Synthesis, Performance Measurement of Dy2EuSbO7/ZnBiDyO4 Heterojunction Composite Catalyst and Photocatalytic Degradation of Chlorpyrifos within Pesticide Wastewater under Visible Light Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. FTIR Analysis
2.3. Raman Analysis
2.4. UV-Vis Diffuse Reflectance Spectra
2.5. Property Characterization of Dy2EuSbO7/ZnBiDyO4 Heterojunction Photocatalyst
2.6. Photocatalytic Activity
2.7. Analysis of Possible Photocatalytic Degradation Mechanisms
3. Experimental Section
3.1. Materials and Reagents
3.2. Preparation Method of Dy2EuSbO7
3.3. Preparation Method of ZnBiDyO4
3.4. Synthesis of N-Doped TiO2
3.5. Synthesis of Dy2EuSbO7/ZnBiDyO4 Heterojunction Photocatalysts
3.6. Characterizations
3.7. Photoelectrochemical Experiments
3.8. Experimental Setup and Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haq, M.T.; Sattar, M.A.; Hossain, M.M.; Hasan, M.M. Effects of fertilizers and pesticides on growth and yield of rice. J. Biol. Sci. 2002, 2, 84–88. [Google Scholar]
- Bolognesi, C.; Merlo, F.D. Pesticides: Human health effects. Encycl. Environ. Health 2011, 156, 438–453. [Google Scholar]
- Arias-Estévez, M.; López-Periago, E. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Env. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Malek, A. Environmental and occupational risk factors for amyotrophic lateral sclerosis: A case-control study. Diss. Theses Gradworks 2014, 14, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kisby, G.E.; Muniz, J.F.; Scherer, J.; Lasarev, M.R.; Koshy, M.; Kow, Y.W. Biomarkers of oxidative stress and dna damage in agricultural workers. J. Agromed. 2009, 14, 206–214. [Google Scholar] [CrossRef]
- Bortoli, S.; Coumoul, X. Impact des pesticides sur la santé humaine. Prat. En. Nutr. 2018, 14, 18–24. [Google Scholar] [CrossRef]
- Betancourt, A.M.; Carr, R.L. The effect of chlorpyrifos and chlorpyrifos-oxon on brain cholinesterase, muscarinic receptor binding, and neurotrophin levels in rats following early postnatal exposure. Toxicol. Sci. 2004, 77, 63–71. [Google Scholar] [CrossRef]
- Jinyan, W.; Huazhong, S.; Yuanqing, B.; Ninghui, S.; Yan, D.; Lichao, T. Effect of chlorpyrifos on enzyme activities and microbial activicity in zijin mountain forest soil. Asian J. Ecotoxicol. 2017, 12, 210–218. [Google Scholar]
- Supreeth, M.; Chandrashekar, M.A.; Sachin, N.; Raju, N.S. Effect of chlorpyrifos on soil microbial diversity and its biotransformation by Streptomyces sp. hp-11. Biotech 2016, 6, 147. [Google Scholar] [CrossRef]
- Jafari, S.J.; Moussavi, G.; Hossaini, H. Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process. Desalin. Water Treat. 2014, 35, 3782–3790. [Google Scholar]
- Mirmasoomi, S.R.; Ghazi, M.M.; Galedari, M. Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 2017, 175, 418–427. [Google Scholar] [CrossRef]
- Alam, M.W. Smart Poly(N-Isopropylacrylamide)-Based Microgels Supplemented with Nanomaterials for Catalytic Reduction Reactions—A Review. Chemengineering 2023, 7, 105. [Google Scholar] [CrossRef]
- Ahmad, Z.; Tahir, R.; Sajjad, N.; Batool, F.; Zada, N.; Ullah, H. Cleansing Water: Harnessing Trimetallic Nanoparticles in Sunlight to Degrade Methylene Blue Dye, Aiding Aquatic Contaminant Cleanup. Water 2023, 15, 3404. [Google Scholar] [CrossRef]
- Kanmoni, V.G.G.; Daniel, S.; Raj, G.A.G. Photocatalytic degradation of chlorpyrifos in aqueous suspensions using nanocrystals of ZnO and TiO2. React. Kinet. Mech. Catal. 2012, 106, 325–339. [Google Scholar] [CrossRef]
