The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance of the IL-Based Catalysts
2.2. Structural and Electronic Properties of the IL-Based Catalysts
2.3. Interaction between Catalysts and Reactants and Product
2.4. Reaction Mechanisms
2.5. Electron Density and Orbital Bonding Analysis
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Tests
3.4. Characterization
3.5. Density Functional Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liu, N.; Li, W.; Dai, B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 2011, 5, 514–520. [Google Scholar] [CrossRef]
- Hutchings, G.J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Appl. Catal. 1988, 43, 33–39. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Grady, D.T. Effect of drying conditions on carbon supported mercuric chloride catalysts. Appl. Catal. 1985, 16, 411–415. [Google Scholar] [CrossRef]
- Nkosi, B.; Coville, N.J.; Hutchings, G.J.; Adams, M.D.; Friedl, J.; Wagner, F.E. Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation. J. Catal. 1991, 128, 366–377. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Toshiyuki, I.; Eri, A.; Kazutoshi, K.; Shohei, S. Lipase-Catalyzed Enantioselective Acylation in the Ionic Liquid Solvent System: Reaction of Enzyme Anchored to the Solvent. Chem. Lett. 2001, 30, 262–263. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, X.; McMahan, J.; Kumar, A.; Khan, A.; Sevilla, M.; Zeng, X. Adsorption and Electrochemistry of Carbon Monoxide at the Ionic Liquid–Pt Interface. J. Phys. Chem. B 2019, 123, 4726–4734. [Google Scholar] [CrossRef]
- Cabral, D.M.; Howlett, P.C.; MacFarlane, D.R. Electrochemistry of the tris(2,2’-bipyridine) complex of iron(II) in ionic liquids and aprotic molecular solvents. Electrochim. Acta 2016, 220, 347–353. [Google Scholar] [CrossRef]
- Martini, M.B.; Fernández, J.L.; Adam, C.G. Insights on the catalytic behaviour of sulfonic acid-functionalized ionic liquids (ILs) in transesterification reactions—Voltammetric characterization of sulfonic task-specific ILs with bisulfate anions. Phys. Chem. Chem. Phys. 2021, 23, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Kore, R.; Berton, P.; Kelley, S.P.; Aduri, P.; Katti, S.S.; Rogers, R.D. Group IIIA Halometallate Ionic Liquids: Speciation and Applications in Catalysis. ACS Catal. 2017, 7, 7014–7028. [Google Scholar] [CrossRef]
- Song, Z.; Huang, W.; Zhou, Y.; Tian, Z.-Q.; Li, Z.-M.; Tao, D.-J. Thermally regulated molybdate-based ionic liquids toward molecular oxygen activation for one-pot oxidative cascade catalysis. Green Chem. 2020, 22, 103–109. [Google Scholar] [CrossRef]
- Taylor, S.F.R.; McClung, M.; McReynolds, C.; Daly, H.; Greer, A.J.; Jacquemin, J.; Hardacre, C. Understanding the Competitive Gas Absorption of CO2 and SO2 in Superbase Ionic Liquids. Ind. Eng. Chem. Res. 2018, 57, 17033–17042. [Google Scholar] [CrossRef]
- Ávila, J.; Lozano-Martín, D.; Simões Santos, M.; Zhang, Y.; Li, H.; Pádua, A.; Atkin, R.; Costa Gomes, M. Effect of ion structure on the physicochemical properties and gas absorption of surface active ionic liquids. Phys. Chem. Chem. Phys. 2023, 25, 6808–6816. [Google Scholar] [CrossRef]
- Sosa, J.E.; Ribeiro, R.P.P.L.; Castro, P.J.; Mota, J.P.B.; Araújo, J.M.M.; Pereiro, A.B. Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Ind. Eng. Chem. Res. 2019, 58, 20769–20778. [Google Scholar] [CrossRef]
