Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process
Abstract
:1. Introduction
2. Mechanism of Reforming of Methane on the Ni-Based Catalysts with La Promoter
2.1. Particle Size Distribution and Reducibility
2.2. Basic Sites
2.3. Mechanism of Reforming of Methane on the Ni-Based Catalysts with La Promoter
3. The Effects of La Addition on the Reforming of Methane in Ni-Based Catalysts
4. Stability Performance of La Addition in Ni-Based Catalysts for Reforming of Methane
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.-Q.; Wang, Q.-Y.; Zhu, T.-H.; Zhu, X.-M.; Sun, B. A review on research status of hydrogen production by methane reforming. Mod. Chem. Ind. 2020, 40, 15. [Google Scholar]
- Li, L.-R.; Peng, J.; OuYang, H.-X.; Chen, Z.-J.; Wang, Q.; Zou, Z.-Y.; Li, Q.-P. Research status of catalyst support for reforming hydrogen production. Appl. Chem. Ind. 2022, 51, 1817–1824. [Google Scholar]
- Edwards, J.H.; Maitra, A.M. The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process. Technol. 1995, 42, 269–289. [Google Scholar] [CrossRef]
- Li, M.; Sun, Z.; Hu, Y.H. Catalysts for CO2 reforming of CH4: A review. J. Mater. Chem. A 2021, 9, 12495–12520. [Google Scholar] [CrossRef]
- Faroldi, B.; Múnera, J.; Falivene, J.M.; Ramos, I.R.; García, Á.G.; Fernández, L.T.; Carrazán, S.G.; Cornaglia, L. Well-dispersed Rh nanoparticles with high activity for the dry reforming of methane. Int. J. Hydrogen Energy 2017, 42, 16127–16138. [Google Scholar] [CrossRef]
- Ewald, S.; Kolbeck, M.; Kratky, T.; Wolf, M.; Hinrichsen, O. On the deactivation of Ni-Al catalysts in CO2 methanation. Appl. Catal. A 2019, 570, 376–386. [Google Scholar] [CrossRef]
- Feng, K.; Zhang, J.; Li, Z.; Liu, X.; Pan, Y.; Wu, Z.; Tian, J.; Chen, Y.; Zhang, C.; Xue, Q.; et al. Spontaneous regeneration of active sites against catalyst deactivation. Appl. Catal. B 2024, 344, 123647. [Google Scholar] [CrossRef]
- Salaev, M.; Liotta, L.; Vodyankina, O. Lanthanoid-containing Ni-based catalysts for dry reforming of methane: A review. Int. J. Hydrogen Energy 2022, 47, 4489–4535. [Google Scholar] [CrossRef]
- Cao, J.-P.; Ren, J.; Zhao, X.-Y.; Wei, X.-Y.; Takarada, T. Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound. Fuel 2018, 217, 515–521. [Google Scholar] [CrossRef]
- Ramirez, A.; Lee, K.; Harale, A.; Gevers, L.; Telalovic, S.; Al Solami, B.; Gascon, J. Stable High-Pressure Methane Dry Reforming Under Excess of CO2. ChemCatChem 2020, 12, 5919–5925. [Google Scholar] [CrossRef]
- Pashchenko, D. Experimental investigation of synthesis gas production by methane reforming with flue gas over a NiO-Al2O3 catalyst: Reforming characteristics and pressure drop. Int. J. Hydrogen Energy 2019, 44, 7073–7082. [Google Scholar] [CrossRef]
- Vogt, C.; Kranenborg, J.; Monai, M.; Weckhuysen, B.M. Structure sensitivity in steam and dry methane reforming over nickel: Activity and carbon formation. ACS Catal. 2019, 10, 1428–1438. [Google Scholar] [CrossRef]
- Qi, C.; Amphlett, J.C.; Peppley, B.A. K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol. J. Power Sources 2007, 171, 842–849. [Google Scholar] [CrossRef]
- Lee, J.H.; Koo, K.Y.; Jung, U.H.; Park, J.E.; Yoon, W.L. The promotional effect of K on the catalytic activity of Ni/MgAl2O4 for the combined H2O and CO2 reforming of coke oven gas for syngas production. Korean J. Chem. Eng. 2016, 33, 3115–3120. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhang, Q.; Vinokurov, V.A.; Huang, W. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel 2022, 310, 122449. [Google Scholar] [CrossRef]
- Wang, H.; Mo, W.; He, X.; Fan, X.; Ma, F.; Liu, S.; Tax, D. Effect of Ca promoter on the structure, performance, and carbon deposition of Ni-Al2O3 catalyst for CO2-CH4 reforming. ACS Omega 2020, 5, 28955–28964. [Google Scholar] [CrossRef] [PubMed]
- Khoja, A.H.; Anwar, M.; Shakir, S.; Mehran, M.T.; Mazhar, A.; Javed, A.; Amin, N.A.S. Thermal dry reforming of methane over La2O3 co-supported Ni/MgAl2O4 catalyst for hydrogen-rich syngas production. Res. Chem. Intermed. 2020, 46, 3817–3833. [Google Scholar] [CrossRef]
- Sagar, T.V.; Padmakar, D.; Lingaiah, N.; Prasad, P.S.S. Influence of solid solution formation on the activity of CeO2 supported Ni–Cu mixed oxide catalysts in dry reforming of methane. Catal. Lett. 2019, 149, 2597–2606. [Google Scholar] [CrossRef]
