Innovative In/H-SSZ-39 Catalysts: An Exploration in NOx Reduction via CH4-SCR
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Preparation Conditions
2.1.1. Si/Al Ratio
2.1.2. Effect of Calcination Temperature
2.1.3. Effect of In Ions Concentration
2.2. Effect of Reaction Conditions
2.2.1. CH4/NO Ratio
2.2.2. O2 Concentration
2.2.3. Gaseous Hourly Space Velocity
2.2.4. H2O Concentrations
2.3. Long Run Test
2.4. Stability Test
2.5. Characteristics of Used In/H-SSZ-39 after CH4-SCR in the Presence of H2O
3. Experimental
3.1. Catalyst Preparation
3.2. Catalytic Activity Measurements
3.3. Catalyst Characterizations
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lim, J.; Shin, J.; Ahn, N.; Heo, I.; Hong, S. Selective catalytic reduction of NO with CH4 over cobalt-exchanged cage-based, small-pore zeolites with different framework structures. Appl. Catal. B Environ. Energy 2020, 267, 118710. [Google Scholar] [CrossRef]
- Jing, G.; Li, J.; Yang, D.; Hao, J. Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. Appl. Catal. B Environ. Energy 2009, 91, 123–134. [Google Scholar] [CrossRef]
- Shan, Y.; Sun, Y.; Du, J.; Zhang, Y.; Shi, X.; Yu, Y.; Shan, W.; He, H. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. Appl. Catal. B Environ. Energy 2020, 275, 119105. [Google Scholar] [CrossRef]
- Bellmann, A.; Atia, H.; Bentrup, U.; Brueckner, A. Mechanism of the selective reduction of NOx by methane over Co-ZSM-5. Appl. Catal. B Environ. Energy 2018, 230, 184–193. [Google Scholar] [CrossRef]
- Li, Y.; Armor, J. Selective catalytic reduction of NO with methane over metal exchanged zeolites. Appl. Catal. B Environ. Energy 1993, 2, 239–256. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; He, J.; Wen, Z.; Li, Z.; Gu, T.; Ding, R.; Zhu, Y.; Zhu, R. Effect of preparation and reaction conditions on the performance of In/H-Beta for selective catalytic reduction of NOx with CH4. Chemosphere 2020, 252, 126458. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Wang, Y.; Li, Z.; Nkinahamira, F.; Zhu, R.; Li, C.; Zhang, J.; Sun, S.; Zhu, Y.; et al. The poisoning mechanism of H2O/SO2 to In/H-Beta for selective catalytic reduction of NOx with methane. Appl. Catal. A Gen. 2023, 649, 118973. [Google Scholar] [CrossRef]
- Kwak, J.; Tonkyn, R.; Kim, D.; Szanyi, J.; Peden, C. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Jo, D.; Ryu, T.; Park, G. Synthesis of high-silica LTA and UFI zeolites and NH3-SCR performance of their copper-exchanged form. ACS Catal. 2016, 6, 2443–2447. [Google Scholar] [CrossRef]
- Jo, D.; Park, G.; Ryu, T.; Hong, S. Economical synthesis of high-silica LTA zeolites: A step forward in developing a new commercial NH3-SCR catalyst. Appl. Catal. B Environ. Energy 2019, 243, 212–219. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.; Kim, D. Facile synthesis of KFI-type zeolite and its application to selective catalytic reduction of NOx with NH3. ACS Catal. 2017, 7, 6070–6081. [Google Scholar] [CrossRef]
