef]
- Rafiee, E.; Khodayari, M. Synthesis and characterization of PMoV/Fe3O4/g-C3N4 from melamine: An industrial green nanocatalyst for deep oxidative desulfurization. Chin. J. Catal. 2017, 38, 458–468. [Google Scholar] [CrossRef]
- Rafiee, E.; Shahbazirad, A.; Khodayari, M. Preparation and characterization of nanocomposite of graphitic carbon nitride and TiO2 as a porous support for nano catalyst for desulfurization process. J. Saudi Chem. Soc. 2017, 21, 943–953. [Google Scholar] [CrossRef]
- Cho, K.-S.; Lee, Y.-K. Effects of nitrogen compounds, aromatics, and aprotic solvents on the oxidative desulfurization (ODS) of light cycle oil over Ti-SBA-15 catalyst. Appl. Catal. B Environ. 2014, 147, 35–42. [Google Scholar] [CrossRef]
- Cedeño Caero, L.; Jorge, F.; Navarro, A.; Gutiérrez-Alejandre, A. Oxidative desulfurization of synthetic diesel using supported catalysts: Part II. Effect of oxidant and nitrogen-compounds on extraction–oxidation process. Catal. Today 2006, 116, 562–568. [Google Scholar] [CrossRef]
- Jia, Y.; Li, G.; Ning, G.; Jin, C. The effect of N-containing compounds on oxidative desulphurization of liquid fuel. Catal. Today 2009, 140, 192–196. [Google Scholar] [CrossRef]
- Palomeque-Santiago, J.F.; López-Medina, R.; Oviedo-Roa, R.; Navarrete-Bolaños, J.; Mora-Vallejo, R.; Montoya-de la Fuente, J.A.; Martínez-Magadán, J.M. Deep oxidative desulfurization with simultaneous oxidative denitrogenation of diesel fuel and straight run gas oil. Appl. Catal. B Environ. 2018, 236, 326–337. [Google Scholar] [CrossRef]
- Subhan, S.; Muhammad, Y.; Sahibzada, M.; Subhan, F.; Tong, Z. Studies on the Selection of a Catalyst–Oxidant System for the Energy-Efficient Desulfurization and Denitrogenation of Fuel Oil at Mild Operating Conditions. Energy Fuels 2019, 33, 8423–8439. [Google Scholar] [CrossRef]
- Safa, M.A.; Ma, X.; Bouresli, R.; Albazzaz, H. Effects of co-existing nitrogen compounds and polycyclic aromatic hydrocarbons on catalytic oxidative desulfurization of refractory sulfur compounds in middle distillates. Catal. Today 2021, 371, 258–264. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I. Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid−Liquid Extraction. Ind. Eng. Chem. Res. 2002, 41, 4362–4375. [Google Scholar] [CrossRef]
- Bertleff, B.; Haider, M.S.; Claußnitzer, J.; Korth, W.; Wasserscheid, P.; Jess, A.; Albert, J. Extractive Catalytic Oxidative Denitrogenation of Fuels and Their Promoting Effect for Desulfurization Catalyzed by Vanadium Substituted Heteropolyacids and Molecular Oxygen. Energy Fuels 2020, 34, 8099–8109. [Google Scholar] [CrossRef]
- Yaseen, M.; Subhan, S.; Subhan, F.; Ur Rahman, A.; Naeem, A.; Ahmad, Z.; Tong, Z. Hausmannite Mn3O4 functionalized graphene Oxide-NaClO system for oxidative desulfurization and denitrogenation of fuel oils. Fuel 2022, 321, 124017. [Google Scholar] [CrossRef]
- Subhan, S.; Yaseen, M.; Ahmad, B.; Tong, Z.; Subhan, F.; Ahmad, W.; Sahibzada, M. Fabrication of MnO2 NPs incorporated UiO-66 for the green and efficient oxidative desulfurization and denitrogenation of fuel oils. J. Environ. Chem. Eng. 2021, 9, 105179. [Google Scholar] [CrossRef]
- Rafiee, E.; Rahpeyma, N. Selective oxidation of sulfurs and oxidation desulfurization of model oil by 12-tungstophosphoric acid on cobalt-ferrite nanoparticles as magnetically recoverable catalyst. Chin. J. Catal. 2015, 36, 1342–1349. [Google Scholar] [CrossRef]
- Fernandes, S.C.; Viana, A.M.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Synergistic combination of the nanoporous system of MOF-808 with a polyoxomolybdate to design an effective catalyst: Simultaneous oxidative desulfurization and denitrogenation processes. Sustain. Energy Fuels 2021, 5, 4032–4040. [Google Scholar] [CrossRef]