- Alotaibi, R.; Alenazey, F.; Alotaibi, F.; Wei, N.; Al-Fatesh, A.; Fakeeha, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Appl. Petrochem. Res. 2015, 5, 329–337. [Google Scholar] [CrossRef]
- Charisiou, N.; Siakavelas, G.; Tzounis, L.; Sebastian, V.; Monzon, A.; Baker, M.; Hinder, S.; Polychronopoulou, K.; Yentekakis, I.; Goula, M. An in depth investigation of deactivation through carbon formation during the biogas dry reforming reaction for Ni supported on modified with CeO2 and La2O3 zirconia catalysts. Int. J. Hydrogen Energy 2018, 43, 18955–18976. [Google Scholar] [CrossRef]
- Méndez-Mateos, D.; Barrio, V.L.; Requies, J.M.; Gil-Calvo, M. Graphene-based versus alumina supports on CO2 methanation using lanthanum-promoted nickel catalysts. Environ. Sci. Pollut. Res. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rached, J.A.; Cesario, M.R.; Estephane, J.; Tidahy, H.L.; Gennequin, C.; Aouad, S.; Aboukaïs, A.; Abi-Aad, E. Effects of cerium and lanthanum on Ni-based catalysts for CO2 reforming of toluene. J. Environ. Chem. Eng. 2018, 6, 4743–4754. [Google Scholar] [CrossRef]
- Naidu, B.N.; Kumar, K.D.; Kumar, K.D.P.L.; Saini, H.; Kumar, M.; Kumar, T.N.; Prasad, V.V.D.N. Coke deposition over Ni-based catalysts for dry reforming of methane: Effects of MgO-Al2O3 support and ceria, lanthana promoters. J. Environ. Chem. Eng. 2022, 10, 106980. [Google Scholar] [CrossRef]
- Daza, C.E.; Gallego, J.; Mondragón, F.; Moreno, S.; Molina, R. High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel 2010, 89, 592–603. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Alsaffer, M.A.; Mustapa, M.A.; Kanthasamy, R.; Wongsakulphasatch, S.; Cheng, C.K. Carbon dioxide reforming of methane over Ni-based catalysts: Modeling the effect of process parameters on greenhouse gases conversion using supervised machine learning algorithms. Chem. Eng. Process. 2021, 166, 108484. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, B.; Gu, X.; Liu, H.; Feng, L. Selective structure transformation for Ni-Fe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Zhang, R. Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resour. Convers. 2019, 2, 95–101. [Google Scholar] [CrossRef]
- Niu, Y.-H.; Yun, G.-W.; Wang, W.-C.; Xu, W.-L.; Li, Y.-K. Research status of biomass gasification tar cracking catalyst. Appl. Chem. Ind. 2021, 50, 3171–3176. [Google Scholar]
- Lv, X.-Y.; Meng, F.-H.; Li, Z. Recent advance in bimetallic Ni-Ru catalyst for catalytic hydrogenation and hydrogen production reactions. Nat. Gas Chem. Ind. 2017, 42, 108–113. [Google Scholar]
- Isarapakdeetham, S.; Kim-Lohsoontorn, P.; Wongsakulphasatch, S.; Kiatkittipong, W.; Laosiripojana, N.; Gong, J.; Assabumrungrat, S. Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3. Int. J. Hydrogen Energy 2020, 45, 1477. [Google Scholar] [CrossRef]
- Zeng, Y.; Ma, H.; Zhnag, H.; Ying, W.; Fang, D. Ni-based methanation catalysts prepared by solution combustion method: Effect of Mg, Mn and La promoters. Nat. Gas Chem. Ind. 2015, 40, 6. [Google Scholar]
- Zhang, P.-Y.; Guo, F.; Xu, J.-Q.; Chen, Z.; Li, J. Progress of Coke Resistant Ability Research of Ni-based Catalysts for CO2 Reforming of Methane. J. Chin. Silic. Soc. 2016, 44, 620–626. [Google Scholar]
- Fang, X.-Z. Study on the Preparation and Performance of High Efficiency Anti-Carbon Ni-Methane Reforming Catalyst for Hydrogen Production; University of Nanchang: Nanchang, China, 2016. [Google Scholar]
- Ding, C.-X.; Tang, R.; Qian, Y.; Shen, N.; Zhang, X.-Q.; Zhao, S.-F. Effect of Ni particle size on dry gas reforming of methane in Ni based catalyst and its application prospect. Nat. Gas Chem. Ind. 2022, 47, 1–10. [Google Scholar]
- Song, K.H.; Yan, X.; Koh, D.J.; Kim, T.; Chung, J.-S. La effect on the long-term durability of Ni-Mg-Al2O3 catalysts for syngas methanation. Appl. Catal. A 2017, 530, 184–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wang, Y.; Zhao, Y.; Li, G.; Bei, K.; Zhang, G.; Lv, Y. Insight into the role of lanthanide metal oxides on the carbon deposition resistance of Ni/MSS catalysts for dry reforming of methane. Fuel 2024, 367, 131562. [Google Scholar] [CrossRef]
