Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone
Abstract
:1. Introduction
2. Lignocellulosic Biomass Processing
2.1. Physical Pre-Treatments
- Milling or grinding,
- Chipping,
- Extrusion,
- Processes applied under irradiation (microwave) or ultrasound excitation.
2.2. Chemical Pre-Treatments
- Pre-treatments using a span of organic solvents with or without the addition of a catalyst, that are referred under a common umbrella as Organosolv processes [27].
2.3. Catalytic Chemical Processing of Lignocellulosic Biomass
3. Categorization of the Origin of the Biomass Impurities
4. Biomass Endogenous Impurities
4.1. Impurities from Soil Origin
4.1.1. Phytoremediation Processes
4.1.2. Impurities Affecting the Hydrolysis and Hydrogenation Steps
4.2. Impurities from Plant Proteins
4.3. Influence of Other Compounds
5. Biomass Exogenous Impurities
5.1. Influence of the Catalysts Originating from Hydrolysis Step
5.2. Physical Pre-Treatments
5.3. Experimental Reactor Setup
6. Catalyst Deactivation by Carbonaceous Species (Humins and Coke)
6.1. Catalysts Deactivation by Humins
6.2. Catalysts Deactivation by Coke
7. Summary
8. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic Conversion of Lignocellulosic Biomass to Fine Chemicals and Fuels. Chem. Soc. Rev. 2011, 40, 5588–5617. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Weinberg, K.; Palkovits, R. Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angew. Chem.—Int. Ed. 2012, 51, 2564–2601. [Google Scholar] [CrossRef]
- Harmsen, P.F.; Huijgen, W.; Bermudez, L.; Bakker, R. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass; Food & Biobased Research: Wageningen, The Netherlands, 2010; Volume 28, ISBN 9789085857570. [Google Scholar]
- Tursi, A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Saka, S. Comparative Study on Chemical Composition of Various Biomass Species. RSC Adv. 2013, 3, 3946–3956. [Google Scholar] [CrossRef]
- Jȩdrzejczyk, M.; Soszka, E.; Czapnik, M.; Ruppert, A.M.; Grams, J. Physical and Chemical Pretreatment of Lignocellulosic Biomass; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128151624. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Lin, Y.C.; Huber, G.W. The Critical Role of Heterogeneous Catalysis in Lignocellulosic Biomass Conversion. Energy Environ. Sci. 2009, 2, 68–80. [Google Scholar] [CrossRef]
- Soszka, E.; Reijneveld, H.M.; Jȩdrzejczyk, M.; Rzeźnicka, I.; Grams, J.; Ruppert, A.M. Chlorine Influence on Palladium Doped Nickel Catalysts in Levulinic Acid Hydrogenation with Formic Acid as Hydrogen Source. ACS Sustain. Chem. Eng. 2018, 6, 14607–14613. [Google Scholar] [CrossRef]
- Michel, C.; Zaffran, J.; Ruppert, A.M.; Matras-Michalska, J.; Jędrzejczyk, M.; Grams, J.; Sautet, P. Role of Water in Metal Catalyst Performance for Ketone Hydrogenation: A Joint Experimental and Theoretical Study on Levulinic Acid Conversion into Gamma-Valerolactone. Chem. Commun. 2014, 50, 12450–12453. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, A.M.; Agulhon, P.; Grams, J.; Wachala, M.; Wojciechowska, J.; Swierczynski, D.; Cacciaguerra, T.; Tanchoux, N.; Quignard, F. Synthesis of TiO2-ZrO2 Mixed Oxides via the Alginate Route: Application in the Ru Catalytic Hydrogenation of Levulinic Acid to Gamma-Valerolactone. Energies 2019, 12, 4706. [Google Scholar] [CrossRef]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic Conversion of Biomass to Biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Li, X.; Xu, R.; Yang, J.; Nie, S.; Liu, D.; Liu, Y.; Si, C. Production of 5-Hydroxymethylfurfural and Levulinic Acid from Lignocellulosic Biomass and Catalytic Upgradation. Ind. Crops Prod. 2019, 130, 184–197. [Google Scholar] [CrossRef]
- Li, M.; Cao, S.; Meng, X.; Studer, M.; Wyman, C.E.; Ragauskas, A.J.; Pu, Y. The Effect of Liquid Hot Water Pretreatment on the Chemical-Structural Alteration and the Reduced Recalcitrance in Poplar. Biotechnol. Biofuels 2017, 10, 237. [Google Scholar] [CrossRef]