- Gui, C.; Li, G.; Zhu, R.; Liu, Q.; Lei, Z. Ionic Liquids for Capturing 1,2-Dimethoxyethane (DMET) in VOCs: Experiment and Mechanism Exploration. Ind. Eng. Chem. Res. 2022, 61, 2257–2267. [Google Scholar] [CrossRef]
- Zhu, R.; Huang, S.; Gui, C.; Li, G.; Lei, Z. Capturing low-carbon alcohols from CO2 gas with ionic liquids. Chem. Eng. Sci. 2022, 258, 117745. [Google Scholar] [CrossRef]
- Nian, Y.; Zhang, J.; Li, X.; Wang, Y.; Li, W.; Kolubah, P.D.; Han, Y. Molecular design of ionic liquids as novel non-metal catalysts for the acetylene hydrochlorination reaction. Phys. Chem. Chem. Phys. 2019, 21, 7635–7644. [Google Scholar] [CrossRef]
- Wang, B.; Lai, H.; Yue, Y.; Sheng, G.; Deng, Y.; He, H.; Guo, L.; Zhao, J.; Li, X. Zeolite Supported Ionic Liquid Catalysts for the Hydrochlorination of Acetylene. Catalysts 2018, 8, 351. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Q.; Yang, L.; Zhang, Z.; Su, B.; Bao, Z.; Ren, Q.; Xing, H.; Dai, S. Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catal. 2015, 5, 6724–6731. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, S.; Liu, Y.; Cao, S. Mechanistic study on metal-free acetylene hydrochlorination catalyzed by imidazolium-based ionic liquids. Mol. Catal. 2018, 461, 73–79. [Google Scholar] [CrossRef]
- He, R.-H.; Long, B.-W.; Lu, Y.-Z.; Meng, H.; Li, C.-X. Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K. J. Chem. Eng. Data 2012, 57, 2936–2941. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, H.; Feng, L.; Lu, Y.; Meng, H.; Li, C. Absorptive separation of HCl gas by choline chloride-based deep eutectic solvents. J. Mol. Liq. 2021, 341, 116928. [Google Scholar] [CrossRef]
- Feng, L.; Meng, H.; Lu, Y.; Li, C. Efficient and reversible absorption of HCl gas by ChCl-based deep eutectic solvents-Insights into the absorption behavior and mechanism. Sep. Purif. Technol. 2022, 281, 119994. [Google Scholar] [CrossRef]
- Shao, H.; Zhu, J.; Feng, L.; Liang, X.; Lu, Y.; Meng, H.; Li, C. Solubility Behavior and the Mechanism of HCl Gas in Four [EMIM]Cl-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2022, 67, 3097–3107. [Google Scholar] [CrossRef]
- Zhao, X.; Xing, H.; Yang, Q.; Li, R.; Su, B.; Bao, Z.; Yang, Y.; Ren, Q. Differential Solubility of Ethylene and Acetylene in Room-Temperature Ionic Liquids: A Theoretical Study. J. Phys. Chem. B 2012, 116, 3944–3953. [Google Scholar] [CrossRef]
- Qian, B.H.; Wei-Xing, M.A.; Lu-De, L.U.; Yang, X.J.; Wang, X. Synthesis, Characterization, Crystal Structure and Quantum Chemistry Calculation of an Arenedisulfonate Bridged Zn(II) Coordination Polymer. Acta Phys. Chim. Sin. 2010, 26, 610–616. [Google Scholar] [CrossRef]
- Zheng, W.R.; Xu, J.L.; Xiong, R. Density Functional Theory Study on N–O Bond Dissociation Enthalpies. Acta Phys. Chim. Sin. 2010, 26, 2535–2542. [Google Scholar] [CrossRef]
- Shen, T.; Du, F.P.; Liu, T.; Yao, G.W.; Wu, Z.; Fang, M.M.; Xu, X.J.; Lu, H.Z. Molecular Simulation of the Interaction between Imidazole Glycerol Phosphate Dehydrase and Nitrogen-Containing Heterocyclic Phosphate Inhibitors. Acta Phys. Chim. Sin. 2011, 27, 1831–1838. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Hu, J.; Sun, M.; Wang, J.; Zhang, X. A study on the rules of ligands in highly efficient Ru–amide/AC catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2021, 11, 7347–7358. [Google Scholar] [CrossRef]