- Lan, X.; Hensen, E.J.; Weber, T. Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation. Appl. Catal. A 2018, 550, 57–66. [Google Scholar] [CrossRef]
- Yu, X.; Wang, N.; Chu, W.; Liu, M. Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites. Chem. Eng. J. 2012, 209, 623. [Google Scholar] [CrossRef]
- Jing, J.; Wei, Z.; Zhang, Y.; Bai, H.; Li, W. Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catal. Today 2020, 356, 589. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Chen, M.; Xie, X.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. B 2023, 322, 122088. [Google Scholar] [CrossRef]
- Afandi, N.S.; Mohammadi, M.; Ichikawa, S.; Mohamed, A.R. CO2 reforming of methane to syngas over multi-walled carbon nanotube supported Ni-Ce nanoparticles: Effect of different synthesis methods. Environ. Sci. Pollut. Res. 2020, 27, 43011. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Zhuo, Y.; Zhu, Y.; Wang, S. Enhancement of CO2 methanation over La-modified Ni/SBA-15 catalysts prepared by different doping methods. ACS Sustain. Chem. Eng. 2019, 7, 14647–14660. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Ye, L.; Xiong, Y.; Zhang, H. Investigation on deactivation progress of biochar supported Ni catalyst during biomass catalytic cracking process. Fuel Process. Technol. 2023, 250, 107897. [Google Scholar] [CrossRef]
- Torrez-Herrera, J.J.; Korili, S.A.; Gil, A. Effect of the synthesis method on the morphology, textural properties and catalytic performance of La-hexaaluminates in the dry reforming of methane. J. Environ. Chem. Eng. 2021, 9, 105298. [Google Scholar] [CrossRef]
- Grabchenko, M.; Pantaleo, G.; Puleo, F.; Vodyankina, O.; Liotta, L. Ni/La2O3 catalysts for dry reforming of methane: Effect of La2O3 synthesis conditions on the structural properties and catalytic performances. Int. J. Hydrogen Energy 2021, 46, 7939–7953. [Google Scholar] [CrossRef]
- Lima, S.; Assaf, J.; Peña, M.; Fierro, J. Structural features of La1− xCexNiO3 mixed oxides and performance for the dry reforming of methane. Appl. Catal. A 2006, 311, 94–104. [Google Scholar] [CrossRef]
- Sagar, T.V.; Padmakar, D.; Lingaiah, N.; Rama Rao, K.S.; Reddy, I.A.K.; Sai Prasad, P.S. Syngas production by CO2 reforming of methane on LaNixAl1-xO3 perovskite catalysts: Influence of method of preparation. J. Chem. Sci. 2017, 129, 1787–1794. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Q.; Liu, Y.; Liu, W.; Chu, W.; Su, D.S. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaOx hybrids for the CO2 reduction reaction. Nanoscale 2018, 10, 14207–14219. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Li, M.; Cui, X.; Li, Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem. Eng. J. 2017, 313, 1548–1555. [Google Scholar] [CrossRef]
- Xu, L.; Wang, F.; Chen, M.; Nie, D.; Lian, X.; Lu, Z.; Chen, H.; Zhang, K.; Ge, P. CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity. Int. J. Hydrogen Energy 2017, 42, 15523–15539. [Google Scholar] [CrossRef]
- Seo, J.C.; Youn, M.H.; Bang, Y.; Song, I.K. Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over mesoporous nickel-M-alumina (M = Ni, Ce, La, Y, Cs, Fe, Co, and Mg) aerogel catalysts. Int. J. Hydrogen Energy 2011, 36, 3505–3514. [Google Scholar] [CrossRef]
- Song, M.; Shi, L.; Xu, X.; Du, X.; Chen, Y.; Zhuang, W.; Tao, X.; Sun, L.; Xu, Y. Ni/M/SiO2 catalyst (M= La, Ce or Mg) for CO2 methanation: Importance of the Ni active sites. J. CO2 Util. 2022, 64, 102150. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, L.; Tian, H.; Li, D.; Wang, X.; Li, X.; Gong, J. Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts. Appl. Catal. B 2016, 181, 321. [Google Scholar] [CrossRef]
- Bahari, M.B.; Phuc, N.H.H.; Alenazey, F.; Vu, K.B.; Ainirazali, N.; Vo, D.-V.N. Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal. Today 2017, 291, 67. [Google Scholar] [CrossRef]
- Su, H.; Kanchanatip, E.; Wang, D.; Zhang, H.; Antoni; Mubeen, I.; Huang, Z.; Yan, M. Catalytic gasification of food waste in supercritical water over La promoted Ni/Al2O3 catalysts for enhancing H2 production. Int. J. Hydrogen Energy 2020, 45, 553–564. [Google Scholar] [CrossRef]
