Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Electrochemical Performance
3. Materials and Methods
3.1. Materials and Agents
3.2. Preparation of Sulfur-Doped NiFe LDH Catalysts
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. Advances in carbon capture. In Advances in Carbon Capture; Woodhead Publishing: Sawston, UK, 2020; pp. 3–28. [Google Scholar]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Zou, X.; Liu, Y.P.; Li, G.D.; Wu, Y.Y.; Liu, D.P.; Li, W.; Li, H.W.; Wang, D.J.; Zhang, Y.; Zou, X.X. Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis. Adv. Mater. 2017, 29, 1700404. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Xie, J.Y.; Wang, N.; Gao, W.K.; Ma, Y.; Chen, T.S.; Yan, X.T.; Li, Q.Z.; Zhou, Y.L.; Chai, Y.M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energy 2020, 157, 415–423. [Google Scholar] [CrossRef]
- Ding, Y.; Miao, B.Q.; Li, S.N.; Jiang, Y.C.; Liu, Y.Y.; Yao, H.C.; Chen, Y. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Appl. Catal. B Environ. 2020, 268, 118393. [Google Scholar] [CrossRef]
- Zhang, R.R.; Wang, L.; Pan, L.; Chen, Z.C.; Jia, W.Y.; Zhang, X.W.; Zou, J.J. Solid-acid-mediated electronic structure regulation of electrocatalysts and scaling relation breaking of oxygen evolution reaction. Appl. Catal. B Environ. 2020, 277, 119237. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yan, Y.; Mei, B.B.; Qi, R.J.; He, T.; Wang, Z.T.; Fang, W.S.; Zaman, S.D.; Su, Y.Q.; Ding, S.J.; et al. Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365–373. [Google Scholar] [CrossRef]
- Ma, T.F.; Xu, W.W.; Li, B.R.; Chen, X.; Zhao, J.J.; Wan, S.S.; Jiang, K.; Zhang, S.X.; Wang, Z.F.; Tian, Z.Y.; et al. The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel-Based Electrodes. Angew. Chem. Int. Ed. 2021, 60, 22740–22926. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.F.; Wu, Y.Y.; Chen, H.; Liu, Y.P.; Yang, L.; Ai, X.; Zou, X.X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684–692. [Google Scholar] [CrossRef]
- Wang, B.; Tang, C.; Wang, H.F.; Chen, X.; Cao, R.; Zhang, Q. A Nanosized CoNi Hydroxide@Hydroxysulfide Core–Shell Heterostructure for Enhanced Oxygen Evolution. Adv. Mater. 2018, 31, 1805658. [Google Scholar] [CrossRef]
- Yang, H.; Gong, L.Q.; Wang, H.M.; Dong, C.L.; Wang, J.L.; Qi, K.; Liu, H.F.; Guo, X.P.; Xia, B.Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075. [Google Scholar] [CrossRef]
- Tang, Y.H.; Liu, Q.; Dong, L.; Wu, H.B.; Yu, X.Y. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B Environ. 2020, 266, 118627. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, F.T.; Dong, Y.W.; Dong, B.; Dai, F.N.; Liu, C.G.; Chai, Y.M. Dynamic anion regulation to construct S-doped FeOOH realizing 1000 mAcm−2-level-current-density oxygen evolution over 1000 h. Appl. Catal. B Environ. 2022, 315, 121571. [Google Scholar] [CrossRef]
- Rao, R.R.; Stephens, I.E.L.; Durrant, J.R. Understanding What Controls the Rate of Electrochemical Oxygen Evolution. Joule 2021, 5, 16–18. [Google Scholar] [CrossRef]
- Yuan, W.Y.; Wang, S.Y.; Ma, Y.Y.; Qiu, Y.; An, Y.R.; Cheng, L.F. Interfacial Engineering of Cobalt Nitrides and Mesoporous Nitrogen-Doped Carbon: Toward Efficient Overall Water-Splitting Activity with Enhanced Charge-Transfer Efficiency. ACS Energy Lett. 2020, 5, 692–700. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.X.; Yu, S.J.; Wen, T.; Zhu, X.W.; Yang, F.X.; Sun, X.N.; Wang, X.K.; Hu, W.P. Ternary NiCo2PxNanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Adv. Mater. 2016, 29, 1605502. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R.J.; Gao, C.C.; Bian, L.Y.; Pu, Y.; Zhu, X.B.; Li, X.A.; Huang, W. Cation-Modulated HER and OER Activities of Hierarchical VOOH Hollow Architectures for High-Efficiency and Stable Overall Water Splitting. Small 2019, 15, 1904688. [Google Scholar] [CrossRef]