- Ming, S.; Chen, Z.; Fan, C. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR. Appl. Catal. A Gen. 2018, 559, 47–56. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, C.; Pang, L.; Ming, M.S.; Guo, W.; Liu, P.; Chen, H.; Li, T. One-pot synthesis of high-performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18. Chem. Eng. J. 2018, 348, 608–617. [Google Scholar] [CrossRef]
- Corma, A.; Puche, M.; Rey, F.; Sankar, G.; Teat, S.J. A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-Rings. Angew. Chem. Int. Ed. 2003, 42, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Tran, D.; Burton, S.D.; Szanyi, J.; Lee, J.H.; Peden, C.H.F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203–209. [Google Scholar] [CrossRef]
- Fickel, D.W.; D’Addio, E.; Lauterbach, J.A. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. Energy 2011, 102, 441–448. [Google Scholar] [CrossRef]
- Du, J.; Han, S.; Huang, C.; Shan, Y.; Zhang, Y.; Shan, W.; He, H. Comparison of precursors for the synthesis of Cu-SSZ-39 zeolite catalysts for NH3-SCR reaction. Appl. Catal. B Environ. Energy 2023, 338, 123072. [Google Scholar] [CrossRef]
- Zhao, J.; Wen, Z.; Zhu, R.; Li, Z.; Ding, R.; Zhu, Y.; Gu, T.; Yang, R.; Zhu, Z. In/H-Beta modified by Co3O4 and its superior performance in the presence of H2O and SO2 for selective catalytic reduction of NOx with CH4. Chem. Eng. J. Adv. 2020, 3, 100029. [Google Scholar] [CrossRef]
- Chen, S.; Yan, X.; Wang, Y.; Chen, J.; Pan, D.; Ma, J.; Li, R. Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta. Catal. Today 2011, 175, 12–17. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, L.; Wang, Y.; Zhang, J.; Zhu, R.; Li, C.; Hong, M. Amino-acid modulated hierarchical In/H-Beta zeolites for selective catalytic reduction of NO with CH4 in the presence of H2O and SO2. Nanoscale 2022, 14, 5915–5928. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Dai, W.; Wu, G.; Guan, N.; Li, L. Ru-In/H-SSZ-13 for the selective reduction of nitric oxide by methane: Insights from temperature-programmed desorption studies. Appl. Catal. B Environ. Energy 2018, 236, 404–412. [Google Scholar] [CrossRef]
- Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev. 2008, 37, 1666–1688. [Google Scholar] [CrossRef] [PubMed]
- Zamaro, J.; Miró, E.; Boix, A.; Hernandez, A.; Fuentes, G. In-zeolites prepared by oxidative solid state ion exchange (OSSIE): Surface species and structural characterization. Micropor. Mesopor. Mat. 2010, 129, 74–81. [Google Scholar] [CrossRef]
- Lónyi, F.; Solt, H.E.; Valyon, J.; Boix, A.; Gutierrez, L.B. The activation of NO and CH4 for NO-SCR reaction over In- and Co-containing H-ZSM-5 catalysts. J. Mol. Catal. A Chem. 2011, 345, 75–80. [Google Scholar] [CrossRef]
- Ogura, M.; Ohsaki, T.; Kikuchi, E. The effect of zeolite structures on the creation of InO+ active sites for NOx reduction with methane. Micropor. Mesopor. Mat. 1998, 21, 533–540. [Google Scholar] [CrossRef]