- Coleman, L.; Epling, W.; Hudgins, R.; Croiset, E. Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Appl. Catal. A 2009, 363, 52–63. [Google Scholar] [CrossRef]
- Chen, M.; Liang, D.; Wang, Y.; Wang, C.; Tang, Z.; Li, C.; Hu, J.; Cheng, W.; Yang, Z.; Zhang, H.; et al. Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M= La, Mg or Ca) catalysts. Int. J. Hydrogen Energy 2021, 46, 21796–21811. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, L.; Zhu, Z.; Li, Z. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance. Int. J. Hydrogen Energy 2018, 43, 2197–2206. [Google Scholar] [CrossRef]
- Xu, L.; Wen, X.; Chen, M.; Lv, C.; Cui, Y.; Wu, X.; Wu, C.-E.; Miao, Z.; Hu, X. Highly dispersed Ni-La catalysts over mesoporous nanosponge MFI zeolite for low-temperature CO2 methanation: Synergistic effect between mesoporous and microporous channels. J. Ind. Eng. Chem. 2021, 100, 159–173. [Google Scholar] [CrossRef]
- Silva, C.K.S.; Baston, E.P.; Melgar, L.Z.; Bellido, J.D.A. Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: Effect of precursor structures of nickel, perovskite and spinel. React. Kinet. Mech. Catal. 2019, 128, 251–269. [Google Scholar] [CrossRef]
- Li, K.; Chang, X.; Pei, C.; Li, X.; Chen, S.; Zhang, X.; Assabumrungrat, S.; Zhao, Z.-J.; Zeng, L.; Gong, J. Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Appl. Catal. B 2019, 259, 118092. [Google Scholar] [CrossRef]
- Suo, C. Preparation of Anti-Sintering Ni-Based Catalyst and Its Application in Steam Reforming of Methane; Dalian University of Technology: Dalian, China, 2022. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Q.; Liu, J.; Gao, L. Research progress of Ni-based composite catalysts for methane dry reforming. J. Inorg. Mater. 2018, 33, 931. [Google Scholar]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175. [Google Scholar] [CrossRef]
- Montero, C.; Ochoa, A.; Castaño, P.; Bilbao, J.; Gayubo, A.G. Monitoring NiO and coke evolution during the deactivation of a Ni/La2O3-αAl2O3 catalyst in ethanol steam reforming in a fluidized bed. J. Catal. 2015, 331, 181. [Google Scholar] [CrossRef]
- Luo, J. Preparation of Ni/Al2O3 Catalyst with High Stability and Its Methane Dry Reforming Performance; Guangzhou University: Guangzhou, China, 2022. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z.-J.; Gong, J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B 2017, 202, 683. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, W.; Song, H.; Zhao, J.; Yang, J.; Yan, L.; Qiao, B.; Chou, L. Highly coke-resistant Ni-La2O2CO3 catalyst with low Ni loading for dry reforming of methane with carbon dioxide. Catal. Today 2022, 402, 189–201. [Google Scholar] [CrossRef]
- Charisiou, N.; Tzounis, L.; Sebastian, V.; Hinder, S.; Baker, M.; Polychronopoulou, K.; Goula, M. Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction. Appl. Surf. Sci. 2019, 474, 42. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A 2001, 212, 17. [Google Scholar] [CrossRef]
- Cao, K.; Gong, M.; Yang, J.; Cai, J.; Chu, S.; Chen, Z.; Shan, B.; Chen, R. Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. J. Catal. 2019, 373, 351. [Google Scholar] [CrossRef]
- Ha, Q.L.M.; Armbruster, U.; Kreyenschulte, C.; Atia, H.; Lund, H.; Vuong, H.T.; Wohlrab, S. Stabilization of low nickel content catalysts with lanthanum and by citric acid assisted preparation to suppress deactivation in dry reforming of methane. Catal. Today 2019, 334, 203–214. [Google Scholar] [CrossRef]
- Gao, X.; Shen, W.; Fang, Y. Study on carbon deposition resistance of coated Ni-based catalyst in steam reforming of methane. Mod. Chem. Ind. 2022, 42, 114. [Google Scholar]
- Yang, E.; Moon, D.J. CO2 Reforming of Methane over NiO/La2O3 Catalyst without Reduction Step: Effect of Calcination Atmosphere. Top. Catal. 2017, 60, 697–705. [Google Scholar] [CrossRef]
- Rahmani, S.; Meshkani, F.; Rezaei, H. Preparation of Ni-M (M: La, Co, Ce, and Fe) catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation. Sustain. Energy 2019, 38, 118. [Google Scholar] [CrossRef]
- Xu, L.; Liu, W.; Zhang, X.; Tao, L.; Xia, L.; Xu, X.; Song, J.; Zhou, W.; Fang, X.; Wang, X. Ni/La2O3 catalysts for dry reforming of methane: Insights into the factors improving the catalytic performance. ChemCatChem 2019, 11, 2887–2899. [Google Scholar] [CrossRef]
