Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Structure Inspections
2.2. CO2 Conversion Performance
3. Experimental Section
3.1. Preparation of Bimetallic Catalysts
3.2. Physical Characterizations
3.3. CO2 Conversion Performance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tommasi, M.; Degerli, S.N.; Ramis, G.; Rossetti, I. Advancements in CO2 methanation: A comprehensive review of catalysis, reactor design and process optimization. Chem. Eng. Res. Des. 2024, 201, 457–482. [Google Scholar] [CrossRef]
- Ren, J.; Lou, H.; Xu, N.; Zeng, F.; Pei, G.; Wang, Z. Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives. J. Energy Chem. 2023, 80, 182–206. [Google Scholar] [CrossRef]
- Mendoza-Hernandez, O.S.; Shima, A.; Matsumoto, H.; Inoue, M.; Abe, T.; Matsuzaki, Y.; Sone, Y. Exergy valorization of a water electrolyzer and CO2 hydrogenation tandem system for hydrogen and methane production. Sci. Rep. 2019, 9, 6470. [Google Scholar] [CrossRef] [PubMed]
- Mebrahtu, C.; Krebs, F.; Abate, S.; Perathoner, S.; Centi, G.; Palkovits, R. CO2 methanation: Principles and challenges. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; Volume 178, pp. 85–103. [Google Scholar]
- Miao, B.; Ma, S.S.K.; Wang, X.; Su, H.; Chan, S.H. Catalysis mechanisms of CO2 and CO methanation. Catal. Sci. Technol. 2016, 6, 4048–4058. [Google Scholar] [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 2020, 356, 471–489. [Google Scholar] [CrossRef]
- Yuan, H.; Zhu, X.; Han, J.; Wang, H.; Ge, Q. Rhenium-promoted selective CO2 methanation on Ni-based catalyst. J. CO2 Util. 2018, 26, 8–18. [Google Scholar] [CrossRef]
- Younas, M.; Loong Kong, L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy Fuels 2016, 30, 8815–8831. [Google Scholar] [CrossRef]
- Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castello, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R.; Bueno-López, A. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Appl. Catal. B Environ. 2020, 265, 118538. [Google Scholar] [CrossRef]
- Vrijburg, W.L.; Moioli, E.; Chen, W.; Zhang, M.; Terlingen, B.J.P.; Zijlstra, B.; Filot, I.A.W.; Züttel, A.; Pidko, E.A.; Hensen, E.J.M. Efficient Base-Metal NiMn/TiO2 Catalyst for CO2 Methanation. ACS Catal. 2019, 9, 7823–7839. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Liu, F.; Wu, D. Reaction mechanism of CO2 methanation over Rh/TiO2 catalyst. Fuel 2020, 276, 118093. [Google Scholar] [CrossRef]
- Shah, M.; Al Mesfer, M.K.; Danish, M. Effect of titania synthesis conditions on the catalytic performance of mesoporous Ni/TiO2 catalysts for carbon dioxide reforming of methane. Int. J. Hydrogen Energy 2022, 47, 8867–8874. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Wang, F.; He, S.; Chen, H.; Zhao, Y.; Wei, M.; Evans, D.G.; Duan, X. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catal. Sci. Technol. 2013, 3, 2627–2633. [Google Scholar] [CrossRef]
- Hussain, I.; Tanimu, G.; Ahmed, S.; Aniz, C.U.; Alasiri, H.; Alhooshani, K. A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: Uncovering, influencing, and tuning strategies. Int. J. Hydrogen Energy 2023, 48, 24663–24696. [Google Scholar] [CrossRef]
- Bhalothia, D.; Yang, S.-S.; Yan, C.; Beniwal, A.; Chang, Y.-X.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Chen, T.-Y. Surface anchored atomic cobalt-oxide species coupled with oxygen vacancies boost the CO-production yield of Pd nanoparticles. Sustain. Energy Fuels 2023, 7, 526–536. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y.; Zhang, Y.; Fu, H.; Sun, S.; Li, F.; Duan, Z.; Liu, Z.; Wu, C.; Wang, Y.; et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 2023, 16, 12153–12164. [Google Scholar] [CrossRef]