- Riyajuddin, S.; Tarik Aziz, S.K.; Kumar, S.; Nessim, G.D.; Ghosh, K. 3D-Graphene Decorated with g-C3N4/Cu3P Composite: A Noble Metal-free Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem 2020, 12, 1394–1402. [Google Scholar] [CrossRef]
- Yue, S.; Wang, S.S.; Jiao, Q.Z.; Feng, X.T.; Zhan, K.; Dai, Y.Q.; Feng, C.H.; Li, H.S.; Feng, T.Y.; Zhao, Y. Preparation of Yolk–Shell-Structured CoxFe1−xP with Enhanced OER Performance. ChemSusChem 2019, 12, 4461–4470. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Duan, Y.; Feng, X.Y.; Yu, X.X.; Gao, M.R.; Yu, S.H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef]
- Wang, H.M.; Chen, S. A Cluster-Type Self-Healing Catalyst for Stable Saline–Alkali Water Splitting. Catalysts 2024, 14, 81. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Dongfang, N.C.; Triana, C.A.; Huang, C.; Erni, R.; Wan, W.C.; Li, J.; Stoian, D.; Pan, L.; Zhang, P.; et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ. Sci. 2022, 15, 727–739. [Google Scholar] [CrossRef]
- Zhu, S.H.; Liu, T.T.; Yu, S.; Yang, H.J.; Sun, Q.M.; Zheng, J.Y. Constructing Stable MoOx-NiSx Film via Electrodeposition and Hydrothermal Method for Water Splitting. Catalysts 2023, 13, 1426. [Google Scholar] [CrossRef]
- Ma, Y.J.; Wang, L.; Wang, J.; Sun, C.H.; Ma, C.L. In Situ Construction of Cobalt-Doped High-Dispersive Heazlewoodite for Efficient Oxygen Evolution. Energy Fuels 2023, 37, 5441–5447. [Google Scholar] [CrossRef]
- Yan, B.; Krishnamurthy, D.; Hendon, C.H.; Deshpande, S.; Surendranath, Y.; Viswanathan, V. Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis. Joule 2017, 1, 600–612. [Google Scholar] [CrossRef]
- Hung, T.F.; Yin, Z.W.; Betzler, S.B.; Zheng, W.J.; Yang, J.W.; Zheng, H.M. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 2019, 367, 115–122. [Google Scholar] [CrossRef]
- Wang, M.M.; Lin, M.T.; Li, J.T.; Huang, L.; Zhuang, Z.C.; Lin, C.; Zhou, L.; Mai, L.Q. Metal–organic framework derived carbon-confined Ni2P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chem. Commun. 2017, 53, 8372–8375. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F.J.; Abruña, H.D. Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245. [Google Scholar] [CrossRef]
- Fan, Y.C.; Ida, S.; Staykov, A.; Akbay, T.; Hagiwara, H.; Matsuda, J.; Kaneko, K.; Ishihara, T. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery. Small 2017, 13, 1700099. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.X.; Shi, P.H.; Fan, J.C.; Min, Y.L.; Xu, Q.J. Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. Small 2019, 15, 1901530. [Google Scholar] [CrossRef]
- Ibraheem, S.; Chen, S.G.; Li, J.; Wang, Q.M.; Wei, Z.D. In situ growth of vertically aligned FeCoOOH-nanosheets/nanoflowers on Fe,N co-doped 3D-porous carbon as efficient bifunctional electrocatalysts for rechargeable zinc–O2 batteries. J. Mater. Chem. A 2019, 7, 9497–9502. [Google Scholar] [CrossRef]
- Zang, N.; Wu, Z.X.; Wang, J.; Jin, W. Rational design of Cu–Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting. J. Mater. Chem. A 2020, 8, 1799–1807. [Google Scholar] [CrossRef]