- Moogi, S.; Ko, C.H.; Rhee, G.H.; Jeon, B.-H.; Khan, M.A.; Park, Y.-K. Influence of catalyst synthesis methods on anti-coking strength of perovskites derived catalysts in biogas dry reforming for syngas production. Chem. Eng. J. 2022, 437, 135348. [Google Scholar] [CrossRef]
- Oemar, U.; Kathiraser, Y.; Mo, L.; Ho, X.K.; Kawi, S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modeling. Catal. Sci. Technol. 2016, 6, 1173. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Cheng, C.K. Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst. Int. J. Hydrogen Energy 2014, 39, 6927. [Google Scholar] [CrossRef]
- Ahmad, Y.H.; Mohamed, A.T.; Kumar, A.; Al-Qaradawi, S.Y. Solution combustion synthesis of Ni/La2O3 for dry reforming of methane: Tuning the basicity via alkali and alkaline earth metal oxide promoters. RSC Adv. 2021, 11, 33734–33743. [Google Scholar] [CrossRef] [PubMed]
- Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R. Ni catalysts with La as promoter supported over Y-and BETA-zeolites for CO2 methanation. Appl. Catal. B 2018, 238, 393–403. [Google Scholar] [CrossRef]
- Ranjbar, A.; Irankhah, A.; Aghamiri, S.F. Catalytic activity of rare earth and alkali metal promoted (Ce, La, Mg, K) Ni/Al2O3 nanocatalysts in reverse water gas shift reaction. Res. Chem. Intermed. 2019, 45, 5125–5141. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, X.; Hu, X.; Zhang, Y.; Cheng, J.; Guo, Q. CO2 methanation reaction over La-modified NiAl catalysts derived from hydrotalcite-like precursors. Fuel 2024, 362, 130888. [Google Scholar] [CrossRef]
- Bicki, R.; Antoniak-Jurak, K.; Michalska, K.; Franczyk, E.; Konkol, M.; Kowalik, P.; Pańczyk, M.; Ryczkowski, J.; Słowik, G.; Borowiecki, T. The effect of La2O3 and CeO2 modifiers on properties of Ni–Al catalysts for LNG prereforming. Int. J. Hydrogen Energy 2021, 46, 11664–11676. [Google Scholar] [CrossRef]
- Wang, D.-W. Study on Ni-based monolithic catalysts modified with La for steam reforming of methane. Nat. Gas Chem. Ind. 2010, 35, 17–20. [Google Scholar]
- Barzegari, F.; Rezaei, M.; Kazemeini, M.; Farhadi, F.; Keshavarz, A. The Influence of Lanthanide on NiO-MgO-SiO2 Catalysts for Syngas Production via Propane Steam Reforming. Mol. Catal. 2021, 499, 111281. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Zhang, Y.; Li, G.; Xu, W.; Zheng, Y.; Song, W. Insight into exhaust gas-methane reforming over La2O3-modified Ni/Ca-Al for enhanced hydrogen-rich production. Fuel 2024, 363, 130912. [Google Scholar] [CrossRef]
- Song, J.H.; Yoo, S.; Yoo, J.; Park, S.; Gim, M.Y.; Kim, T.H.; Song, I.K. Hydrogen production by steam reforming of ethanol over Ni/Al2O3 -La2O3 xerogel catalysts. Mole. Catal. 2017, 434, 123. [Google Scholar] [CrossRef]
- Guo, Y.-D.; Zhang, K.-Y.; Zheng, Y.; Liu, C.-G. Study on La modified Ni-based catalysts for selective hydrogenation of reformate to remove trace olefins. Process. Petrochem. 2022, 53, 68–75. [Google Scholar]
- Wang, H.; Wang, J.; Wang, X.; Wang, H.; Liu, J. Formation of perovskite-type LaNiO3 on La-Ni/Al2O3-ZrO2 catalysts and their performance for CO methanation. J. Fuel Chem. Technol. 2021, 49, 186. [Google Scholar] [CrossRef]
- Wu, X.-L.; Wang, Y.-J.; Lv, L.-H.; Zhang, J.; Fan, H.; Zeng, C.-Y.; Ma, Q.-X.; Zhao, T.-S. Study on the performance of methane dry reforming with lanthanum oxide doped two-pore nickel-based catalyst. Nat. Gas Chem. Ind. 2022, 47, 73–82. [Google Scholar]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Cheng, C.K. Characterization of La-promoted Ni/Al2O3 catalysts for hydrogen production from glycerol dry reforming. J. Energy Chem. 2014, 23, 15. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Khan, M.R.; Gimbun, J.; Cheng, C.K. CO2 reforming of glycerol over La-Ni/Al2O3 catalyst: A longevity evaluative study. J. Energy Chem. 2015, 24, 366. [Google Scholar] [CrossRef]
- Siew, K.W.; Lee, H.C.; Gimbun, J.; Cheng, C.K. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bull. Chem. React. Eng. Catal. 2013, 8, 160. [Google Scholar] [CrossRef]
- Horlyck, J.; Lewis, S.; Amal, R.; Scott, J. The Impact of La Doping on Dry Reforming Ni-Based Catalysts Loaded on FSP-Alumina. Top. Catal. 2018, 61, 18. [Google Scholar] [CrossRef]