- Jiang, Y.; Lang, J.; Wu, X.; Hu, Y.H. Electronic structure modulating for supported Rh catalysts toward CO2 methanation. Catal. Today 2020, 356, 570–578. [Google Scholar] [CrossRef]
- Bian, Y.; Xu, C.; Wen, X.; Xu, L.; Cui, Y.; Wang, S.; Wu, C.-E.; Qiu, J.; Cheng, G.; Chen, M. CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies. Fuel 2023, 331, 125755. [Google Scholar] [CrossRef]
- Ren, J.; Lei, H.; Mebrahtu, C.; Zeng, F.; Zheng, X.; Pei, G.; Zhang, W.; Wang, Z. Ni-based hydrotalcite-derived catalysts for enhanced CO2 methanation: Thermal tuning of the metal-support interaction. Appl. Catal. B Environ. 2024, 340, 123245. [Google Scholar] [CrossRef]
- Mohd Ridzuan, N.D.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-based catalyst for carbon dioxide methanation: A review on performance and progress. Catalysts 2022, 12, 469. [Google Scholar] [CrossRef]
- Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Li, Y.; Wu, C.E.; Yang, B.; Miao, Z.; Hu, X.; et al. Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts with Advanced Low-Temperature Activity Toward CO2 Methanation. Front. Chem. 2020, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Gerlak, C.A.; Liu, C.; Llorca, J.; Yao, S.Y.; Rui, N.; Zhang, F.; Liu, Z.Y.; Zhang, S.; Deng, K.X.; et al. Effect of Ni particle size on the production of renewable methane from CO over Ni/CeO catalyst. J. Energy Chem. 2021, 61, 602–611. [Google Scholar] [CrossRef]
- Bhalothia, D.; Hsiung, W.-H.; Yang, S.-S.; Yan, C.; Chen, P.-C.; Lin, T.-H.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Lin, M.-W.; et al. Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu–Ni–Pd Trimetallic Nanocatalyst Promotes Thermal CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 14043–14058. [Google Scholar] [CrossRef]
- Mebrahtu, C.; Abate, S.; Perathoner, S.; Chen, S.; Centi, G. CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships. Catal. Today 2018, 304, 181–189. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, J.; Kang, J.K.; Park, E.D. CO and CO methanation over Ni/Al@Al2O3 core–shell catalyst. Catal. Today 2020, 356, 622–630. [Google Scholar] [CrossRef]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, J.; Nag, N.; Crozier, P.A. Dynamic nucleation and growth of Ni nanoparticles on high-surface area titania. Surf. Sci. 2006, 600, 693–702. [Google Scholar] [CrossRef]
- Gomathi Devi, L.; Kottam, N.; Girish Kumar, S.; Eraiah Rajashekhar, K. Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Open Chem. 2010, 8, 142–148. [Google Scholar] [CrossRef]
- Glazer, A. Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1975, 31, 756–762. [Google Scholar] [CrossRef]
- Kao, J.C.; Bhalothia, D.; Wang, Z.X.; Lin, H.W.; Tseng, F.G.; Ting, L.Y.; Chou, H.H.; Lo, Y.C.; Chou, J.P.; Chen, T.Y. Electron Injection via Interfacial Atomic Au Clusters Substantially Enhance the Visible-Light-Driven Photocatalytic H2 Production of the PF3T Enclosed TiO2 Nanocomposite. Small 2023, 19, e2303391. [Google Scholar] [CrossRef]
- Bhalothia, D.; Yan, C.; Hiraoka, N.; Ishii, H.; Liao, Y.F.; Chen, P.C.; Wang, K.W.; Chou, J.P.; Dai, S.; Chen, T.Y. Pt-Mediated Interface Engineering Boosts the Oxygen Reduction Reaction Performance of Ni Hydroxide-Supported Pd Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 16177–16188. [Google Scholar] [CrossRef] [PubMed]
- Bhalothia, D.; Dai, S.; Wang, S.-P.; Yan, C.; Huang, T.-H.; Chen, P.-C.; Hiraoka, N.; Wang, K.-W.; Chen, T.-Y. Sub-nanometer Pt cluster decoration enhances the oxygen reduction reaction performances of NiOx supported Pd nano-islands. Sustain. Energy Fuels 2020, 4, 809–823. [Google Scholar] [CrossRef]