- Ahorsu, R.; Cintorrino, G.; Medina, F.; Constantí, M. Microwave Processes: A Viable Technology for Obtaining Xylose from Walnut Shell to Produce Lactic Acid by Bacillus Coagulans. J. Clean. Prod. 2019, 231, 1171–1181. [Google Scholar] [CrossRef]
- Li, P.; Cai, D.; Luo, Z.; Qin, P.; Chen, C.; Wang, Y.; Zhang, C.; Wang, Z.; Tan, T. Effect of Acid Pretreatment on Different Parts of Corn Stalk for Second Generation Ethanol Production. Bioresour. Technol. 2016, 206, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; de Souza, W.; Sant Anna, C.; Brienzo, M. Elephant Grass Leaves Have Lower Recalcitrance to Acid Pretreatment than Stems, with Higher Potential for Ethanol Production. Ind. Crops Prod. 2018, 111, 193–200. [Google Scholar] [CrossRef]
- Grande, P.M.; Viell, J.; Theyssen, N.; Marquardt, W.; Domínguez De María, P.; Leitner, W. Fractionation of Lignocellulosic Biomass Using the OrganoCat Process. Green Chem. 2015, 17, 3533–3539. [Google Scholar] [CrossRef]
- Yuan, Z.; Wen, Y.; Kapu, N.S. Ethanol Production from Bamboo Using Mild Alkaline Pre-Extraction Followed by Alkaline Hydrogen Peroxide Pretreatment. Bioresour. Technol. 2018, 247, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of Wheat Straw Leads to Structural Changes and Improved Enzymatic Hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sewsynker-Sukai, Y.; Naomi David, A.; Gueguim Kana, E.B. Recent Developments in the Application of Kraft Pulping Alkaline Chemicals for Lignocellulosic Pretreatment: Potential Beneficiation of Green Liquor Dregs Waste. Bioresour. Technol. 2020, 306, 123225. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, B.; Lu, X.; Zhou, Y.; Fang, J.; Li, Y.; Zhang, S. Nanoscale Observation of Microfibril Swelling and Dissolution in Ionic Liquids. ACS Sustain. Chem. Eng. 2018, 6, 909–917. [Google Scholar] [CrossRef]
- Yoo, C.G.; Pu, Y.; Ragauskas, A.J. Ionic Liquids: Promising Green Solvents for Lignocellulosic Biomass Utilization. Curr. Opin. Green Sustain. Chem. 2017, 5, 5–11. [Google Scholar] [CrossRef]
- Prado, C.A.; Antunes, F.A.F.; Rocha, T.M.; Sánchez-Muñoz, S.; Barbosa, F.G.; Terán-Hilares, R.; Cruz-Santos, M.M.; Arruda, G.L.; da Silva, S.S.; Santos, J.C. A Review on Recent Developments in Hydrodynamic Cavitation and Advanced Oxidative Processes for Pretreatment of Lignocellulosic Materials. Bioresour. Technol. 2022, 345, 126458. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of Agricultural Biomass for Anaerobic Digestion: Current State and Challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.G.; Agrawal, K.; Verma, P. Organosolv Pretreatment: An in-Depth Purview of Mechanics of the System. Bioresour. Bioprocess. 2023, 10, 50. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, X.P.; Duong, X.Q.; Ağbulut, Ü.; Len, C.; Nguyen, P.Q.P.; Kchaou, M.; Chen, W.H. Steam Explosion as Sustainable Biomass Pretreatment Technique for Biofuel Production: Characteristics and Challenges. Bioresour. Technol. 2023, 385, 129398. [Google Scholar] [CrossRef]
- Shah, A.A.; Seehar, T.H.; Sharma, K.; Toor, S.S. Biomass Pretreatment Technologies. In Hydrocarbon Biorefinery—Sustainable Processing of Biomass for Hydrocarbon Biofuels; Elsevier: Amsterdam, The Netherlands, 2022; pp. 203–228. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O.S. The Conversion of Lignocellulosics to Levulinic Acid. Biofuels Bioprod. Biorefin. 2011, 5, 198–214. [Google Scholar] [CrossRef]
- Chang, C.; Ma, X.; Cen, P. Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature. Chin. J. Chem. Eng. 2006, 14, 708–712. [Google Scholar] [CrossRef]
