Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4
Abstract
:1. Introduction
2. Results and Discussions
2.1. Crystal Phase and Textures of Mn3O4-Based Catalysts
2.2. Surface Chemical Properties of the Obtained Catalysts
2.3. Evolution of Oxygen Species and Reducibility of the Gained Catalysts
2.4. Temperature-Programmed Surface Reaction on the Obtained Catalysts
2.5. Catalytic Performance of Benzene OCO
3. Experimental
3.1. Catalyst Preparation
3.2. Characterizations
3.3. Catalytic Activity Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Ma, X.; Hao, X.; Tang, B.; Abudula, A.; Guan, G. Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: A critical review. Catal. Rev. 2024, 66, 586–639. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, L.; Zhang, Z.; Li, N.; Yan, B.; He, C.; Hao, Z.; Chen, G. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit. Rev. Environ. Sci. Technol. 2022, 52, 311–355. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- Wei, W.; Chen, S.; Wang, Y.; Cheng, L.; Wang, X.; Cheng, S. The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China. Atmos. Environ. 2022, 273, 118978. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, S.; Gao, B.; Bi, F.; Qiao, R.; Yang, Y.; Wu, M.; Zhang, X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep. Purif. Technol. 2023, 314, 123510. [Google Scholar] [CrossRef]
- Liu, B.; Ji, J.; Zhang, B.; Huang, W.; Gan, Y.; Leung, D.Y.C.; Huang, H. Catalytic ozonation of VOCs at low temperature: A comprehensive review. J. Hazard. Mater. 2022, 422, 126847. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, B.; Ji, J.; Liu, B.; Xie, R.; Gan, Y.; Xie, X.; Zhang, J.; Huang, P.; Huang, H. Exceptional ozone decomposition over δ-MnO2/AC under an entire humidity environment. Environ. Sci. Technol. 2023, 57, 17727–17736. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zhang, Z.; Xiang, L.; Zhang, L.; Cheng, Z.; Wang, Z.; Yan, B.; Chen, G. Efficient degradation of multiple Cl-VOCs by catalytic ozonation over MnOx catalysts with different supports. Chem. Eng. J. 2022, 435, 134807. [Google Scholar] [CrossRef]
- Xia, D.; Xu, W.; Wang, Y.; Yang, J.; Huang, Y.; Hu, L.; He, C.; Shu, D.; Leung, D.Y.C.; Pang, Z. Enhanced performance and conversion pathway for catalytic ozonation of methyl mercaptan on single-atom Ag deposited three-dimensional ordered mesoporous MnO2. Environ. Sci. Technol. 2018, 52, 13399–13409. [Google Scholar] [CrossRef]
- Einaga, H.; Teraoka, Y.; Ogata, A. Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. J. Catal. 2013, 305, 227–237. [Google Scholar] [CrossRef]
- Fan, G.; Guo, Y.; Chai, S.; Zhang, L.; Guan, J.; Ma, G.; Han, N.; Chen, Y. Synthesis of δ-MnO2 via ozonation routine for low temperature formaldehyde removal. J. Environ. Sci. 2025, 147, 642–651. [Google Scholar] [CrossRef]
- Hu, P.; Amghouz, Z.; Huang, Z.; Xu, F.; Chen, Y.; Tang, X. Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ. Sci. Technol. 2015, 49, 2384–2390. [Google Scholar] [CrossRef]
- Chen, W.; He, H.; Liang, J.; Wei, X.; Li, X.; Wang, J.; Li, L. A comprehensive review on metal based active sites and their interaction with O3 during heterogeneous catalytic ozonation process: Types, regulation and authentication. J. Hazard. Mater. 2023, 443, 130302. [Google Scholar] [CrossRef] [PubMed]