- Khan, A.; Kennedy, M.; Dlugogorski, B.Z. Partial oxidation of methane with nitrous oxide forms synthesis gas over cobalt exchanged ZSM-5. Catal. Commun. 2014, 53, 42–46. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Zhu, R.; Zhang, J.; Ding, R.; Wen, Z.; Zhu, Y.; Zhang, G.; Chen, B. Mechanism of the selective catalytic reduction of NOx with CH4 on In/H-beta. Catal. Sci. Technol. 2021, 11, 5050–5061. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, J.; Gao, L.; Shan, S. Selective catalytic reduction of NO with NH3 and CH4 over zeolite supported indium-cerium bimetallic catalysts for lean-burn natural gas engines. Chem. Eng. J. 2021, 403, 126394. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Wang, Y.; Zhu, R.; Sun, S.; Zhang, J.; Li, C.; Hong, M. Desilication tuning of In/Hβ catalysts for sulfur- and steam-resistant CH4-SCR of NO. Catal. Commun. 2023, 175, 106619. [Google Scholar] [CrossRef]
Catalyst | Reaction Conditions | NOx Removal Efficiency (%) | Reaction Temperature (°C) | Reference |
---|---|---|---|---|
Co-Beta | 2180 ppm NO, 2050 ppm CH4, 2% O2, 78 ppm SO2, and a GHSV of 7500 h−1 | 32% | 600 | [19] |
In/H-Beta | 400 ppm NO, 400 ppm CH4, 10 % O2, 100 ppm SO2, 5 % H2O, and a GHSV of 23,600 h−1 | 31% | 600 | [6] |
In/H-Beta-P | 400 ppm NO, 400 ppm CH4, 10 % O2, 100 ppm SO2, 5 % H2O, and a GHSV of 23,600 h−1 | 40% | 650 | [20] |
In/H-SSZ-13 | 2500 ppm NO, 4000 ppm CH4, 4% O2, 6 % H2O, and a GHSV of 75,000 h−1 | 38% | 500 | [21] |
In/H-SSZ-39 | 400 ppm NO, 600 ppm CH4, 10 % O2, 6 % H2O, and a GHSV of 21,000 h−1 | 42.1% | 625 | Our work |
Catalysts | Content of In (wt.%) | Content of Al (wt.%) | Content of Si (wt.%) | Si/Al |
---|---|---|---|---|
In/H-SSZ-39 (Si/Al = 4.9) | 5.68 | 3.98 | 19.50 | 4.9 |
In/H-SSZ-39 (Si/Al = 16) | 5.5 | 2.45 | 40.33 | 16 |
Used In/H-SSZ-39 | 5.1 | 2.47 | 41.31 | 16 |
Sample | Peak I | Peak II | Peak III | Qtotal (mmol g−1) | |||
---|---|---|---|---|---|---|---|
T (°C) | Q (mmol g−1) | T (°C) | Q (mmol g−1) | T (°C) | Q (mmol g−1) | ||
In/H-SSZ-39 (Si/Al = 16) | 178 | 1.098 | 477 | 0.186 | 546 | 0.529 | 1.813 |
In/H-SSZ-39 (Si/Al = 4.9) | 168 | 1.045 | 489 | 0.209 | 560 | 0.110 | 1.365 |
Used In/H-SSZ-39 | 175 | 1.022 | 466 | 0.186 | 579 | 0.434 | 1.642 |
Sample | InO+/(InO+ + In2O3 + In(OH)3−zz+) |
---|---|
In/H-SSZ-39 (450 °C) | 0.45 |
In/H-SSZ-39 (500 °C) | 0.49 |
In/H-SSZ-39 (550 °C) | 0.36 |
In/H-SSZ-39 (600 °C) | 0.34 |
Used In/H-SSZ-39 | 0.40 |
Catalyst | SBET a (m2g−1) | Vtotal b (cm3g−1) | Vmeso c (cm3g−1) | dmeso d (nm) |
---|---|---|---|---|
Fresh In/H-SSZ-39 | 548.02 | 0.29 | 0.09 | 2.76 |
Used In/H-SSZ-39 | 541.11 | 0.29 | 0.07 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Jiang, J.; Wang, M.; Chen, J.; Li, J.; Wang, X.; Zhu, R. Innovative In/H-SSZ-39 Catalysts: An Exploration in NOx Reduction via CH4-SCR. Catalysts 2024, 14, 582. https://doi.org/10.3390/catal14090582
Zhao J, Jiang J, Wang M, Chen J, Li J, Wang X, Zhu R. Innovative In/H-SSZ-39 Catalysts: An Exploration in NOx Reduction via CH4-SCR. Catalysts. 2024; 14(9):582. https://doi.org/10.3390/catal14090582
Chicago/Turabian StyleZhao, Jiuhu, Jingjing Jiang, Meng Wang, Jianxiong Chen, Jin Li, Xianbin Wang, and Rongshu Zhu. 2024. "Innovative In/H-SSZ-39 Catalysts: An Exploration in NOx Reduction via CH4-SCR" Catalysts 14, no. 9: 582. https://doi.org/10.3390/catal14090582
APA StyleZhao, J., Jiang, J., Wang, M., Chen, J., Li, J., Wang, X., & Zhu, R. (2024). Innovative In/H-SSZ-39 Catalysts: An Exploration in NOx Reduction via CH4-SCR. Catalysts, 14(9), 582. https://doi.org/10.3390/catal14090582