- Dutta, S.; Yu, I.K.M.; Tsang, D.C.W.; Ng, Y.H.; Ok, Y.S.; Sherwood, J.; Clark, J.H. Green Synthesis of Gamma-Valerolactone (GVL) through Hydrogenation of Biomass-Derived Levulinic Acid Using Non-Noble Metal Catalysts: A Critical Review. Chem. Eng. J. 2019, 372, 992–1006. [Google Scholar] [CrossRef]
- Abdelrahman, O.A.; Heyden, A.; Bond, J.Q. Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid to Form γ-Valerolactone over Ru/C. ACS Catal. 2014, 4, 1171–1181. [Google Scholar] [CrossRef]
- Yan, Z.P.; Lin, L.; Liu, S. Synthesis of γ-Valerolactone by Hydrogenation of Biomass- DerivedLevulinic Acid over Ru/C Catalyst. Energy Fuels 2009, 23, 3853–3858. [Google Scholar] [CrossRef]
- Cao, R.; Xin, J.; Zhang, Z.; Liu, Z.; Lu, X.; Ren, B.; Zhang, S. Efficient Conversion of α-Angelica Lactone into γ-Valerolactone with Ionic Liquids at Room Temperature. ACS Sustain. Chem. Eng. 2014, 2, 902–909. [Google Scholar] [CrossRef]
- Upare, P.P.; Lee, J.M.; Hwang, D.W.; Halligudi, S.B.; Hwang, Y.K.; Chang, J.S. Selective Hydrogenation of Levulinic Acid to γ-Valerolactone over Carbon-Supported Noble Metal Catalysts. J. Ind. Eng. Chem. 2011, 17, 287–292. [Google Scholar] [CrossRef]
- Hijazi, A.; Khalaf, N.; Kwapinski, W.; Leahy, J.J. Catalytic Valorisation of Biomass Levulinic Acid into Gamma Valerolactone Using Formic Acid as a H2 Donor: A Critical Review. RSC Adv. 2022, 12, 13673–13694. [Google Scholar] [CrossRef]
- Ftouni, J.; Genuino, H.C.; Muñoz-Murillo, A.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Influence of Sulfuric Acid on the Performance of Ruthenium-Based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. ChemSusChem 2017, 10, 2891–2896. [Google Scholar] [CrossRef]
- Braden, D.J.; Henao, C.A.; Heltzel, J.; Maravelias, C.C.; Dumesic, J.A. Production of Liquid Hydrocarbon Fuels by Catalytic Conversion of Biomass-Derived Levulinic Acid. Green Chem. 2011, 13, 1755–1765. [Google Scholar] [CrossRef]
- Genuino, H.C.; Van De Bovenkamp, H.H.; Wilbers, E.; Winkelman, J.G.M.; Goryachev, A.; Hofmann, J.P.; Hensen, E.J.M.; Weckhuysen, B.M.; Bruijnincx, P.C.A.; Heeres, H.J. Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. ACS Sustain. Chem. Eng. 2020, 8, 5903–5919. [Google Scholar] [CrossRef]
- Wachała, M.; Grams, J.; Kwapiński, W.; Ruppert, A.M. Influence of ZrO2 on Catalytic Performance of Ru Catalyst in Hydrolytic Hydrogenation of Cellulose towards γ-Valerolactone. Int. J. Hydrogen Energy 2016, 41, 8688–8695. [Google Scholar] [CrossRef]
- Soszka, E.; Sneka-Płatek, O.; Skiba, E.; Maniukiewicz, W.; Pawlaczyk, A.; Rogowski, J.; Szynkowska-Jóźwik, M.; Ruppert, A.M. Influence of the Presence of Impurities and of the Biomass Source on the Performance of Ru Catalysts in the Hydrolytic Hydrogenation of Cellulose towards γ-Valerolactone. Fuel 2022, 319, 123646. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Grams, J.; Matras-Michalska, J.; Chełmicka, M.; Przybysz, P. ToF-SIMS Study of the Surface of Catalysts Used in Biomass Valorization. Surf. Interface Anal. 2014, 46, 726–730. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, Y.; Li, J.; Fu, Y.; Liao, B.; Guo, Q.X. Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts. ChemSusChem 2010, 3, 1172–1175. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, T.; Ning, Z.; Liu, Y.; Chen, H.; Peng, J. Pollution and Health Risk Assessment of Toxic Metal(Loid)s in Soils under Different Land Use in Sulphide Mineralized Areas. Sci. Total Environ. 2020, 724, 138176. [Google Scholar] [CrossRef]
- Favas, P.J.C.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; IntechOpen Ltd.: London, UK, 2014; ISBN 978-953-51-1235-8. [Google Scholar] [CrossRef]
- Etim, E.E. Phytoremediation and Its Mechanisms: A Review. Int. J. Environ. Bioenergy 2012, 2, 120–136. [Google Scholar]
- Caillat, S.; Vakkilainen, E. Large-Scale Biomass Combustion Plants: An Overview; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 9780857091314. [Google Scholar]
