Optimization of Solar Corrosion Fenton Reactor for the Recovery of Textile Wastewater: In Situ Release of Fe2+
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Raw Textile Wasterwater
2.2. SCFr Process Optimization
2.2.1. COD Removal
2.2.2. Color Removal
2.2.3. Turbidity Removal
2.3. Kinetic Models
2.4. Effect of Sunlight
2.5. Fe2+ Release
2.6. Final Characterization
3. Materials and Methods
3.1. Physicochemical Characterization
3.2. Solar Corrosion Fenton Reactor (SCFr)
3.3. Optimization of the SCFr
3.4. Kinetic Models
3.5. Effect of the Solar Light
3.6. Fe2+ Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajjar, B. How the Textile Industry Can Help Countries Recover from COVID-19. Word Economic Forum. Islamic Development Bank. 2020. Available online: https://www.weforum.org/agenda/2020/08/how-the-textile-industry-can-help-countries-recover-from-covid-19/ (accessed on 4 January 2025).
- Rovira, J.; Domingo, J.L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef]
- Khan, W.U.; Ahmed, S.; Dhoble, Y.; Madhav, S. A critical review of hazardous waste generation from textile industries and associated ecological impacts. J. Indian Chem. Soc. 2023, 100, 100829. [Google Scholar] [CrossRef]
- Koszewska, M. Circular Economy—Challenges for the Textile and Clothing Industry. Autex Res. J. 2018, 18, 337–347. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Militky, J. Denim Processing and Health Hazards; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Roy Choudhury, A.K. Finishing of denim fabrics. In Principles of Textile Finishing; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–415. [Google Scholar]
- Sharma, D. Water Footprint of Denim Industry (Read from pg 111) in Sustainability in Denim; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Tomei, M.C.; Soria Pascual, J.; Mosca Angelucci, D. Analysing performance of real textile wastewater bio-decolourization under different reaction environments. J. Clean. Prod. 2016, 129, 468–477. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, A.; Tejocote-Pérez, M.; Fuentes-Rivas, R.M.; Linares-Hernández, I.; Martínez-Miranda, V.; Fonseca-Montes De Oca, R.M.G. Treatment of a textile effluent by electrochemical oxidation and coupled system electooxidation—Salix babylonica. Int. J. Photoenergy 2018, 2018, 3147923. [Google Scholar] [CrossRef]
- Ramos, R.O.; Albuquerque, M.V.C.; Lopes, W.S.; Sousa, J.T.; Leite, V.D. Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: Comparison of pathways, products and kinetics. J. Water Process Eng. 2020, 37, 101535. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.K.; Gupta, R.; Singh, R.L. Treatment and Recycling of Wastewater from Textile Industry; Springer: Singapore, 2019. [Google Scholar]
- Othmani, A.; Kesraoui, A.; Seffen, M. The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation. Euro-Mediterr. J. Environ. Integr. 2017, 2, 6. [Google Scholar] [CrossRef]
- Keskin, B.; Ersahin, M.E.; Ozgun, H.; Koyuncu, I. Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. J. Water Process Eng. 2021, 42, 102172. [Google Scholar] [CrossRef]
- GilPavas, E.; Correa-Sanchez, S. Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process. J. Water Process Eng. 2020, 36, 101306. [Google Scholar] [CrossRef]
- Kahraman, Ö.; Şimşek, İ. Color removal from denim production facility wastewater by electrochemical treatment process and optimization with regression method. J. Clean. Prod. 2020, 267, 122168. [Google Scholar] [CrossRef]
- Yin, H.; Qiu, P.; Qian, Y.; Kong, Z.; Zheng, X.; Tang, X.Z.; Guo, H. Textile wastewater treatment for water reuse: A case study. Processes 2019, 7, 34. [Google Scholar] [CrossRef]
- Chowdhury, M.F.; Khandaker, S.; Sarker, F.; Islam, A.; Rahman, M.T.; Awual, M.R. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J. Mol. Liq. 2020, 318, 114061. [Google Scholar] [CrossRef]
- de Leon, V.B.; de Negreiros BA, F.; Brusamarello, C.Z.; Petroli, G.; Di Domenico, M.; de Souza, F.B. Artificial neural network for prediction of color adsorption from an industrial textile effluent using modified sugarcane bagasse: Characterization, kinetics and isotherm studies. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100387. [Google Scholar] [CrossRef]
- Hendaoui, K.; Trabelsi-Ayadi, M.; Ayari, F. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation. Chinese J. Chem. Eng. 2021, 29, 242–252. [Google Scholar] [CrossRef]