- Gopi, T.; Swetha, G.; Chandra, S.S.; Ramakrishna, C.; Saini, B.; Krishna, R.; Rao, P.V.L. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts. Catal. Commun. 2017, 92, 51–55. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Wang, H.C.; Chang, S.H.; Hung, P.C.; Hwang, J.F.; Chang, M.B. Synergistic effect of transition metal oxides and ozone on PCDD/F destruction. J. Hazard. Mater. 2009, 164, 1452–1459. [Google Scholar] [CrossRef]
- Wang, Y.; Arandiyan, H.; Scott, J.; Bagheri, A.; Dai, H.; Amal, R. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A 2017, 5, 8825–8846. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Weng, D.; Ran, R. Ceria-based catalysts for soot oxidation: A review. J. Rare Earth 2015, 33, 567–590. [Google Scholar] [CrossRef]
- Liu, L.; Wu, N.; Ouyang, M.; Xing, Y.; Tian, J.; Chen, P.; Wu, J.; Hu, Y.; Niu, X.; Fu, M.; et al. Enhancement effect induced by the second metal to promote ozone catalytic oxidation of VOCs. Environ. Sci. Technol. 2024, 58, 6725–6735. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.E.; Lee, H.W.; Jeon, J.K.; Song, J.; Jung, S.C.; Tsang, Y.F.; Park, Y.K. Catalytic ozonation of toluene using Mn-M bimetallic H-ZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. J. Hazard. Mater. 2020, 397, 122577. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, M.; Zhang, Z.; Jiang, Z.; Shangguan, W.; Einaga, H. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catal. Today 2019, 327, 323–333. [Google Scholar] [CrossRef]
- Fu, Y.; Zhong, L.; Li, Z.; Jin, H.; Liu, X.; Tong, W.; Li, X.; Zhao, S. Spinel (Mn, Fe)3O4 nanocatalyst for the catalytic ozone decomposition under humid conditions. ACS Appl. Nano Mater. 2024, 7, 7111–7721. [Google Scholar] [CrossRef]
- Nikolov, P.; Genov, K.; Konova, P.; Milenova, K.; Batakliev, T.; Georgiev, V.; Kumar, N.; Sarker, D.K.; Pishev, D.; Rakovsky, S. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature. J. Hazard. Mater. 2010, 184, 16–19. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Zhou, Z.; Wu, Y.; Cheng, G.; Li, Y.; Sun, C.; Sun, M.; Yu, L. Engineering of Mn3O4@Ag microspheres assembled from nanosheets for superior O3 decomposition. Dalton Trans. 2022, 51, 16612–16619. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Qiu, C.; Guo, L.; Shang, K.; Lu, N.; Li, J.; Zhang, Y.; Wu, Y. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. J. Hazard. Mater. 2019, 369, 611–620. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Z.; Jiang, Z.; Chen, M.; Einaga, H.; Shangguan, W. Catalytic activity of porous manganese oxides for benzene oxidation improved via citric acid solution combustion synthesis. J. Environ. Sci. 2020, 98, 196–204. [Google Scholar] [CrossRef]
- Li, Z.; Gao, R.; Hou, Z.; Yu, X.; Dai, H.; Deng, J.; Liu, Y. Tandem supported Pt and ZSM-5 catalyst with separated catalytic functions for promoting multicomponent VOCs oxidation. Appl. Catal. B 2023, 339, 123131. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, X.; Zhang, J.; Mai, Y.; Chen, J. Highly efficient MnOx catalysts derived from Mn-MOFs for chlorobenzene oxidation: The influence of MOFs precursors, oxidant and doping of Ce metal. Mol. Catal. 2023, 551, 113653. [Google Scholar] [CrossRef]
- Tang, W.; Li, J.; Wu, X.; Chen, Y. Limited nanospace for growth of Ni-Mn composite oxide nanocrystals with enhanced catalytic activity for deep oxidation of benzene. Catal. Today 2015, 258, 148–155. [Google Scholar] [CrossRef]