- Chen, K.; Ng, K.H.; Cheng, C.K.; Cheng, Y.W.; Chong, C.C.; Vo, D.V.N.; Witoon, T.; Ismail, M.H. Biomass-Derived Carbon-Based and Silica-Based Materials for Catalytic and Adsorptive Applications—An Update since 2010. Chemosphere 2022, 287, 132222. [Google Scholar] [CrossRef]
- Rachniyom, W.; Srisittipokakun, N.; Kaewkhao, J. Comparative Study of SiO2 in Biomass Ashes at Different Temperatures. Interdiscip. Res. Rev. 2019, 14, 12–15. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase-Mineral and Chemical Composition and Classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Chen, H.; Yu, B.; Jin, S. Production of Levulinic Acid from Steam Exploded Rice Straw via Solid Superacid, S2O82-/ZrO2-SiO2-Sm2O3. Bioresour. Technol. 2011, 102, 3568–3570. [Google Scholar] [CrossRef] [PubMed]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative Response of Scots Pine (Pinus sylvestris L.) and Silver Birch (Betula pendula Roth) to Heavy Metals Enhanced by Pb-Zn Ore Mining and Processing Plants: Explicitly Spatial Considerations of Ordinary Kriging Based on a GIS Approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Fachri, B.A.; Abdilla, R.M.; De Bovenkamp, H.H.V.; Rasrendra, C.B.; Heeres, H.J. Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d -Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. ACS Sustain. Chem. Eng. 2015, 3, 3024–3034. [Google Scholar] [CrossRef]
- Pang, J.; Zheng, M.; Sun, R.; Song, L.; Wang, A.; Wang, X.; Zhang, T. Catalytic Conversion of Cellulosic Biomass to Ethylene Glycol: Effects of Inorganic Impurities in Biomass. Bioresour. Technol. 2015, 175, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Peng, X.; Sun, S.; Zhong, L.; Chen, W.; Wang, S.; Sun, R.C. Hydrothermal Conversion of Xylose, Glucose, and Cellulose under the Catalysis of Transition Metal Sulfates. Carbohydr. Polym. 2015, 118, 44–51. [Google Scholar] [CrossRef]
- Paniagua, M.; Morales, G.; Melero, J.A.; García-Salgado, D. Insights into the Influence of Feed Impurities on Catalytic Performance in the Solvent-Free Dimerization of Renewable Levulinic Acid. Catal. Today 2024, 428, 114446. [Google Scholar] [CrossRef]
- Zeng, M.; Pan, X. Insights into Solid Acid Catalysts for Efficient Cellulose Hydrolysis to Glucose: Progress, Challenges, and Future Opportunities. Catal. Rev.—Sci. Eng. 2022, 64, 445–490. [Google Scholar] [CrossRef]
- Tang, P.; Yu, J. Kinetic Analysis on Deactivation of a Solid Brønsted Acid Catalyst in Conversion of Sucrose to Levulinic Acid. Ind. Eng. Chem. Res. 2014, 53, 11629–11637. [Google Scholar] [CrossRef]
- Lin, F.; Xu, M.; Ramasamy, K.K.; Li, Z.; Klinger, J.L.; Schaidle, J.A.; Wang, H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal. 2022, 12, 13555–13599. [Google Scholar] [CrossRef]
- Potvin, J.; Sorlien, E.; Hegner, J.; DeBoef, B.; Lucht, B.L. Effect of NaCl on the Conversion of Cellulose to Glucose and Levulinic Acid via Solid Supported Acid Catalysis. Tetrahedron Lett. 2011, 52, 5891–5893. [Google Scholar] [CrossRef]
- Kang, S.; Fu, J.; Zhang, G. From Lignocellulosic Biomass to Levulinic Acid: A Review on Acid-Catalyzed Hydrolysis. Renew. Sustain. Energy Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Zareihassangheshlaghi, A.; Dizaji, H.B.; Zeng, T.; Huth, P.; Ruf, T.; Denecke, R.; Enke, D. Behavior of Metal Impurities on Surface and Bulk of Biogenic Silica from Rice Husk Combustion and the Impact on Ash-Melting Tendency. ACS Sustain. Chem. Eng. 2020, 8, 10369–10379. [Google Scholar] [CrossRef]
- Lee, J.; Saha, B.; Vlachos, D.G. Pt Catalysts for Efficient Aerobic Oxidation of Glucose to Glucaric Acid in Water. Green Chem. 2016, 18, 3815–3822. [Google Scholar] [CrossRef]