- Lee, D.E.; Kim, M.K.; Danish, M.; Jo, W.K. State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catal. Commun. 2023, 183, 106764. [Google Scholar] [CrossRef]
- Liang, R.; Wu, H.; Hu, Z.; Sun, J.; Fu, C.; Li, S.; Zhang, X.; Zhou, M. Novel Photoelectrocatalytic System of Oxygen Vacancy-Rich Black TiO2−x Nanocones Photoanode and Natural Air Diffusion Cathode for Efficient Water Purification and Simultaneous H2O2 Production. Appl. Catal. B 2024, 352, 124042. [Google Scholar] [CrossRef]
- Bibi, S.; Shah, S.; Muhammad, F.; Siddiq, M.; Kiran, L.; Aldossari, S.; Sheikh, M.; Sarwar, S. Cu-Doped Mesoporous TiO2 Photocatalyst for Efficient Degradation of Organic Dye via Visible Light Photocatalysis. Chemosphere 2023, 339, 139583. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhang, Y.T.; Lee, J.; Xing, L. A review of application mechanism and research progress of Fe/montmorillonite-based catalysts in heterogeneous Fenton reactions. J. Environ. Chem. Eng. 2024, 12, 112152. [Google Scholar] [CrossRef]
- Wang, J.L.; Tang, J.T. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J. Mol. Liq. 2021, 332, 115755. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Q.; Li, D.; Zhong, Y.; Chen, H.; Peng, W. Metal Hydroxide-Catalyzed Heavy Oil Upgrading in Supercritical Water: Deuterium Tracing Study. Energy Fuels 2024, 38, 5738–5750. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Li, H.; Feng, J.; Tian, X. Kinetics and hydrothermal combustion characteristics of ethanol in supercritical water. J. Supercrit. Fluids 2024, 210, 106291. [Google Scholar] [CrossRef]
- Luo, C.; Teng, S.; Wang, J.; Xi, H. Energy yield from wastewater by supercritical water oxidation process: Experimental validation and simulation from the viewpoint of energy system. Energy Convers. Manag. 2024, 299, 117876. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Z.; He, C.; Liu, J.; Zhang, R.; Chen, Q. Oily sludge treatment in subcritical and supercritical water: A review. J. Hazard. Mater. 2022, 433, 128761. [Google Scholar] [CrossRef] [PubMed]
- Fadaei, A.; Kargar, M. Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environ. Bull. 2014, 22, 2442–2447. [Google Scholar]
- Dalrymple, O.K.; Yeh, D.H.; Trotz, M.A. Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biot. 2007, 82, 121–134. [Google Scholar] [CrossRef]
- Orbeci, C.; Totu, M.; Tanczos, S.K.; Vasile, E.; Dinu, A.; Nechifor, A.C. Preparation and properties of a photocatalyst with TiO2 nanoparticles. Optoelectron. Adv. Mat. 2013, 7, 822–827. [Google Scholar]
- Cao, G.S.; Wang, G.L.; Bai, Y.J.; Liu, M.X. Photocatalytic removal of Rhodamine B using Fe3O4/BiOBr magnetic microsphere under visible-light irradiation. Micro Nano Lett. 2015, 10, 115–118. [Google Scholar] [CrossRef]
- Mashuri, S.I.S.; Ibrahim, M.L.; Kasim, M.F.; Mastuli, M.S.; Rashid, U.; Abdullah, A.H.; Islam, A.; Mijan, N.A.; Tan, Y.H.; Mansir, N.; et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1260. [Google Scholar] [CrossRef]
- Alam, M.W.; Khalid, N.R.; Naeem, S.; Niaz, N.A.; Ahmad Mir, T.; Nahvi, I.; Souayeh, B.; Zaidi, N. Novel Nd-N/TiO2 Nanoparticles for Photocatalytic and Antioxidant Applications Using Hydrothermal Approach. Materials 2022, 15, 6658. [Google Scholar] [CrossRef]