- Zhao, J.; Gu, S.; Xu, X.; Zhang, T.; Yu, Y.; Di, X.; Ni, J.; Pan, Z.; Li, X. Supported ionic-liquid-phase-stabilized Au(iii) catalyst for acetylene hydrochlorination. Catal. Sci. Technol. 2016, 6, 3263–3270. [Google Scholar] [CrossRef]
- Kesharwani, M.K.; Brauer, B.; Martin, J.M.L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wu, B.; Wang, F.; Li, H.; Lv, G.; Sun, M.; Zhang, X. Chlorocuprate(i) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene. Catal. Sci. Technol. 2019, 9, 2868–2878. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, B.; Nian, Y.; Liu, M.; Jia, Y.; Zhang, J.; Han, Y. Excess Copper Chloride Induces Active Sites over Cu-Ligand Catalysts for Acetylene Hydrochlorination. ACS Catal. 2023, 13, 8307–8316. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, T.; Liu, Y.; Li, W.; Zhang, H.; Zhang, J. Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Appl. Catal. A Gen. 2022, 630, 118461. [Google Scholar] [CrossRef]
- Li, X.; Nian, Y.; Shang, S.; Zhang, H.; Zhang, J.; Han, Y.; Li, W. Novel nonmetal catalyst of supported tetraphenylphosphonium bromide for acetylene hydrochlorination. Catal. Sci. Technol. 2019, 9, 188–198. [Google Scholar] [CrossRef]
- Li, H.; Wu, B.; Wang, J.; Wang, F.; Zhang, X.; Wang, G.; Li, H. Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination. Chin. J. Catal. 2018, 39, 1770–1781. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Qiao, X.; Guan, Q.; Li, W. Efficient and stable N-heterocyclic ketone–Cu complex catalysts for acetylene hydrochlorination: The promotion effect of ligands revealed from DFT calculations. Phys. Chem. Chem. Phys. 2023, 25, 25581–25593. [Google Scholar] [CrossRef]
- Gu, J.; Gao, Y.; Zhang, J.; Li, W.; Dong, Y.; Han, Y. Hydrochlorination of Acetylene Catalyzed by an Activated Carbon-Supported Ammonium Hexachlororuthenate Complex. Catalysts 2017, 7, 17. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Li, L.; Cai, M.; Li, Y.; Xie, D.; Zhang, J. Synergistically Catalytic Hydrochlorination of Acetylene over the Highly Dispersed Ru Active Species Embedded in P-Containing Ionic Liquids. ACS Sustain. Chem. Eng. 2020, 8, 10173–10184. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, M.; Kang, L. Single-Atom X/g-C3N4 (X = Au1, Pd1, and Ru1) Catalysts for Acetylene Hydrochlorination: A Density Functional Theory Study. Catalysts 2019, 9, 808. [Google Scholar] [CrossRef]
Catalyst | Content of Metal Chlorides |
---|---|
[Bmim]Cl-CuCl (10%) | 9.93% |
[Bmim]Cl-CuCl2 (10%) | 9.88% |
[Bmim]Cl-AgCl (6%) | 5.93% |
[Bmim]Cl-RuCl3 (1%) | 0.98% |
ΔG/kcal·mol−1 | BM | B1 | B2 | B3 | B4 |
---|---|---|---|---|---|
HCl | −10.4 | −2.87 | −0.2 | −2.64 | −1.05 |
C2H2 | 0.53 | 1.73 | 2.68 | 2.61 | 1.52 |
C2H3Cl | 1.28 | 0.11 | 2.02 | 3.82 | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, H.; Lu, Y.; Liang, X.; Li, C. The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene. Catalysts 2024, 14, 93. https://doi.org/10.3390/catal14020093
Shao H, Lu Y, Liang X, Li C. The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene. Catalysts. 2024; 14(2):93. https://doi.org/10.3390/catal14020093
Chicago/Turabian StyleShao, Hui, Yingzhou Lu, Xin Liang, and Chunxi Li. 2024. "The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene" Catalysts 14, no. 2: 93. https://doi.org/10.3390/catal14020093
APA StyleShao, H., Lu, Y., Liang, X., & Li, C. (2024). The Catalytic Mechanism of [Bmim]Cl-Transition Metal Catalysts for Hydrochlorination of Acetylene. Catalysts, 14(2), 93. https://doi.org/10.3390/catal14020093