- Borg, Ø.; Hammer, N.; Enger, B.C.; Myrstad, R.; Lindvg, O.A.; Eri, S.; Skagseth, T.H.; Rytter, E. Effect of Biomass-Derived Synthesis Gas Impurity Elements on Cobalt Fischer-Tropsch Catalyst Performance Including in Situ Sulphur and Nitrogen Addition. J. Catal. 2011, 279, 163–173. [Google Scholar] [CrossRef]
- Mthembu, L.D.; Gupta, R.; Dziike, F.; Lokhat, D.; Deenadayalu, N. Conversion of Biomass-Derived Levulinic Acid into γ-Valerolactone Using Methanesulfonic Acid: An Optimization Study Using Response Surface Methodology. Fermentation 2023, 9, 288. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C. Evolution of Fuel-N in Gas Phase during Biomass Pyrolysis. Renew. Sustain. Energy Rev. 2015, 50, 408–418. [Google Scholar] [CrossRef]
- Baker, L.A.; Habershon, S. Photosynthetic Pigment-Protein Complexes as Highly Connected Networks: Implications for Robust Energy Transport. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170112. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.J.; Johnson, R.L.; Cardenas, J.; Okerlund, A.; Da Silva, N.A.; Schmidt-Rohr, K.; Dumesic, J.A. Engineering Catalyst Microenvironments for Metal-Catalyzed Hydrogenation of Biologically Derived Platform Chemicals. Angew. Chem.—Int. Ed. 2014, 53, 12718–12722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jackson, J.E.; Miller, D.J. Effect of Biogenic Fermentation Impurities on Lactic Acid Hydrogenation to Propylene Glycol. Bioresour. Technol. 2008, 99, 5873–5880. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jȩdrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A.S.; Michel, C.; Sautet, P.; Grams, J. Ru Catalysts for Levulinic Acid Hydrogenation with Formic Acid as a Hydrogen Source. Green Chem. 2016, 18, 2014–2028. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Jędrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced Production of Γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. ChemSusChem 2019, 12, 639–650. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jȩdrzejczyk, M.; Potrzebowska, N.; Kaźmierczak, K.; Brzezińska, M.; Sneka-Płatek, O.; Sautet, P.; Keller, N.; Michel, C.; Grams, J. Supported Gold-Nickel Nano-Alloy as a Highly Efficient Catalyst in Levulinic Acid Hydrogenation with Formic Acid as an Internal Hydrogen Source. Catal. Sci. Technol. 2018, 8, 4318–4331. [Google Scholar] [CrossRef]
- Sneka-Płatek, O.; Kaźmierczak, K.; Jędrzejczyk, M.; Sautet, P.; Keller, N.; Michel, C.; Ruppert, A.M. Understanding the Influence of the Composition of the Ag[Sbnd]Pd Catalysts on the Selective Formic Acid Decomposition and Subsequent Levulinic Acid Hydrogenation. Int. J. Hydrogen Energy 2020, 45, 17339–17353. [Google Scholar] [CrossRef]
- Mohan, V.; Raghavendra, C.; Pramod, C.V.; Raju, B.D.; Rama Rao, K.S. Ni/H-ZSM-5 as a Promising Catalyst for Vapour Phase Hydrogenation of Levulinic Acid at Atmospheric Pressure. RSC Adv. 2014, 4, 9660–9668. [Google Scholar] [CrossRef]
- Varkolu, M.; Raju Burri, D.; Rao Kamaraju, S.R.; Jonnalagadda, S.B.; van Zyl, W.E. Hydrogenation of Levulinic Acid Using Formic Acid as a Hydrogen Source over Ni/SiO2 Catalysts. Chem. Eng. Technol. 2017, 40, 719–726. [Google Scholar] [CrossRef]
- Guo, H.; Wang, G.; Zhang, B.; Li, J.; Sui, W.; Jia, H.; Si, C. Ultrafine Ru Nanoparticles Deposited on Lignin-Derived Nitrogen-Doped Carbon Nanolayer for the Efficient Conversion of Levulinic Acid to γ-Valerolactone. Renew. Energy 2024, 222, 119954. [Google Scholar] [CrossRef]
- Grillo, G.; Manzoli, M.; Bucciol, F.; Tabasso, S.; Tabanelli, T.; Cavani, F.; Cravotto, G. Hydrogenation of Levulinic Acid to γ-Valerolactone via Green Microwave-Assisted Reactions Either in Continuous Flow or Solvent-Free Batch Processes. Ind. Eng. Chem. Res. 2021, 60, 16756–16768. [Google Scholar] [CrossRef]
- Schwartz, T.J.; O’Neill, B.J.; Shanks, B.H.; Dumesic, J.A. Bridging the Chemical and Biological Catalysis Gap: Challenges and Outlooks for Producing Sustainable Chemicals. ACS Catal. 2014, 4, 2060–2069. [Google Scholar] [CrossRef]