- Silva, D.F.; Faria, R.G.; Santos-Vieira, I.; Cunha-Silva, L.; Granadeiro, C.M.; Balula, S.S. Simultaneous sulfur and nitrogen removal from fuel combining activated porous MIL-100(Fe) catalyst and sustainable solvents. Catal. Today 2023, 423, 114250. [Google Scholar] [CrossRef]
- Shokri Aghbolagh, Z.; Khanmohammadi Khorrami, M.R.; Rahmatyan, M.S. Oxidative Desulfurization and Denitrogenation of Simulated Fuels Catalyzed by TBAPMo11Cu@CuO as a High-Performance and Recoverable Heterogeneous Phase-Transfer Catalyst. Energy Fuels 2020, 34, 16366–16380. [Google Scholar] [CrossRef]
- Banisharif, F.; Dehghani, M.R.; Capel-Sanchez, M.C.; Campos-Martin, J.M. Highly catalytic oxidative desulfurization and denitrogenation of diesel using anchored-silica-gel vanadium-substituted Dawson-type polyoxometalate. Catal. Today 2019, 333, 219–225. [Google Scholar] [CrossRef]
- Yao, Z.; Miras, H.N.; Song, Y.-F. Efficient concurrent removal of sulfur and nitrogen contents from complex oil mixtures by using polyoxometalate-based composite materials. Inorg. Chem. Front. 2016, 3, 1007–1013. [Google Scholar] [CrossRef]
- Fard, N.E.; Fazaeli, R.; Yousefi, M.; Abdolmohammadi, S. Morphology-Controlled Synthesis of CuO, CuO Rod/MWW Composite for Advanced Oxidation of Indole and Benzothiophene. ChemistrySelect 2019, 4, 9529–9539. [Google Scholar] [CrossRef]
- Zhang, X.; Song, H.; Sun, C.; Chen, C.; Han, F.; Li, X. Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation. Mater. Chem. Phys. 2019, 226, 34–43. [Google Scholar] [CrossRef]
- Li, B.; Song, H.; Han, F.; Wei, L. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation. Appl. Catal. B Environ. 2020, 269, 118845. [Google Scholar] [CrossRef]
- Fakhri, H.; Esrafili, A.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Preparation of tungstophosphoric acid/cerium-doped NH2-UiO-66 Z-scheme photocatalyst: A new candidate for green photo-oxidation of dibenzothiophene and quinoline using molecular oxygen as the oxidant. New J. Chem. 2021, 45, 10897–10906. [Google Scholar] [CrossRef]
- Wang, L. Simultaneous desulfurization and denitrogenation of diesel over Er/W-N-TiO2 photocatalyst. Fuel Process. Technol. 2021, 216, 106802. [Google Scholar] [CrossRef]
- Wang, L.; Zuo, N.; Sun, M.; Ma, Y.; Mominou, N.; Jiang, W.; Li, S.; Jing, C. Deep desulfurization and denitrogenation of diesel fuel over Ir/Pr-N-CQDs-TiO2 under ultraviolet radiation. Sep. Purif. Technol. 2021, 272, 118861. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Carnaroglio, D.; Boffa, L.; Cravotto, G.; Moreira, E.M.; Nunes, M.A.G.; Dressler, V.L.; Flores, E.M.M. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors. Ultrason. Sonochemistry 2014, 21, 283–288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, R.G.; Silva, D.; Mirante, F.; Gago, S.; Cunha-Silva, L.; Balula, S.S. Advanced Technologies Conciliating Desulfurization and Denitrogenation to Prepare Clean Fuels. Catalysts 2024, 14, 137. https://doi.org/10.3390/catal14020137
Faria RG, Silva D, Mirante F, Gago S, Cunha-Silva L, Balula SS. Advanced Technologies Conciliating Desulfurization and Denitrogenation to Prepare Clean Fuels. Catalysts. 2024; 14(2):137. https://doi.org/10.3390/catal14020137
Chicago/Turabian StyleFaria, Rui G., Dinis Silva, Fátima Mirante, Sandra Gago, Luís Cunha-Silva, and Salete S. Balula. 2024. "Advanced Technologies Conciliating Desulfurization and Denitrogenation to Prepare Clean Fuels" Catalysts 14, no. 2: 137. https://doi.org/10.3390/catal14020137
APA StyleFaria, R. G., Silva, D., Mirante, F., Gago, S., Cunha-Silva, L., & Balula, S. S. (2024). Advanced Technologies Conciliating Desulfurization and Denitrogenation to Prepare Clean Fuels. Catalysts, 14(2), 137. https://doi.org/10.3390/catal14020137