- Leila, S.; Mhamed, M.; Heilmeier, H.; Kharytonov, M.; Wiche, O.; Moschner, C.; Onyshchenko, E.; Nadia, B. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotechnol. Rep. 2017, 13, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Djandja, O.S.; Yin, L.X.; Wang, Z.C.; Duan, P.G. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Saf. Environ. Prot. 2021, 151, 101–127. [Google Scholar] [CrossRef]
- Khan, Z.U.H.; Gul, N.S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N.S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; et al. Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, Y.; Cao, S.; Lu, J.; Zhou, Y. Degradation of sulfanilamide by Fenton-like reaction and optimization using response surface methodology. Ecotoxicol. Environ. Saf. 2019, 172, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Juárez, M.; Antonio Castillo-Suárez, L.; Martínez-Miranda, V.; Tatiana Almazán-Sánchez, P.; Linares-Hernández, I.; Lugo-Lugo, V.; Esparza-Soto, M.; Santoyo-Tepole, F. Oxidation of N-acetyl-para-aminophenol (acetaminophen) by a galvanic Fenton and solar galvanic Fenton processes. Sol. Energy 2020, 199, 731–741. [Google Scholar] [CrossRef]
- Chen, Y.; Miller, C.J.; Collins, R.N.; Waite, T.D. Key Considerations When Assessing Novel Fenton Catalysts: Iron Oxychloride (FeOCl) as a Case Study. Environ. Sci. Technol. 2021, 55, 13317–13325. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, L.; Ye, J.; Li, N.; Yan, B.; Chen, G. Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review. Sci. Total Environ. 2023, 888, 164086. [Google Scholar] [CrossRef]
- Kerboua, K.; Haddour, N.; Gasmi, I.; Hamdaoui, O. Water Remediation from Recalcitrant Pollution Using the Galvano-Fenton Process: A Modeling Approach of the Hydroxyl Radical Generation and the Energy Efficiency. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 21, 506–516. [Google Scholar] [CrossRef]
- Gasmi, I.; Kerboua, K.; Haddour, N.; Hamdaoui, O.; Alghyamah, A.; Buret, F. Kinetic pathways of iron electrode transformations in Galvano-Fenton process: A mechanistic investigation of in-situ catalyst formation and regeneration. J. Taiwan Inst. Chem. Eng. 2020, 116, 81–91. [Google Scholar] [CrossRef]
- Tadayozzi, Y.S.; dos Santos, F.A.; Vicente, E.F.; Forti, J.C. Application of oxidative process to degrade paraquat present in the commercial herbicide. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2021, 56, 670–674. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Nazdracheva, T. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: A review. Constr. Build. Mater. 2021, 288, 123115. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, Z.; Zhu, Z.; Liu, X.; Zhang, J.; Cao, F. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corros. Sci. 2018, 139, 403–409. [Google Scholar] [CrossRef]
- Gomes, A.; Navas, M.; Uranga, N.; Paiva, T.; Figueira, I.; Diamantino, T.C. High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten Solar Salt. Sol. Energy 2019, 177, 408–419. [Google Scholar] [CrossRef]
- Gomez-Vidal, J.C.; Tirawat, R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies. Sol. Energy Mater. Sol. Cells 2016, 157, 234–244. [Google Scholar] [CrossRef]
- Alam, M.R.; Islam, M.R. Pre-post Bleaching Behaviors of Cotton Knits Using Reductive and Oxidative bleaches. Int. J. Polym. Text. Eng. 2020, 7, 42–53. [Google Scholar] [CrossRef]
- Reddythota, D.; Teferi Timotewos, M. Evaluation of Pollution Status and Detection of the Reason for the Death of Fish in Chamo Lake, Ethiopia. J. Environ. Public Health 2022, 2022, 5859132. [Google Scholar] [CrossRef]
- Allemand, D.; Osborn, D. Ocean acidification impacts on coral reefs: From sciences to solutions. Reg. Stud. Mar. Sci. 2019, 28, 100558. [Google Scholar] [CrossRef]
- Azanaw, A.; Birlie, B.; Teshome, B.; Jemberie, M. Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Stud. Chem. Environ. Eng. 2022, 6, 100230. [Google Scholar] [CrossRef]
- Ben Salah, S.; Missaoui, M.; Attia, A.; Lesage, G.; Heran, M.; Ben Amar, R. Treatment of real textile effluent containing indigo blue dye by hybrid system combining adsorption and membrane processes. Front. Membr. Sci. Technol. 2024, 3, 1348992. [Google Scholar] [CrossRef]
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- United States Geological Survey. Hardness of Water. Official Website of the United States Government. 2018. Available online: https://www.usgs.gov/special-topics/water-science-school/science/hardness-water (accessed on 25 June 2024).