- Slimings, C.; Riley, V. Antibiotics and hospital-acquired Clostridium diffificile infection: Update of systematic review and meta-analysis. J. Antimicrob. Chemother. 2013, 69, 881–891. [Google Scholar] [CrossRef]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.W.; Azam, H.; Khalid, N.R.; Naeem, S.; Hussain, M.K.; BaQais, A.; Farhan, M.; Souayeh, B.; Zaidi, N.; Khan, K. Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals 2022, 12, 1156. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals. J. Photochem. Photobiol. C Rev. 2001, 9, 1–12. [Google Scholar] [CrossRef]
- Lv, Y.C.; Tian, C.; Yan, A.; Liu, M.H. Preparation of Activated Carbon Supported Nano-TiO2 Photocatalyst Material and Its Application in Papermaking Midcourse Wastewater. Adv. Mater. Peocess. 2011, 311–313, 1446–1450. [Google Scholar]
- Shakil, M.; Inayat, U.; Khalid, N.R.; Tanveer, M.; Gillani, S.S.A.; Tariq, N.H.; Shah, A.; Mahmood, A.; Dahshan, A. Enhanced structural, optical, and photocatalytic activities of Cd–Co doped Zn ferrites for degrading methyl orange dye under irradiation by visible light. J. Phys. Chem. Solids 2021, 161, 110419. [Google Scholar] [CrossRef]
- Koci, K.; Krejcikova, S.; Solcova, O.; Obalova, L. Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 2012, 191, 134–137. [Google Scholar] [CrossRef]
- Naddafi, K.; Nabizadeh, R.; Silva-Martinez, S.; Shahtaheri, S.J.; Yaghmaeian, K.; Badiei, A.; Amiri, H. Modeling of Chlorpyrifos degradation by TiO2 photo catalysis under visible light using response surface methodology. Desalin. Water Treat. 2018, 106, 220–225. [Google Scholar] [CrossRef]
- Tong, T.; Zhang, H.; Chen, J.G.; Jin, D.R.; Cheng, J.R. The photocatalysis of BiFeO3 disks under visible light irradiation. Catal. Commun. 2016, 87, 23–26. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, H.Q.; Li, M.; Zhang, L.Z.; Zhang, Y.M. Markedly enhancing the visible-light photocatalytic activity of LaFeO3 by post-treatment in molten salt. React. Kinet. Catal. Lett. 2009, 97, 269–274. [Google Scholar] [CrossRef]
- Hu, C.Y.; Xu, J.; Zhu, Y.Q.; Chen, A.C.; Bian, Z.Y.; Wang, H. Morphological effect of BiVO4 catalysts on degradation of aqueous paracetamol under visible light irradiation. Environ. Sci. Pollut. Res. 2016, 23, 18421–18428. [Google Scholar] [CrossRef]
- Jothivenkatachalam, K.; Prabhu, S.; Nithya, A.; Mohan, S.C.; Jeganathan, K. Solar, visible and UV light photocatalytic activity of CoWO4 for the decolourization of methyl orange. Desalin. Water Treat. 2015, 54, 3134–3145. [Google Scholar] [CrossRef]
- Zhang, W.J.; Ma, Z.; Du, L.; Li, H. Role of PEG4000 in sol-gel synthesis of Sm2Ti2O7 photocatalyst for enhanced activity. J. Alloy. Compd. 2017, 704, 26–31. [Google Scholar] [CrossRef]
- Luan, J.F.; Hu, Z.T. Synthesis, Property Characterization, and Photocatalytic Activity of Novel Visible Light-Responsive Photocatalyst Fe2BiSbO7. Int. J. Photoenergy 2012, 2012, 301954. [Google Scholar] [CrossRef]
- Luan, J.F.; Shen, Y.; Li, Y.Y.; Paz, Y. The Structural, Photocatalytic Property Characterization and Enhanced Photocatalytic Activities of Novel Photocatalysts Bi2GaSbO7 and Bi2InSbO7 during Visible Light Irradiation. Materials 2016, 9, 801. [Google Scholar] [CrossRef]
- He, J.Y.; Yu, Q.; Zhou, Y.P.; Wang, Y.W.; Long, F. Rare Earth Ion Yb3+ Doping of Bi2WO6 with Excellent Visible-light Photocatalytic Activity. J. Wuhan Univ. Technol. 2020, 35, 348–355. [Google Scholar] [CrossRef]
- Park, B.G. Photoluminescence and photocatalytic properties of Eu3+-doped CaZnTiO3 perovskites with metal ion loading. Korean J. Chem. Eng. 2019, 36, 613–619. [Google Scholar] [CrossRef]