- Bang, Y.; Seo, J.G.; Song, I.K. Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni–La–Al2O3 aerogel catalysts: Effect of La content. Int. J. Hydrogen Energy 2011, 36, 8307. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Naeem, M.A.; Fakeeha, A.H.; Abasaeed, A.E. Role of La2O3 as promoter and support in Ni-γ-Al2O3 catalysts for dry reforming of CH4. Chin. J. Chem. Eng. 2014, 22, 28. [Google Scholar] [CrossRef]
- Majidian, N.; Habibi, M.; Rezaei, M. CH4 reforming with CO2 for syngas production over nickel catalysts supported on mesoporous nanostructured γ-Al2O3. Korean J. Chem. Eng. 2014, 31, 1162. [Google Scholar] [CrossRef]
- Georgiadis, A.G.; Siakavelas, G.I.; Tsiotsias, A.I.; Charisiou, N.D.; Ehrhardt, B.; Wang, W.; Sebastian, S.; Hinder, S.J.; Baker, M.A.; Mascotto, S.; et al. Biogas dry reforming over Ni/LnOx-type catalysts (Ln= La, Ce, Sm or Pr). Int. J. Hydrogen Energy 2023, 48, 19953–19971. [Google Scholar] [CrossRef]
- Han, D.; Yang, Y.; Wu, T.; Wang, Z.; Xiong, J.; Zou, J.; Wei, Y. Synergistic effect of Ni and CeOx in NiCeOx/SSZ-13 catalyst for boosting activity and stability during dry reforming of methane. Catal. Today 2024, 435, 114720. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Di Bartolomeo, E.; Kesavan, J.K.; Kumar, S.S.; Selvakumar, K. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Khan, M.A.; Woo, S.I. La-promoted Ni/γ-Al2O3 catalyst for autothermal reforming of methane. Korean J. Chem. Eng. 2014, 31, 1204–1210. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Yao, L.; Shen, J.; Tong, D.; Hu, C. The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane. Int. J. Hydrogen Energy 2011, 36, 7094–7104. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Kumar, A.; Prasad, R.; Upadhyay, S.N. Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew. Sustain. Energy Rev. 2017, 74, 89. [Google Scholar] [CrossRef]
- Thyssen, V.V.; Maia, T.A.; Assaf, E.M. Ni supported on La2O3–SiO2 used to catalyze glycerol steam reforming. Fuel 2013, 105, 358–363. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Zheng, Y.; Li, K.; Guo, L. Influence of La2O3 addition on activity and coke formation over Ni/SiO2 for acetic acid steam reforming. Int. J. Hydrogen Energy 2022, 47, 3633–3643. [Google Scholar] [CrossRef]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castano, P. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Diao, Y.; Wang, H.; Chen, B.; Wang, L.; Zhang, X.; Shi, C. Ordered mesoporous Ni-La2O3/Al2O3 catalysts towards efficient plasma-assisted dry reforming of methane. Fuel Process. Technol. 2023, 243, 107676. [Google Scholar] [CrossRef]
- Kiani, P.; Maryam, M.; Rahimpour, M.R. Biogas reforming over La-promoted Ni/SBA-16 catalyst for syngas production: Catalytic structure and process activity investigation. Int. J. Hydrogen Energy 2023, 48, 6262–6274. [Google Scholar] [CrossRef]
- Dan, M.; Mihet, M.; Tasnadi-Asztalos, Z.; Imre-Lucaci, A.; Katona, G.; Lazar, M.D. Hydrogen production by ethanol steam reforming on nickel catalysts: Effect of support modification by CeO2 and La2O3. Fuel 2015, 147, 260–268. [Google Scholar] [CrossRef]
- Li, B.; Yuan, X.; Li, L.; Li, B.; Wang, X.; Tomishige, K. Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 31608–31622. [Google Scholar] [CrossRef]
- Bai, X.; Xie, G.; Guo, Y.; Tian, L.; El-Hosainy, H.M.; Awadallah, A.E.; Ji, S.; Wang, Z.-J. A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane. Catal. Today 2019, 368, 78–85. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.C.; Navarro, R.M.; Fierro, J.L.G. Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catal. Today 2007, 129, 336–345. [Google Scholar] [CrossRef]
- Michalska, K.; Kowalik, P.; Próchniak, W.; Borowiecki, T. The effect of La2O3 on Ni/Al2O3 catalyst for methanation at very low COx/H2 ratio. Catal. Lett. 2018, 148, 972–978. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Huang, H.; Zou, X.; Gu, F.; Su, F.; Lu, X. Synthesis of mesoporous Ni–La–Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Process. Technol. 2019, 185, 56–67. [Google Scholar] [CrossRef]