- Ibrahim, S.A.; Hasan, M.B.; Al-Tameemi, I.M.; Ibrahim, T.A.; Abbas, M.N. Optimization of adsorption unit parameter of hardness remediation from wastewater using low-cost media. Innov. Infrastruct. Solut. 2021, 6, 200. [Google Scholar] [CrossRef]
- Couto, C.F.; Marques, L.S.; Balmant, J.; de Oliveira Maia, A.P.; Moravia, W.G.; Santos Amaral, M.C. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater. Environ. Technol. 2018, 39, 725–738. [Google Scholar] [CrossRef]
- Zheng, H.; Pan, Y.; Xiang, X. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes. J. Hazard. Mater. 2007, 141, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Almazán-Sánchez, P.T.; Marin-Noriega, P.W.; González-Mora, E.; Linares-Hernández, I.; Solache-Ríos, M.J.; Martínez-Cienfuegos, I.G.; Martínez-Miranda, V. Treatment of Indigo-Dyed Textile Wastewater Using Solar Photo-Fenton with Iron-Modified Clay and Copper-Modified Carbon. Water Air Soil Pollut. 2017, 228, 294. [Google Scholar] [CrossRef]
- Mansour, M.S.; Farid, Y.; Nosier, S.A.; Adli, O.; Abdel-Aziz, M.H. Removal of Eosin Yellow dye from industrial wastewater using UV/H2O2 and photoelectro-Fenton techniques. J. Photochem. Photobiol. A Chem. 2023, 436, 114411. [Google Scholar] [CrossRef]
- Qian, S.; Liu, Y.; Yin, L.; Wu, X.; Li, J.; Wang, J.; Lyu, F.; Jiang, Y. The Acceleration of Pitting Corrosion of AISI 304 Stainless Steel by Ultraviolet Light Illumination in Acidic Chloride Solution. J. Electrochem. Soc. 2020, 167, 021506. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Singh, H. Chemical oxygen demand and biochemical oxygen demand. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 69–83. [Google Scholar]
- Çalık, Ç.; Çifçi, D.İ. Comparison of kinetics and costs of Fenton and photo-Fenton processes used for the treatment of a textile industry wastewater. J. Environ. Manag. 2022, 304, 114234. [Google Scholar] [CrossRef] [PubMed]
- Santana, R.M.R.; Napoleão, D.C.; dos Santos Júnior, S.G.; Gomes, R.K.M.; de Moraes, N.F.S.; Zaidan, L.E.M.C.; Elihimas, D.R.M.; do Nascimento, G.E.; Duarte, M.M.M.B. Photo-Fenton process under sunlight irradiation for textile wastewater degradation: Monitoring of residual hydrogen peroxide by spectrophotometric method and modeling artificial neural network models to predict treatment. Chem. Pap. 2021, 75, 2305–2316. [Google Scholar] [CrossRef]
- Lanzarini-Lopes, M.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 2017, 188, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, N.; Sönmez, G. Removal of COD and Color from Textile Wastewater by the Fenton and UV/H2O2 Oxidation Processes and Optimization. Water. Air. Soil Pollut. 2023, 234, 70. [Google Scholar] [CrossRef]
- Hussin, F.; Aroua, M.K.; Szlachtac, M. Combined solar electrocoagulation and adsorption processes for Pb(II) removal from aqueous solution. Chem. Eng. Process.-Process Intensif. 2019, 143, 107619. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, W.; Yang, D.; Wang, X.; Li, Y.; Gong, C.; Yan, J.; Zhai, J.; Gao, X.; Luo, Y. A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H2O2. Sci. Total Environ. 2021, 784, 147187. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Gagnon, G.A. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Res. 2014, 48, 137–147. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Santana, C.S.; Velloso, C.C.V.; da Silva, A.H.M.; Magalhães, F.; Aguiar, A. A review on the treatment of textile industry effluents through Fenton processes. Process Saf. Environ. Prot. 2021, 155, 366–386. [Google Scholar] [CrossRef]
- De León-Condés, C.A.; Roa-Morales, G.; Martínez-Barrera, G.; Menchaca-Campos, C.; Bilyeu, B.; Balderas-Hernández, P.; Ureña-Núñez, F.; Toledo-Jaldin, H.P. Sulfonated and gamma-irradiated waste expanded polystyrene with iron oxide nanoparticles, for removal of indigo carmine dye in textile wastewater. Heliyon 2019, 5, e02071. [Google Scholar] [CrossRef]