- Yang, X.; Gong, R.; Dong, Z.; Liu, G.; Han, Y.; Hou, Y.; Li, Y.; Guan, M.; Gong, X.; Tang, J. Polymeric Carbon Nitride-CNTs-Ferric Oxide All-Solid Z-Scheme Heterojunction with Improved Photocatalytic Activity towards Organic Dye Removal. Catalysts 2024, 14, 516. [Google Scholar] [CrossRef]
- Lei, Z.D.; Wang, J.J.; Wang, L.; Yang, X.Y.; Xu, G.; Tang, L. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J. Hazard. Mater. 2016, 312, 298–306. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Deng, F.; Luo, X.B.; Dionysiou, D.D. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chem. Eng. J. 2020, 379, 122264. [Google Scholar] [CrossRef]
- Xia, C.; Wang, H.; Kim, J.K.; Wang, J. Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Funct. Mater. 2021, 31, 2008247. [Google Scholar] [CrossRef]
- Bao, N.; Li, Y.; Yu, X.H.; Niu, J.J.; Wu, G.L.; Xu, X.H. Removal of anionic azo dye from aqueous solution via an adsorption-photosensitized regeneration process on a TiO2 surface. Environ. Sci. Pollut. Res. 2013, 20, 897–906. [Google Scholar] [CrossRef]
- Lam, M.W.; Mabury, S.A. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat. Sci. 2005, 67, 177–188. [Google Scholar] [CrossRef]
- Dil, M.A.; Haghighatzadeh, A.; Mazinani, B. Photosensitization effect on visible-light-induced photocatalytic performance of TiO2/chlorophyll and flavonoid nanostructures: Kinetic and isotherm studies. Bull. Mater. Sci. 2019, 42, 248. [Google Scholar] [CrossRef]
- Lu, T.; Wu, L.S.; Liu, G.; Li, C.X.; He, T.Y.; Zhang, W.T. Progress on visible photocatalysis of BiOCl composite photocatalyst. Appl. Chem. Indust. 2018, 47, 2541–2546, 2549. [Google Scholar]
- Li, G.; Yang, C.; He, Q.; Liu, J. Ag-based photocatalytic heterostructures: Construction and photocatalytic energy conversion application. J. Environ. Chem. Eng. 2022, 10, 107374. [Google Scholar] [CrossRef]
- He, Q.B.; Hu, Z.; Ge, M. Research Progress on Photo—Degradation of Antibiotics in Water by BiOX (X = Cl, Br, I) Composite Photocatalytic Materials. Chin. J. Appl. Chem. 2021, 38, 754–766. [Google Scholar]
- Lin, Y.; Yang, C.P.; Wu, S.H.; Li, X.; Chen, Y.J.; Yang, W.L. Construction of Built-In Electric Field within Silver Phosphate Photocatalyst for Enhanced Removal of Recalcitrant Organic Pollutants. Adv. Funct. Mater. 2020, 30, 2002918. [Google Scholar] [CrossRef]
- Che, L.; Pan, J.; Cai, K.; Cong, Y.; Lv, S.W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review. Sep. Purif. Technol. 2023, 315, 123708. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, Q.; Li, J.; Liu, H. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Appl. Catal. B Environ. 2020, 267, 118379. [Google Scholar] [CrossRef]
- Xu, X.L.; Song, W. Synthesis and photocatalytic activity of heterojunction ZnFe2O4-BiVO4. Mater. Technol. 2017, 32, 472–479. [Google Scholar] [CrossRef]
- Ma, C. Fabrication and characterization of NiOx/Bi2WO6 with enhanced photocatalytic activity under visible light illumination. Adv. Mater. Res. 2013, 690–693, 429–432. [Google Scholar] [CrossRef]
- Jourshabani, M.; Shariatinia, Z.; Badiei, A. In situ fabrication of SnO2/S-doped g-C3N4 nanocomposites and improved visible light driven photodegradation of methylene blue. J. Mol. Liq. 2017, 248, 688–702. [Google Scholar] [CrossRef]
- Jourshabani, M.; Shariatinia, Z.; Badiei, A. High efficiency visible-light-driven Fe2O3 -xS(x)/S-doped g-C3N4 heterojunction photocatalysts: Direct Z-scheme mechanism. J. Mater. Sci. Technol. 2018, 34, 1511–1525. [Google Scholar] [CrossRef]