- Liang, C.; Wei, T.; Wang, H.; Yu, Z.; Dong, D.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. Impacts of La addition on formation of the reaction intermediates over alumina and silica supported nickel catalysts in methanation of CO2. J. Energy Inst. 2020, 93, 723–738. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Z.; Ding, F.; Guo, X.; Wang, G. Syngas Production via Steam-CO2 Dual Reforming of Methane over LA-Ni/ZrO2 Catalyst Prepared by L-Arginine Ligand-Assisted Strategy: Enhanced Activity and Stability. ACS Sustain. Chem. Eng. 2015, 3, 3461. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.; Yuan, X. Influence of different La2O3 loading on hydroxyapatite supported nickel catalysts in the dry reforming of methane. Fuel 2024, 369, 131687. [Google Scholar] [CrossRef]
- Li, Z.; Leng, J.; Yan, H.; Zhang, D.; Ren, D.; Li, F.; Liu, Y.; Chen, X.; Yang, C. Enhanced activity and stability for combined steam and CO2 reforming of methane over NiLa/MgAl2O4 catalyst. Appl. Surf. Sci. 2023, 638, 158059. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Chen, X.; Liang, X.; Zou, X.; Lu, X. Combined steam and CO2 reforming of methane over one-pot prepared Ni/La-Si catalysts. Int. J. Hydrogen Energy 2019, 44, 4780–4793. [Google Scholar] [CrossRef]
- Boudjeloud, M.; Boulahouache, A.; Rabia, C.; Salhi, N. La-doped supported Ni catalysts for steam reforming of methane. Int. J. Hydrogen Energy 2019, 44, 9906–9913. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Tomishige, K.; Wang, X. Modification of silica supported nickel catalysts with lanthanum for stability improvement in methane reforming with CO2. Int. J. Hydrogen Energy 2022, 47, 37792–37810. [Google Scholar] [CrossRef]
- Akri, M.; Pronier, S.; Chafik, T.; Achak, O.; Granger, P.; Simon, P.; Trentesaux, M.; Batiot-Dupeyrat, C. Development of nickel supported La and Ce-naturalillite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Appl. Catal. B 2017, 205, 519–531. [Google Scholar] [CrossRef]
- Mo, W.; Ma, F.; Ma, Y.; Fan, X. The optimization of Ni–Al2O3 catalyst with the addition of La2O3 for CO2-CH4 reforming to produce syngas. Int. J. Hydrogen Energy 2019, 44, 24510. [Google Scholar] [CrossRef]
- Tan, M.; Yang, Y.; Wang, X.; Huang, H.; Zou, X.; Lu, X. Enhanced Coke Resistance and Antioxidation Stability of γ-Alumina-Supported Nickel-Based Catalysts via Decoration with Lanthanum for Propane Pre-Reforming. ChemistrySelect 2020, 5, 2482–2488. [Google Scholar] [CrossRef]
- Varun, Y.; Sreedhar, I.; Singh, S.A. Role of Ni, La impregnation and substitution in Co3O4-ZrO2 catalysts for catalytic hydrogen combustion. J. Environ. Chem. Eng. 2022, 10, 108384. [Google Scholar] [CrossRef]
- Siakavelas, G.I.; Charisiou, N.D.; AlKhoori, A.; AlKhoori, S.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Yentekakis, I.V.; Polychronopoulou, K.; Goula, M.A. Highly selective and stable Ni/La-M (M = Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation. J. CO2 Util. 2021, 51, 101618. [Google Scholar] [CrossRef]
Methods | Temperature (°C) | Amount of La (wt.%) | Effects | Reasons |
---|---|---|---|---|
Impregnation | 800 | 3.0 [92] | CH4 conversion rate: 98.3%; CO selectivity: 82.5%; BET specific surface area: 137.5 m2·g−1 | The C–H bonds of CH4 were more easily polarized with a more even dispersion of Ni on the catalyst surface. |
Impregnation | 800 | 2.0 [93] | H2 production rate: 9.70%; BET specific surface area: 98 m2·g−1 | The grain size was reduced to enhance the dispersion of Ni on the Al2O3 carrier. |
Impregnation | 800 | 3.0 [94] | Maximum BET specific surface area: 97 m2/g | The dispersion of metal particles was improved, and the size of Ni particles decreased. |
Impregnation | 800 | 2.0 [95] | H2 conversion rate: 9.67%; BET specific surface area: 98.05 m2·g−1 | The BET had a high specific surface area and a low grain size, which ensured the presence of a catalytic active region. |
Impregnation | 800 | 5.0 [96] | Smaller and well-dispersed nanoparticles of about 5–10 nm | The enhanced alkalinity and strengthened metal–support interactions led to an increase in the activity of the Ni catalyst. |
Impregnation | 700 | 3.0 [53] | BET specific surface area: 202 m2·g−1; the highest initial activity | The La provided abundant active sites, resulting in excellent stability. |