- Li, S.; Wan, J.X.; Liu, Z.Y.; Zhuang, M.D.; Ren, P.Y.; Shi, W.L.; Zeng, X.J.; Yang, J. Cyanogel-Based Preparation of Amorphous NiFe Nanoaggregates with Enhanced Activity and Stability for OER. Catalysts 2023, 13, 1261. [Google Scholar] [CrossRef]
- Lin, J.; Ding, Y.H.; Jin, H.L.; Zeng, T.B. Optimized Ni, Co, Mn Oxides Anchored on Graphite Plates for Highly Efficient Overall Water Splitting. Catalysts 2023, 13, 1031. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D.P. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Adv. Energy Mater. 2019, 10, 1900954. [Google Scholar] [CrossRef]
- Kang, B.K.; Hussain, M.B.; Cheng, X.X.; Peng, C.; Wang, Z.Q. Green electrodeposition synthesis of NiFe-LDH/MoOx/BiVO4 for efficient photoelectrochemical water splitting. J. Colloid Interface Sci. 2022, 626, 146–155. [Google Scholar] [CrossRef]
- Ma, Y.M.; Wang, K.; Liu, D.U.; Yang, X.X.; Wu, H.; Xiao, C.H.; Ding, S.J. Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. J. Mater. Chem. A 2019, 7, 22889. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, C.; Fang, Z.T.; Xu, L.; Lu, C.L.; Hou, W.H. Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current–Density Oxygen Evolution Electrocatalyst. Small 2021, 18, 2104354. [Google Scholar] [CrossRef]
- Du, S.C.; Ren, Z.Y.; Wang, X.L.; Wu, J.; Meng, H.Y.; Fu, H.G. Controlled Atmosphere Corrosion Engineering toward Inhomogeneous NiFe-LDH for Energetic Oxygen Evolution. ACS Nano 2022, 16, 7794–7803. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.X.; Guo, X.Y.; Shen, T.; Xuan, C.J.; Tian, B.L.; Wen, Z.R.; Zhu, Y.; Wang, D.L. Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery. Appl. Catal. B Environ. 2021, 298, 120539. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.Y.; Du, X.q.; Liang, J.n.; Wu, J.z.; Zhao, G.m.; Li, X.G.; Gui, S.W.; Zheng, F.Y.; Zhao, J.; et al. Revealing the complex lithiation pathways and kinetics of core-shell NiO@CuO electrode. Energy Storage Mater. 2022, 51, 11–18. [Google Scholar] [CrossRef]
- Ren, Z.X.; Li, X.H.; Peng, Y.J.; Wang, G.Z.; Yin, J.; Zhao, X.C.; Wang, W.; Wang, X.B. FeNiS2/reduced graphene oxide electrocatalysis with reconstruction to generate FeNi oxo/hydroxide as a highly-efficient water oxidation electrocatalyst. Rare Met. 2022, 41, 4127–4137. [Google Scholar] [CrossRef]
- Chen, Y.F.; Li, J.H.; Liu, T.T.; You, S.H.; Liu, P.; Li, F.J.; Gao, M.Q.; Chen, S.G.; Zhang, F.F. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: One-step electrodeposition and surface reconstruction. Rare Met. 2023, 42, 2272–2283. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Yu, W.L.; Cao, Y.N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F.L.; Fan, R.Y.; Zhou, Y.L.; Chai, Y.M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B-Environ 2021, 292, 120150. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.X.; Hu, Y.C.; Liu, Y.C.; Chen, S.L. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience 2022, 2, 438–444. [Google Scholar] [CrossRef]
- Hao, M.; Wang, H.; Zhang, X.; Qu, Y.; Xuan, C.; Wu, Z.; Cui, M.; Wang, J. In situ construction of self-supporting Ni–Fe sulfide for high-efficiency oxygen evolution. New J. Chem. 2022, 46, 8250–8255. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Han, S.; Zhong, W.; Xie, Y.; Hu, J.; Yang, S. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Adv. 2020, 10, 33475–33482. [Google Scholar] [CrossRef]