- König, C.F.J.; Schuh, P.; Huthwelker, T.; Smolentsev, G.; Schildhauer, T.J.; Nachtegaal, M. Influence of the Support on Sulfur Poisoning and Regeneration of Ru Catalysts Probed by Sulfur K-Edge X-ray Absorption Spectroscopy. Catal. Today 2014, 229, 56–63. [Google Scholar] [CrossRef]
- Arena, B.J. Deactivation of Ruthenium Catalysts in Continuous Glucose Hydrogenation. Appl. Catal. A Gen. 1992, 87, 219–229. [Google Scholar] [CrossRef]
- te Molder, T.D.J.; Kersten, S.R.A.; Lange, J.P.; Ruiz, M.P. Do Not Forget the Classical Catalyst Poisons: The Case of Biomass to Glycols via Catalytic Hydrogenolysis. Biofuels Bioprod. Biorefin. 2022, 16, 1274–1283. [Google Scholar] [CrossRef]
- Sitotaw, Y.W.; Habtu, N.G.; Gebreyohannes, A.Y.; Nunes, S.P.; Van Gerven, T. Ball Milling as an Important Pretreatment Technique in Lignocellulose Biorefineries: A Review. Biomass Convers. Biorefin. 2021, 13, 15593–15616. [Google Scholar] [CrossRef]
- Mayer-Laigle, C.; Rajaonarivony, R.K.; Blanc, N.; Rouau, X. Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering 2018, 5, 50. [Google Scholar] [CrossRef]
- Di Nardo, T.; Moores, A. Mechanochemical Amorphization of Chitin: Impact of Apparatus Material on Performance and Contamination. Beilstein J. Org. Chem. 2019, 15, 1217–1225. [Google Scholar] [CrossRef]
- Besson, M.; Gallezot, P. Deactivation of Metal Catalysts in Liquid Phase Organic Reactions. Catal. Today 2003, 81, 547–559. [Google Scholar] [CrossRef]
- Kusserow, B.; Schimpf, S.; Claus, P. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts. Adv. Synth. Catal. 2003, 345, 289–299. [Google Scholar] [CrossRef]
- Van Zandvoort, I.; Wang, Y.; Rasrendra, C.B.; Van Eck, E.R.H.; Bruijnincx, P.C.A.; Heeres, H.J.; Weckhuysen, B.M. Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion: Influence of Feedstock and Processing Conditions. ChemSusChem 2013, 6, 1745–1758. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.K.R.; Lund, C.R.F. Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural. Energy Fuels 2011, 25, 4745–4755. [Google Scholar] [CrossRef]
- Sievers, C.; Valenzuela-Olarte, M.B.; Marzialetti, T.; Musin, I.; Agrawal, P.K.; Jones, C.W. Ionic-Liquid-Phase Hydrolysis of Pine Wood. Ind. Eng. Chem. Res. 2009, 48, 1277–1286. [Google Scholar] [CrossRef]
- Weingarten, R.; Cho, J.; Conner, W.C.; Huber, G.W. Kinetics of Furfural Production by Dehydration of Xylose in a Biphasic Reactor with Microwave Heating. Green Chem. 2010, 12, 1423–1429. [Google Scholar] [CrossRef]
- Koranchalil, S.; Nielsen, M. Direct Biomass Valorisation to C-Valerolactone by Ru-PNP Catalysed Hydrogenation in Acid. EES Catal. 2024; Advance Article. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Liao, Y.; Wang, H.; Liu, Q.; Ma, L.; Wang, C. Advances in Understanding the Humins: Formation, Prevention and Application. Appl. Energy Combust. Sci. 2022, 10, 100062. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Alonso, D.M.; Chong, Y.; Dumesic, J.A. Production of Levulinic Acid and Gamma-Valerolactone (GVL) from Cellulose Using GVL as a Solvent in Biphasic Systems. Energy Environ. Sci. 2012, 5, 8199–8203. [Google Scholar] [CrossRef]
- Alonso, D.M.; Gallo, J.M.R.; Mellmer, M.A.; Wettstein, S.G.; Dumesic, J.A. Direct Conversion of Cellulose to Levulinic Acid and Gamma-Valerolactone Using Solid Acid Catalysts. Catal. Sci. Technol. 2013, 3, 927–931. [Google Scholar] [CrossRef]
- Son, P.A.; Nishimura, S.; Ebitani, K. Production of γ-Valerolactone from Biomass-Derived Compounds Using Formic Acid as a Hydrogen Source over Supported Metal Catalysts in Water Solvent. RSC Adv. 2014, 4, 10525–10530. [Google Scholar] [CrossRef]
- Du, S.; Gamliel, D.P.; Giotto, M.V.; Valla, J.A.; Bollas, G.M. Coke Formation of Model Compounds Relevant to Pyrolysis Bio-Oil over ZSM-5. Appl. Catal. A Gen. 2016, 513, 67–81. [Google Scholar] [CrossRef]