- Rostami, M.; Sharafi, P.; Mozaffari, S.; Adib, K.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Fasihi-Ramandi, M.; Ganjali, M.R.; Badiei, A. A facile preparation of ZnFe2O4-CuO-N/B/RGO and ZnFe2O4-CuO-C3N4 ternary heterojunction nanophotocatalyst: Characterization, biocompatibility, photo-Fenton-like degradation of MO and magnetic properties. J. Mater. Sci. Mater. Electron. 2021, 32, 5457–5472. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Akram, N.; ul Haq, A.; Afzal, N.; Hamayun, M. Synthesis and characterization of silver loaded alumina and evaluation of its photo catalytic activity on photo degradation of methylene blue dye. Chem. Eng. Res. Des. 2019, 148, 218–226. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Mumtaz, N.; Siddique, M.; Akram, N.; Hamayun, M. Ag-Co3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium. Chin. J. Chem. Eng. 2018, 26, 1264–1269. [Google Scholar] [CrossRef]
- Wang, J.H.; Zou, Z.G.; Ye, J.H. Synthesis, structure and photocatalytic property of a new hydrogen evolving photocatalyst Bi2InTaO7. Mater. Sci. Forum 2003, 423–425, 485–490. [Google Scholar] [CrossRef]
- Kohno, M.; Ogura, S.; Sato, K.; Inoue, Y. Properties of photocatalysts with tunnel structures: Formation of a surface lattice O−radical by the UV irradiation of BaTi4O9 with a pentagonal-prism tunnel structure. Chem. Phys. Lett. 1997, 267, 72–76. [Google Scholar] [CrossRef]
- Kato, H.; Nakagawa, S. Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. J. Phys. Chem. B 2000, 104, 571–575. [Google Scholar]
- Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI. Rev. Sci. Instrum. 2009, 80, 046107. [Google Scholar] [CrossRef]
- Ji, L.; Chen, N.; Du, G.; Yan, M.; Shi, W. Synthesis and luminescence of Y2O3:Eu3+ inorganic—Organic hybrid nanostructures with thenoyltrifluoroacetone. Ceram. Int. 2014, 40, 3117–3122. [Google Scholar] [CrossRef]
- Achehboune, M.; Khenfouch, M.; Boukhoubza, I.; Leontie, L.; Doroftei, C.; Carlescu, A.; Bulai, G.; Mothudi, B.; Zorkani, I.; Jorio, A. Microstructural, FTIR and Raman spectroscopic study of Rare earth doped ZnO nanostructures. Mater. Today Proc. 2022, 53, 319–323. [Google Scholar] [CrossRef]
- Bosca, M.; Pop, L.; Borodi, G.; Pascuta, P.; Culea, E. XRD and FTIR structural investigations of erbium-doped bismuth–lead–silver glasses and glass ceramics. J. Alloy. Compd. 2009, 479, 579–582. [Google Scholar] [CrossRef]
- Pascuta, P.; Culea, E. FTIR spectroscopic study of some bismuth germanate glasses containing gadolinium ions. Mater. Lett. 2008, 62, 4127–4129. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Sajan, D.; Devarajan, P.A. A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions. Appl. Nanosci. 2012, 3, 529–533. [Google Scholar] [CrossRef]
- Rada, S.; Rus, L.; Rada, M.; Zagrai, M.; Culea, E.; Rusu, T. Compositional dependence of structure, optical and electrochemical properties of antimony(III) oxide doped lead glasses and vitroceramics. Ceram. Int. 2014, 40, 15711–15716. [Google Scholar] [CrossRef]
- Janani, B.; Okla, M.K.; Abdel-Maksoud, M.A.; AbdElgawad, H.; Thomas, A.M.; Raju, L.L.; Al-Qahtani, W.H.; Khan, S.S. CuO loaded ZnS nanoflower entrapped on PVA-chitosan matrix for boosted visible light photocatalysis for tetracycline degradation and anti-bacterial application. J. Environ. Manag. 2022, 306, 114396. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, H.; Liu, G.; Pu, Z.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127918. [Google Scholar] [CrossRef]