Sol-gel method | 700 | 4.0 [97] | BET specific surface area: 295 m2·g−1; the highest degree of Ni catalyst dispersion | The smallest Ni average diameter promoted catalytic effects. |
Impregnation | 700 | 4.0 [98] | BET specific surface area: 178 m2·g−1; CH4 conversion: 81.5%; CO2 conversion: 86.9% | The removal of carbon was accelerated by chemical adsorption and deionization of CO2. |
Sol-gel method | 700 | 3.0 [99] | BET specific surface area: 204 m2·g−1; conversion rates of CH4 and CO2 increased significantly. | The La promoted the dispersion of Ni, thereby enhancing the activity of the catalyst. |
Reaction Conditions | Time on Stream (h) | Effects | Reasons |
---|---|---|---|
CH4/CO2/H2O = 1:0.8:0.4; GHSV = 48,000 mL·h−1 g−1; atmospheric pressure | 24 [118] | Ni/ZrO2: Both CH4 and CO2 conversions decreased from 90% to about 70%. La-Ni/ZrO2: Both CH4 and CO2 conversions were maintained above 90%; the selectivity of H2 and CO fluctuated up and down to 83% and 95%, respectively. | The La-Ni/ZrO2 catalyst had increased Ni dispersity, intensified Ni−support interaction, and enlarged oxygen vacancies, which led to excellent catalytic activities. |
CH4/CO2 = 1:1; total flow rate = 40 mL/min; 750 °C; GHSV = 24,000 mL·h−1 g−1 | 34 [119] | The CH4 conversion of the Ni/5La-hydroxyapatite (HAP) dropped from 73.2 to 64.1% with a deactivation rate of 0.27%/h; H2/CO ratio: 0.84–0.81. The CH4 conversion of the Ni/HAP catalyst exhibited a rapid decline within 5 h, from 66.0 to 50.0% (the deactivation rate was 0.47%/h). | La enhanced the alkalinity and reinforced CO2 adsorption. |
WHSV = 37,500 mL/(gcat·h); 800 °C; CH4/CO2/H2O/N2 = 1:0.4:0.8:0.6; 1 atm | 10 [120] | The CH4 and CO2 conversions of NiLa5/MAO catalyst reached 93% and 71%, respectively, while the activity decreased by only 1% and 2.5%, respectively; The CH4 and CO2 conversions of Ni/MAO catalyst (85%, 63%) decreased by 5.6% and 8.4%, respectively. | La provided sufficient active sites and effectively controlled the metal sintering, thus leading to higher stability. |
800 °C, 1 atm; GHSV = 1.584 × 105 mL/gcat·h; CH4/CO2/H2O = 1/0.4/0.8 | 60 [121] | The Ni/3.0La-Si catalyst activity was maintained at a relatively high level at 60 h: ~70% for CO2 and ~83% for CH4 and showed the smallest deactivation rate. The CO2 and CH4 conversions of the Ni/Si catalyst significantly declined to ~36% and ~40%, respectively. | La promoted the DRM reaction or suppressed the methane decomposition over a long time. |
600 °C; H2O/CH4 = 3; GHSV = 32 × 103 mL/gcat·h | 12 [122] | The CH4 conversion of Ni-3La/Al was the highest (about 90%). | The small active NiO sites were highly and homogenously dispersed on the support, thus exhibiting high resistance to sintering and coking. |
750 °C; flow rate: 55 mL/min; CH4/CO2 = 1.2:1; GHSV = 33,000 mL/g·h | 30 [123] | The CH4 conversion of the Ni-2La-SiO2 catalyst dropped from 60.2 to 55.9% with a deactivation rate of 0.14%/h; the CH4 conversion of the Ni/SiO2 catalyst decreased to 46.3% (the deactivation rate was 0.49%/h). | The strong basic sites ensured quick reactions between carbon and adsorbed CO2, hence resulting in obvious advantages in resistance to carbon deposition and sintering. |
800 °C, CH4/CO2/O2 = 50/40/10; GHSV = 60,000 mL h−1 g−1 | 72 [124] | The Ni/La catalyst exhibited stable performance during 40 h of reaction; the CH4 and CO2 conversions decreased after 60 h of reaction. | La caused surface reconstruction and considerably enhanced the Ni species predisposed for catalytic activity and stability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wang, L. Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process. Catalysts 2024, 14, 355. https://doi.org/10.3390/catal14060355
Chen M, Wang L. Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process. Catalysts. 2024; 14(6):355. https://doi.org/10.3390/catal14060355
Chicago/Turabian StyleChen, Meng, and Lei Wang. 2024. "Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process" Catalysts 14, no. 6: 355. https://doi.org/10.3390/catal14060355
APA StyleChen, M., & Wang, L. (2024). Performance of Ni-Based Catalysts with La Promoter for the Reforming of Methane in Gasification Process. Catalysts, 14(6), 355. https://doi.org/10.3390/catal14060355