- Pritchard, A.M. The Economics of Fouling; Springer: Dordrecht, The Nerthlands, 1987; ISBN 9788578110796. [Google Scholar]
- Bartholomew, C.H. Mechanisms of Catalyst Deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Varkolu, M.; Velpula, V.; Burri, D.R.; Kamaraju, S.R.R. Gas Phase Hydrogenation of Levulinic Acid to γ-Valerolactone over Supported Ni Catalysts with Formic Acid as Hydrogen Source. New J. Chem. 2016, 40, 3261–3267. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, X.; Bai, H.; Xiong, J.; Feng, W.; Ji, N. Effects of Solid Acid Supports on the Bifunctional Catalysis of Levulinic Acid to γ-Valerolactone: Catalytic Activity and Stability. Chem.—Asian J. 2020, 15, 1182–1201. [Google Scholar] [CrossRef] [PubMed]
- Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. A Kinetic Study on the Decomposition of 5-Hydroxymethylfurfural into Levulinic Acid. Green Chem. 2006, 8, 701–709. [Google Scholar] [CrossRef]
- Aguayo, A.T.; Gayubo, A.G.; Atutxa, A.; Olazar, M.; Bilbao, J. Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. Ind. Eng. Chem. Res. 2002, 41, 4216–4224. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Viswanadham, N.; Ray, N.; Gupta, J.K.; Singh, I.D. Studies on Acidity, Activity and Coke Deactivation of ZSM-5 during n-Heptane Aromatization. Appl. Catal. A Gen. 2001, 205, 1–10. [Google Scholar] [CrossRef]
- Putro, J.N.; Kurniawan, A.; Soetaredjo, F.E.; Lin, S.Y.; Ju, Y.H.; Ismadji, S. Production of Gamma-Valerolactone from Sugarcane Bagasse over TiO2-Supported Platinum and Acid-Activated Bentonite as a Co-Catalyst. RSC Adv. 2015, 5, 41285–41299. [Google Scholar] [CrossRef]
- Kondeboina, M.; Enumula, S.S.; Reddy, K.S.; Challa, P.; Burri, D.R.; Kamaraju, S.R.R. Bimetallic Ni-Co/γ-Al2O3 Catalyst for Vapour Phase Production of γ-Valerolactone: Deactivation Studies and Feedstock Selection. Fuel 2021, 285, 119094. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Pineda, A.; Balu, A.M.; Luque, R.; Campelo, J.M.; Romero, A.A.; Ramos-Fernández, J.M. Catalytic Transformations of Biomass-Derived Acids into Advanced Biofuels. Catal. Today 2012, 195, 162–168. [Google Scholar] [CrossRef]
- Luo, W.; Deka, U.; Beale, A.M.; Van Eck, E.R.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Ruthenium-Catalyzed Hydrogenation of Levulinic Acid: Influence of the Support and Solvent on Catalyst Selectivity and Stability. J. Catal. 2013, 301, 175–186. [Google Scholar] [CrossRef]
- Cao, W.; Luo, W.; Ge, H.; Su, Y.; Wang, A.; Zhang, T. UiO-66 Derived Ru/ZrO2@C as a Highly Stable Catalyst for Hydrogenation of Levulinic Acid to γ-Valerolactone. Green Chem. 2017, 19, 2201–2211. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Bond, J.Q.; Alonso, D.M.; Pham, H.N.; Datye, A.K.; Dumesic, J.A. RuSn Bimetallic Catalysts for Selective Hydrogenation of Levulinic Acid to γ-Valerolactone. Appl. Catal. B Environ. 2012, 117–118, 321–329. [Google Scholar] [CrossRef]
- Banerjee, B.; Singuru, R.; Kundu, S.K.; Dhanalaxmi, K.; Bai, L.; Zhao, Y.; Reddy, B.M.; Bhaumik, A.; Mondal, J. Towards Rational Design of Core-Shell Catalytic Nanoreactor with High Performance Catalytic Hydrogenation of Levulinic Acid. Catal. Sci. Technol. 2016, 6, 5102–5115. [Google Scholar] [CrossRef]
- Zhou, H.; Song, J.; Kang, X.; Hu, J.; Yang, Y.; Fan, H.; Meng, Q.; Han, B. One-Pot Conversion of Carbohydrates into Gamma-Valerolactone Catalyzed by Highly Cross-Linked Ionic Liquid Polymer and Co/TiO2. RSC Adv. 2015, 5, 15267–15273. [Google Scholar] [CrossRef]
- Boddula, R.; Shanmugam, P.; Srivatsava, R.K.; Tabassum, N.; Pothu, R.; Naik, R.; Saran, A.; Viswanadham, B.; Radwan, A.B.; Al-Qahtani, N. Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive γ-Valerolactone: Influence of Copper Loading on Silica Support. Reactions 2023, 4, 465–477. [Google Scholar] [CrossRef]