- Isari, A.A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E.N. Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: An effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 2020, 392, 123685. [Google Scholar] [CrossRef]
- Li, R.; Cai, M.; Xie, Z.; Zhang, Q.; Zeng, Y.; Liu, H.; Liu, G.; Lv, W. Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl. Catal. B Environ. 2019, 244, 974–982. [Google Scholar] [CrossRef]
- Shao, B.; Liu, X.; Liu, Z.; Zeng, G.; Liang, Q.; Liang, C.; Cheng, Y.; Zhang, W.; Liu, Y.; Gong, S. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem. Eng. J. 2019, 368, 730–745. [Google Scholar] [CrossRef]
- Tsaryuk, V.I.; Zhuravlev, K.P.; Szostak, R.; Vologzhanina, A.V. Structure, Luminescence, and Raman Spectroscopy of Europium and Terbium Dipivaloylmethanates and Other β-Diketonates with 2,2′-Bipyridine. J. Struct. Chem. 2020, 61, 1026–1037. [Google Scholar] [CrossRef]
- Sharma, N.D.; Singh, J.; Vijay, A.; Samanta, K.; Pandey, S.D. Investigations of anharmonic effects via phonon mode variations in nanocrystalline Dy2O3, Gd2O3 and Y2O3. J. Raman Spectrosc. 2017, 48, 822–828. [Google Scholar] [CrossRef]
- Refat, M.S.; Elsabawy, K.M. Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the preparations of selenium metal, (Sb2O3, Ga2O3, SnO and HgO) oxides and lead carbonate with pure grade using acetamide precursors. Bull. Mater. Sci. 2011, 34, 873–881. [Google Scholar] [CrossRef]
- Deonikar, V.G.; Patil, S.S.; Tamboli, M.S.; Ambekar, J.D.; Kulkarni, M.V.; Panmand, R.P.; Umarji, G.G.; Shinde, M.D.; Rane, S.B.; Munirathnam, N.R.; et al. Growth study of hierarchical Ag3PO4/LaCO3OH heterostructures. Phys. Chem. Chem. Phys. 2017, 19, 20541–20550. [Google Scholar] [CrossRef]
- Patil, S.S.; Tamboli, M.S.; Deonikar, V.G.; Umarji, G.G.; Ambekar, J.D.; Kulkarni, M.V.; Kolekar, S.S.; Kale, B.B.; Patil, D.R. Magnetically separable Ag3PO4/NiFe2O4 composites with enhanced photocatalytic activity. Dalton T 2015, 44, 20426–20434. [Google Scholar] [CrossRef]
- Chahine, A.; Et-tabirou, M.; Pascal, J.L. FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. Mater. Lett. 2004, 58, 2776–2780. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.; Zhang, Q.W.; Qu, J.; Ai, Z.Q.; Li, Y. J Mechanochemical synthesis of ultrafine ZnS/Zn-Al layered double hydroxide heterojunction and their photocatalytic activities in dye degradation. Appl. Clay Sci. 2017, 144, 115–120. [Google Scholar] [CrossRef]
- Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid. State Commun. 2004, 132, 181–186. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorov, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Butler, M.A. Photoelectrolysis with YFeO3 electrodes. J. Appl. Phys. 1977, 48, 1914–1920. [Google Scholar] [CrossRef]
- Liu, A.; Hu, J.; He, J.; Huang, X.; Hu, N.; Li, Y.; Huang, Q.; Guo, S.; Liu, X.; Yang, Z.; et al. Direct Z-scheme hierarchical heterostructures of oxygen-doped g-C3N4/In2S3 with efficient photocatalytic Cr(vi) reduction activity. Catal. Sci. Technol. 2021, 11, 7963–7972. [Google Scholar] [CrossRef]
- Liu, B.Y.; Du, J.Y.; Ke, G.L.; Jia, B.; Huang, Y.J.; He, H.C.; Zhou, Y.; Zou, Z.G. Boosting O2 Reduction and H2O Dehydrogenation Kinetics: Surface N-Hydroxymethylation of g-C3N4 Photocatalysts for the Efficient Production of H2O2. Adv. Funct. Mater. 2022, 32, 2111125. [Google Scholar] [CrossRef]