- Samal, A.; Kori, D.K.K.; Jain, A.; Das, A.K. A nickel-doped two-dimensional covalent organic polymer (2D-COP) for electrocatalytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2024, 7, 2715–2725. [Google Scholar] [CrossRef]
- Zhou, C.H.; Chen, X.; Liu, S.; Han, Y.; Meng, H.B.; Jiang, Q.Y.; Zhao, S.M.; Wei, F.; Sun, J.; Tian, T.; et al. Superdurable Bifunctional Oxygen Electrocatalyst for HighPerformance Zinc–Air Batteries. J. Am. Chem. Soc. 2022, 144, 2694–2704. [Google Scholar] [CrossRef]
- Gao, X.Y.; Chen, J.; Sun, X.Z.; Wu, B.F.; Li, B.; Ning, Z.C.; Li, J.; Wang, N. Ru/RuO2 Nanoparticle Composites with N-Doped Reduced Graphene Oxide as Electrocatalysts for Hydrogen and Oxygen Evolution. ACS Appl. Nano Mater. 2020, 3, 12269–12277. [Google Scholar] [CrossRef]
- Li, J.W.; Xu, W.M.; Zhou, D.; Luo, J.X.; Zhang, D.W.; Xu, P.M.; Wei, L.C.; Yuan, D.S. Synthesis of 3D flower-like cobalt nickel phosphate grown on Ni foam as an excellent electrocatalyst for the oxygen evolution reaction. J. Mater. Sci. 2018, 53, 2077–2086. [Google Scholar] [CrossRef]
- Xu, J.C.; Li, Z.L.; Chen, D.; Yang, S.X.; Zheng, K.W.; Ruan, J.X.; Wu, Y.L.; Zhang, H.; Chen, J.; Xie, F.Y.; et al. Porous Indium Tin Oxide-Supported NiFe LDH as a Highly Active Electrocatalyst in the Oxygen Evolution Reaction and Flexible Zinc–Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48774–48783. [Google Scholar] [CrossRef]
- Lin, Y.P.; Wang, H.; Peng, C.K.; Bu, L.M.; Chiang, C.L.; Tian, K.; Zhao, Y.; Zhao, J.Q.; Lin, Y.G.; Lee, J.M.; et al. Co-Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small 2021, 16, 2002426. [Google Scholar] [CrossRef]
- Chen, J.S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 5509–5516. [Google Scholar] [CrossRef]
- Gao, L.; Guo, C.; Liu, X.; Ma, X.; Zhao, M.; Kuang, X.; Yang, H.; Zhu, X.; Sun, X.; Wei, Q. Co-Doped FeS2 with a porous structure for efficient electrocatalytic overall water splitting. New J. Chem. 2020, 44, 1711–1718. [Google Scholar] [CrossRef]
- Wu, S.W.; Liu, S.Q.; Tan, X.H.; Zhang, W.Y.; Cadien, K.; Li, Z. Ni3S2-embedded NiFe LDH porous nanosheets with abundant heterointerfaces for high-current water electrolysis. Chem. Eng. J. 2022, 442, 136105. [Google Scholar] [CrossRef]
- Zhao, M.H.; Wang, Y.N.; Mi, W.L.; Wu, J.T.; Zou, J.J.; Zhu, X.D.; Gao, J.; Zhang, Y.C. Surface-modified amorphous FeOOH on NiFe LDHs for high efficiency electrocatalytic oxygen evolution. Electrochim. Acta 2023, 458, 142513. [Google Scholar] [CrossRef]
- Hu, L.Y.; Zeng, X.; Wei, X.Q.; Wang, H.J.; Wu, Y.; Gu, W.L.; Shi, L.; Zhu, C.Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B-Environ. 2020, 273, 119014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, J.; Liu, H.; Wang, L.; Sun, C.; Gong, L.; Zhang, X.; Zhu, J. Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution. Catalysts 2024, 14, 394. https://doi.org/10.3390/catal14070394
Ma Y, Wang J, Liu H, Wang L, Sun C, Gong L, Zhang X, Zhu J. Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution. Catalysts. 2024; 14(7):394. https://doi.org/10.3390/catal14070394
Chicago/Turabian StyleMa, Yingjun, Jie Wang, Hangning Liu, Lin Wang, Changhui Sun, Liangyu Gong, Xiaogang Zhang, and Jiefang Zhu. 2024. "Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution" Catalysts 14, no. 7: 394. https://doi.org/10.3390/catal14070394
APA StyleMa, Y., Wang, J., Liu, H., Wang, L., Sun, C., Gong, L., Zhang, X., & Zhu, J. (2024). Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution. Catalysts, 14(7), 394. https://doi.org/10.3390/catal14070394