- Hussain, S.K.; Velisoju, V.K.; Rajan, N.P.; Kumar, B.P.; Chary, K.V.R. Synthesis of γ-Valerolactone from Levulinic Acid and Formic Acid over Mg-Al Hydrotalcite Like Compound. ChemistrySelect 2018, 3, 6186–6194. [Google Scholar] [CrossRef]
- Kumar, V.V.; Naresh, G.; Sudhakar, M.; Anjaneyulu, C.; Bhargava, S.K.; Tardio, J.; Reddy, V.K.; Padmasri, A.H.; Venugopal, A. An Investigation on the Influence of Support Type for Ni Catalysed Vapour Phase Hydrogenation of Aqueous Levulinic Acid to γ-Valerolactone. RSC Adv. 2016, 6, 9872–9879. [Google Scholar] [CrossRef]
- Putrakumar, B.; Nagaraju, N.; Kumar, V.P.; Chary, K.V.R. Hydrogenation of Levulinic Acid to γ-Valerolactone over Copper Catalysts Supported on γ-Al2O3. Catal. Today 2015, 250, 209–217. [Google Scholar] [CrossRef]
- Wang, J.; Jaenicke, S.; Chuah, G.K. Zirconium-Beta Zeolite as a Robust Catalyst for the Transformation of Levulinic Acid to γ-Valerolactone via Meerwein-Ponndorf-Verley Reduction. RSC Adv. 2014, 4, 13481–13489. [Google Scholar] [CrossRef]
- Zhao, R.; Kasipandi, S.; Shin, C.H.; Bae, J.W. Catalytic Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Amphoteric Zirconium Hydroxide. ACS Catal. 2023, 13, 12711–12722. [Google Scholar] [CrossRef]
Catalyst | Reaction Temperature (°C) | Solvent | H2 Pressure [bar] | Reaction Time [h] | Impurity Type | GVL Yield [%] without Impurities | GVL Yield [%] with Impurities | Ref. |
---|---|---|---|---|---|---|---|---|
Ru(5%)/C | 150 | dioxane | 50 | 1 | 0.025 wt% H2SO4 | 93 | 48 | [38] |
Ru(5%)/C | 150 | dioxane | 50 | 1 | 0.05 wt% H2SO4 | 93 | 10 | [38] |
Ru(5%)/C | 150 | water | 35 | 20 | 0.5 mol L−1 H2SO4 | 98 | 60 | [39] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 3 | 0.25 wt% H2SO4 | 47 | 3 | [38] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 15 | 0.5 wt% H2SO4 | 90 b | 12 b | [40] |
Ru(1%)/ZrO2 | 90 | water | 50 | 20 | 0.5 wt% H2SO4 | 95 b | 75 b | [40] |
Ru(1%)/TiO2 | 150 | dioxane | 50 | 15 | 0.5 wt% H2SO4 | 95 b | 10 b | [40] |
Ru(1%)/TiO2 | 90 | water | 50 | 20 | 0.5 wt% H2SO4 | 95 b | 80 b | [40] |
Ru(5%)/ZrO2 | 30 | water | 50 | 1 | 0.9 wt% H2SO4 + HCOOH | 91 | 0 | [41] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 1 | Cysteine (Cys) a | 100 b | 12 b | [40] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 1 | Metheonine (Meth) a | 100 b | 48 b | [40] |
Ru(5%)/TiO2 | 190 | water | 20 | 1 | 1 μg Zn | 98 | 44 | [42] |
Ru(1%)/TiO2 | 170 | water | 50 | 5 | Humins | 31 | 6 | [43] |
Ru(1%)/TiO2 | 150 | dioxane | 50 | 1 | 0.5 wt% humins | 90 b | 53 b | [40] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 1 | 0.5 wt% humins | 90 b | 50 b | [40] |
Ru(5%)/C | 150 | water | 40 | 1 | 2 mmol HCOOH | 67 | 2 | [44] |
Ru(1%)/ZrO2 | 150 | dioxane | 50 | 10 | 0.5 wt% HCOOH | 90 b | 0 b | [40] |
Ru(1%)/ZrO2 | 90 | water | 50 | 10 | 0.5 wt% HCOOH | 99 b | 10 b | [40] |
Ru(1%)/TiO2 | 150 | dioxane | 50 | 10 | 0.5 wt% HCOOH | 98 b | 3 b | [40] |
Ru(1%)/TiO2 | 90 | water | 50 | 10 | 0.5 wt% HCOOH | 90 b | 3 b | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashyap, P.; Brzezińska, M.; Keller, N.; Ruppert, A.M. Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone. Catalysts 2024, 14, 141. https://doi.org/10.3390/catal14020141
Kashyap P, Brzezińska M, Keller N, Ruppert AM. Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone. Catalysts. 2024; 14(2):141. https://doi.org/10.3390/catal14020141
Chicago/Turabian StyleKashyap, Preeti, Magdalena Brzezińska, Nicolas Keller, and Agnieszka M. Ruppert. 2024. "Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone" Catalysts 14, no. 2: 141. https://doi.org/10.3390/catal14020141
APA StyleKashyap, P., Brzezińska, M., Keller, N., & Ruppert, A. M. (2024). Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone. Catalysts, 14(2), 141. https://doi.org/10.3390/catal14020141