- Li, H.; Qiao, D.; Chu, M.; Guo, L.; Sun, Z.; Fan, Y.; Ni, S.Q.; Tung, C.H.; Wang, Y. Accumulation of Ag(0) single atoms at water/mineral interfaces during sunlight-induced reduction of ionic Ag by phenolic DOM. Environ. Sci. Technol. 2023, 57, 20822–20829. [Google Scholar] [CrossRef]
- Hansen, T.W.; DeLaRiva, A.T.; Challa, S.R.; Datye, A.K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720–1730. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Tan, Q.; Zhou, K.; Xu, X.; Ding, Y.; Han, Y.; Fan, X.; Tao, R. Cr doped Mn3O4 thermal catalytic isopropanol degradation at low-temperature and catalytic mechanism research. Colloid Surf. A 2022, 640, 128390. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Lin, M.; Ma, X.; Ge, M. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal. Today 2019, 327, 254–261. [Google Scholar] [CrossRef]
- Shao, S.; Li, Z.; Zhang, J.; Gao, K.; Liu, Y.; Jiao, W. Preparation of Ce-MnOx/γ-Al2O3 by high gravity-assisted impregnation method for efficient catalytic ozonation. Chem. Eng. Sci. 2022, 248, 117246. [Google Scholar] [CrossRef]
- Lu, J.; Hao, H.; Zhang, L.; Xu, Z.; Zhong, L.; Zhao, Y.; He, D.; Liu, J.; Chen, D.; Pu, H.; et al. The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH). Appl. Catal. B 2018, 237, 185–197. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, H.; Pan, T.; Liao, X.; Zhang, C.; He, H. Effective toluene ozonation over δ-MnO2: Oxygen vacancy-induced reactive oxygen species. Environ. Sci. Technol. 2023, 57, 2918–2927. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Fang, W.; Chen, M.; Zhang, Z.; Jiang, Z.; Shangguan, W.; Einaga, H. Simultaneous catalytic elimination of formaldehyde and ozone over one-dimensional rod-like manganese dioxide at ambient temperature. J. Chem. Technol. Biotechnol. 2019, 94, 2305–2317. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Song, Z.; Zhao, J.; Ma, Z.; Zhao, M.; Xing, Y.; Zhang, P.; Tsubaki, N. Influence of hydrothermal synthesis temperature on the redox and oxygen mobility properties of manganese oxides in the catalytic oxidation of toluene. Transit. Metal Chem. 2019, 44, 663–670. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, J.; Liu, B.; Zhang, D.; Liu, S.; Huang, H. Highly efficient ozone decomposition against harsh environments over long-term stable amorphous MnOx catalysts. Appl. Catal. B 2022, 315, 121552. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Niu, X.; Zhu, Y. Regulating the mobility of lattice oxygen on hollow cobalt-manganese sub-nanospheres for enhanced catalytic oxidation of toluene and o-xylene. J. Colloid Interfaces Sci. 2024, 671, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Men, Y.; Wang, J.; Sun, Y.; Wang, Z.; Zhao, B.; Tao, X.; Xu, G. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl. Catal. B 2019, 242, 227–237. [Google Scholar] [CrossRef]
- Lei, J.; Chen, J.; Bai, B.; Wang, P.; Wang, S.; Li, J. Regulation of the existing state of Cu species in high water-toletant CuOx-Mn3O4 for VOCs mixtrue catalytic oxidation. Chem. Eng. Sci. 2024, 284, 119455. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X.; Hojo, H.; Yao, X.; Einaga, H.; Shangguan, W. Removal of benzene by non-thermal plasma catalysis over manganese oxides through a facile synthesis method. Environ. Sci. Pollut. Res. 2019, 26, 8237–8247. [Google Scholar] [CrossRef]