- Bhalothia, D.; Beniwal, A.; Yan, C.; Wang, K.C.; Wang, C.H.; Chen, T.Y. Potential synergy between Pt2Ni4 Atomic-Clusters, oxygen vacancies and adjacent Pd nanoparticles outperforms commercial Pt nanocatalyst in alkaline fuel cells. Chem. Eng. J. 2024, 483, 149421. [Google Scholar] [CrossRef]
- Yang, T.; Bhalothia, D.; Chang, H.-W.; Yan, C.; Beniwal, A.; Chang, Y.-X.; Wu, S.-C.; Chen, P.-C.; Wang, K.-W.; Dai, S. Oxygen vacancies endow atomic cobalt-palladium oxide clusters with outstanding oxygen reduction reaction activity. Chem. Eng. J. 2023, 454, 140289. [Google Scholar] [CrossRef]
- Bhalothia, D.; Shuan, L.; Wu, Y.-J.; Yan, C.; Wang, K.-W.; Chen, T.-Y. A highly mismatched NiO2-to-Pd hetero-structure as an efficient nanocatalyst for the hydrogen evolution reaction. Sustain. Energy Fuels 2020, 4, 2541–2550. [Google Scholar] [CrossRef]
- Liu, Y.L.; Deng, P.J.; Wu, R.Q.; Zhang, X.L.; Sun, C.H.; Li, H.T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Nolan, M. Alkaline earth metal oxide nanocluster modification of rutile TiO2 (110) promotes water activation and CO2 chemisorption. J. Mater. Chem. A 2018, 6, 9451–9466. [Google Scholar] [CrossRef]
- Yan, C.; Wang, C.-H.; Lin, M.; Bhalothia, D.; Yang, S.-S.; Fan, G.-J.; Wang, J.-L.; Chan, T.-S.; Wang, Y.-l.; Tu, X. Local synergetic collaboration between Pd and local tetrahedral symmetric Ni oxide enables ultra-high-performance CO2 thermal methanation. J. Mater. Chem. A 2020, 8, 12744–12756. [Google Scholar] [CrossRef]
- Cheng, M.; Bhalothia, D.; Huang, G.-H.; Saravanan, P.K.; Wu, Y.; Beniwal, A.; Chen, P.-C.; Tu, X.; Chen, T.-Y. Sub-Millisecond Pulsed Laser Engineering of CuOx-Decorated Pd Nanoparticles for Enhanced Catalytic CO2 Hydrogenation. Catalysis Today 2024, 441, 114891. [Google Scholar] [CrossRef]
- Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J.; González-Velasco, J. Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts. Appl. Catal. B Environ. 2019, 256, 117845. [Google Scholar] [CrossRef]
Sample | Ni K-Edge | Mn K-Edge | ||||||
---|---|---|---|---|---|---|---|---|
Bond Pair | CN | R | R-Factor | Bond Pair | CN | R | R-Factor | |
Ni-TiO2 | Ni-O | 5.69 | 2.041 | |||||
Ni-Ni | 3.71 | 3.118 | 0.00233 | N/A | N/A | N/A | N/A | |
Ni-Mn | N/A | N/A | ||||||
NiMn-1 | Ni-O | 5.28 | 2.038 | Mn-O | 4.20 | 1.951 | ||
Ni-Ni | 2.64 | 3.114 | 0.00905 | Mn-Mn | 5.94 | 3.184 | 0.0201 | |
Ni-Mn | 1.20 | 3.089 | Mn-Ni | 3.98 | 3.410 | |||
NiMn-3 | Ni-O | 5.64 | 2.040 | Mn-O | 3.80 | 1.921 | ||
Ni-Ni | 4.75 | 3.088 | 0.00344 | Mn-Mn | 5.99 | 3.205 | 0.0198 | |
Ni-Mn | 1.27 | 2.948 | Mn-Ni | 3.23 | 3.425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, P.K.; Bhalothia, D.; Beniwal, A.; Tsai, C.-H.; Liu, P.-Y.; Chen, T.-Y.; Ku, H.-M.; Chen, P.-C. Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles. Catalysts 2024, 14, 410. https://doi.org/10.3390/catal14070410
Saravanan PK, Bhalothia D, Beniwal A, Tsai C-H, Liu P-Y, Chen T-Y, Ku H-M, Chen P-C. Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles. Catalysts. 2024; 14(7):410. https://doi.org/10.3390/catal14070410
Chicago/Turabian StyleSaravanan, Praveen Kumar, Dinesh Bhalothia, Amisha Beniwal, Cheng-Hung Tsai, Pin-Yu Liu, Tsan-Yao Chen, Hong-Ming Ku, and Po-Chun Chen. 2024. "Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles" Catalysts 14, no. 7: 410. https://doi.org/10.3390/catal14070410
APA StyleSaravanan, P. K., Bhalothia, D., Beniwal, A., Tsai, C. -H., Liu, P. -Y., Chen, T. -Y., Ku, H. -M., & Chen, P. -C. (2024). Adjacent Reaction Sites of Atomic Mn2O3 and Oxygen Vacancies Facilitate CO2 Activation for Enhanced CH4 Production on TiO2-Supported Nickel-Hydroxide Nanoparticles. Catalysts, 14(7), 410. https://doi.org/10.3390/catal14070410