- Liu, C.; Feng, Y.; Han, Z.T.; Sun, Y.; Wang, X.Q.; Zhang, Q.F.; Zou, Z.G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chin. J. Catal. 2021, 42, 164–174. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Kim, S.G.; Park, N.G. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2019, 31, 1902902. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.W.; Wang, Y.; Ouyang, D.; Liu, H.; Huang, Z.F.; Kim, J.; Choy, W.C.H. Triple Interface Passivation Strategy-Enabled Efficient and Stable Inverted Perovskite Solar Cells. Small Methods 2020, 4, 2000478. [Google Scholar] [CrossRef]
- Chen, J.; Kim, S.-G.; Ren, X.; Jung, H.S.; Park, N.-G. Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. J. Mater. Chem. A 2019, 7, 4977–4987. [Google Scholar] [CrossRef]
- Ma, Q.; Kumar, R.K.; Xu, S.Y.; Koppens, F.H.L.; Song, J.C.W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 2023, 5, 170–184. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Ye, J.H.; Lai, L.; Fang, S.; Guo, D.Y. Ambipolarity Regulation of Deep-UV Photocurrent by Controlling Crystalline Phases in Ga2O3 Nanostructure for Switchable Logic Applications. Adv. Electron. Mater. 2023, 9, 2201216. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, H.; Sun, X.; Xian, T.; Wang, S.; Yi, Z.; Liu, G.; Wang, X.; Yang, H. An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification. Adv. Powder Technol. 2021, 32, 951–962. [Google Scholar] [CrossRef]
- Jiang, L.B.; Yuan, X.Z.; Zeng, G.M.; Liang, J.; Chen, X.H.; Yu, H.B.; Wang, H.; Wu, Z.B.; Zhang, J.; Xiong, T. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B 2018, 227, 376–385. [Google Scholar] [CrossRef]
Atom | x | y | z | Occupation Factor |
---|---|---|---|---|
Dy | 0 | 0 | 0 | 1 |
Eu | 0.5 | 0.5 | 0.5 | 0.5 |
Sb | 0.5 | 0.5 | 0.5 | 0.5 |
O(1) | −0.185 | 0.125 | 0.125 | 1 |
O(2) | 0.125 | 0.125 | 0.125 | 1 |
Atom | x | y | z | Occupation Factor |
---|---|---|---|---|
Zn | 0 | 0 | 0.5 | 1 |
Bi | 0 | 0 | 0 | 1 |
Dy | 0 | 0 | 0 | 1 |
O | 0.76731 | 0.14013 | 0.08188 | 1 |
Samples | SSA (m2/g) | V (mL/g) | D (nm) |
---|---|---|---|
DZHP | 1.7311 | 0.0124 | 28.6523 |
Dy2EuSbO7 | 1.9762 | 0.0123 | 24.8963 |
ZnBiDyO4 | 2.6984 | 0.0288 | 42.6920 |
N-doped TiO2 | 45.1082 | 0.0212 | 6.9609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, J.; Xiao, Y.; Hao, L.; Yao, Y.; Niu, B.; Yang, G.; Wang, Y. Synthesis, Performance Measurement of Dy2EuSbO7/ZnBiDyO4 Heterojunction Composite Catalyst and Photocatalytic Degradation of Chlorpyrifos within Pesticide Wastewater under Visible Light Irradiation. Catalysts 2024, 14, 646. https://doi.org/10.3390/catal14090646
Luan J, Xiao Y, Hao L, Yao Y, Niu B, Yang G, Wang Y. Synthesis, Performance Measurement of Dy2EuSbO7/ZnBiDyO4 Heterojunction Composite Catalyst and Photocatalytic Degradation of Chlorpyrifos within Pesticide Wastewater under Visible Light Irradiation. Catalysts. 2024; 14(9):646. https://doi.org/10.3390/catal14090646
Chicago/Turabian StyleLuan, Jingfei, Yang Xiao, Liang Hao, Ye Yao, Bowen Niu, Guangmin Yang, and Yichun Wang. 2024. "Synthesis, Performance Measurement of Dy2EuSbO7/ZnBiDyO4 Heterojunction Composite Catalyst and Photocatalytic Degradation of Chlorpyrifos within Pesticide Wastewater under Visible Light Irradiation" Catalysts 14, no. 9: 646. https://doi.org/10.3390/catal14090646
APA StyleLuan, J., Xiao, Y., Hao, L., Yao, Y., Niu, B., Yang, G., & Wang, Y. (2024). Synthesis, Performance Measurement of Dy2EuSbO7/ZnBiDyO4 Heterojunction Composite Catalyst and Photocatalytic Degradation of Chlorpyrifos within Pesticide Wastewater under Visible Light Irradiation. Catalysts, 14(9), 646. https://doi.org/10.3390/catal14090646