- Wang, J.; Su, J.; Zhao, G.; Liu, D.; Yuan, H.; Kuvarega, A.T.; Mamba, B.B.; Li, H.; Gui, J. A facile method for preparing the CeMnO3 catalyst with high activity and stability of toluene oxidation: The critical role of small crystal size and Mn3+-Ov-Ce4+ sites. J. Hazard. Mater. 2024, 470, 134114. [Google Scholar] [CrossRef]
- Hu, Z.; Mi, R.; Yong, X.; Liu, S.; Li, D.; Li, Y.; Zhang, T. Effect of crystal phase of MnO2 with similar nanorod-shaped morphology on the catalytic performance of benzene combustion. ChemistrySelect 2019, 4, 473–480. [Google Scholar] [CrossRef]
- Perupogu, V.; Rajendiran, R.; Balla, P.; Seelam, P.K.; Aravindh, A.; Kim, S.; Pinapati, S.R.; Nakka, L. Insight into the role of metal support interface on shape dependent MnO2 support through the synergistic effect between Ag and MnO2 for the total oxidation of propane. J. Environ. Chem. Eng. 2024, 12, 112655. [Google Scholar] [CrossRef]
- Shao, Q.; Cheng, Z.; Gao, L.; Li, T.; Zhang, J.; Long, C. Tuning the properties of oxygen vacancy around Cu-Mn mixed oxides on dealumination Y zeolite by P-doping to achieve ultra-efficient catalytic ozonation of toluene with low ozone consumption. Appl. Catal. B 2023, 339, 123154. [Google Scholar] [CrossRef]
- Trinh, Q.H.; Mok, Y.S. Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catal. Today 2015, 256, 170–177. [Google Scholar] [CrossRef]
Sample | Specific Surface Area/m2·g−1 | Pore Volume/cm3·g−1 | Average Pore Size/nm |
---|---|---|---|
Mn3O4 | 385.2 | 0.40 | 4.2 |
Ag/Mn3O4 | 372.4 | 0.44 | 4.8 |
Catalyst | Mn3+ | Mn4+ | Ag+ | Oα | Oβ + Oγ | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE/eV | % | BE/eV | % | BE/eV | % §1 | BE/eV | % | BE/eV | % | |
Mn3O4 | 641.8 | 79.81 | 643.3 | 20.19 | - | - | 529.8 | 66.1 | 531.2 | 33.9 |
Ag/Mn3O4 | 641.5 | 75.70 | 643.0 | 24.30 | 367.4 | 5.01 | 529.5 | 57.0 | 530.6 | 43.0 |
Sample | 25 °C | 70 °C | ||||||
---|---|---|---|---|---|---|---|---|
C6H6 rem./% §2 | CO2 /ppm | CO /ppm | Res. O3/ppm | C6H6 rem./% §3 | CO2 /ppm | CO /ppm | Res. O3/ppm | |
Mn3O4 | 91.8 | 585.4 | 194.7 | 270.2 | 99.8 | 1046.4 | 301.4 | 0 |
Ag/Mn3O4 | 97.4 | 810.9 | 19.2 | 67.2 | 99.8 | 1165.4 | 157.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Cen, L.; Deng, K.; Mo, W.; Hajime, H.; Hu, D.; Zhang, P.; Shangguan, W.; Huang, H.; Einaga, H. Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4. Catalysts 2024, 14, 554. https://doi.org/10.3390/catal14090554
Guo H, Cen L, Deng K, Mo W, Hajime H, Hu D, Zhang P, Shangguan W, Huang H, Einaga H. Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4. Catalysts. 2024; 14(9):554. https://doi.org/10.3390/catal14090554
Chicago/Turabian StyleGuo, Hao, Liwei Cen, Kui Deng, Wenlong Mo, Hojo Hajime, Di Hu, Pan Zhang, Wenfeng Shangguan, Haibao Huang, and Hisahiro Einaga. 2024. "Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4" Catalysts 14, no. 9: 554. https://doi.org/10.3390/catal14090554
APA StyleGuo, H., Cen, L., Deng, K., Mo, W., Hajime, H., Hu, D., Zhang, P., Shangguan, W., Huang, H., & Einaga, H. (2024). Boosting Benzene’s Ozone Catalytic Oxidation at Mild Temperatures over Highly Dispersed Ag-Doped Mn3O4. Catalysts, 14(9), 554. https://doi.org/10.3390/catal14090554