- Castillo-Suárez, L.A.; Sierra-Sánchez, A.G.; Linares-Hernández, I.; Martínez-Miranda, V.; Teutli-Sequeira, E.A. A critical review of textile industry wastewater: Green technologies for the removal of indigo dyes. Int. J. Environ. Sci. Technol. 2023, 20, 10553–10590. [Google Scholar] [CrossRef]
- Okoro, B.U.; Sharifi, S.; Jesson, M.A.; Bridgeman, J. Natural organic matter (NOM) and turbidity removal by plant-based coagulants: A review. J. Environ. Chem. Eng. 2021, 9, 106588. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huynh, K.A.; Padungthon, S.; Pranudta, A.; Amonpattaratkit, P.; Tran, L.B.; Phan, P.T.; Nguyen, N.H. Synthesis of natural flowerlike iron-alum oxide with special interaction of Fe-Si-Al oxides as an effective catalyst for heterogeneous Fenton process. J. Environ. Chem. Eng. 2021, 9, 105732. [Google Scholar] [CrossRef]
- Ferreira da Silva, L.; Daniane Barbosa, A.; Da Hora Machado, A.E.; Santos Andrade, L. Combining Chemical and Photo-Fenton Solar Coagulation Processes in the Treatment of Real Wastewater from Paint Industry. Orbital Electron. J. Chem. 2019, 11, 128–132. [Google Scholar] [CrossRef]
- Abujazar, M.S.S.; Karaağaç, S.U.; Abu Amr, S.S.; Alazaiza, M.Y.D.; Bashir, M.J. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review. J. Clean. Prod. 2022, 345, 131133. [Google Scholar] [CrossRef]
- Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Saf. Environ. Prot. 2019, 129, 47–54. [Google Scholar] [CrossRef]
- Ertugay, N.; Acar, F.N. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arab. J. Chem. 2017, 10, S1158–S1163. [Google Scholar] [CrossRef]
- Li, F.; Choong, T.S.Y.; Soltani, S.; Abdullah, L.C.; Jamil, S.N.A.M. Kinetic Study of Fenton-Like Degradation of Methylene Blue in Aqueous Solution Using Calcium Peroxide. Pertanika J. Sci. Technol. 2022, 30, 1087–1102. [Google Scholar] [CrossRef]
- Lima, J.P.P.; Tabelini, C.H.B.; Ramos, M.D.N.; Aguiar, A. Kinetic Evaluation of Bismarck Brown Y Azo Dye Oxidation by Fenton Processes in the Presence of Aromatic Mediators. Water. Air. Soil Pollut. 2021, 232, 321. [Google Scholar] [CrossRef]
- Chan, K.H.; Chu, W. Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere 2003, 51, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, H. Chemical kinetic modeling of organic pollutant degradation in Fenton and solar photo-Fenton processes. J. Taiwan Inst. Chem. Eng. 2021, 123, 175–184. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F.; Alvarez, A.; Silva Martinez, S. UV-LEDs assisted peroxymonosulfate/Fe2+ for oxidative removal of carmoisine: The effect of chloride ion. Korean J. Chem. Eng. 2017, 34, 2154–2161. [Google Scholar] [CrossRef]
- López-Vinent, N.; Cruz-Alcalde, A.; Romero, L.E.; Chávez, M.E.; Marco, P.; Giménez, J.; Esplugas, S. Synergies, radiation and kinetics in photo-Fenton process with UVA-LEDs. J. Hazard. Mater. 2019, 380, 120882. [Google Scholar] [CrossRef]
- de Souza, Z.S.B.; Silva, M.P.; Fraga, T.J.M.; Motta Sobrinho, M.A. A comparative study of photo-Fenton process assisted by natural sunlight, UV-A, or visible LED light irradiation for degradation of real textile wastewater: Factorial designs, kinetics, cost assessment, and phytotoxicity studies. Environ. Sci. Pollut. Res. 2021, 28, 23912–23928. [Google Scholar] [CrossRef] [PubMed]
- Shirato, M.; Ikai, H.; Nakamura, K.; Hayashi, E.; Kanno, T.; Sasaki, K.; Kohno, M.; Niwano, Y. Synergistic effect of thermal energy on bactericidal action of photolysis of H2O2 in relation to acceleration of hydroxyl radical generation. Antimicrob. Agents Chemother. 2012, 56, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Indrawirawan, S.; Kang, J.; Tian, W.; Zhang, H.; Sun, H.; Wang, S. Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes. Sustain. Mater. Technol. 2018, 18, e00082. [Google Scholar] [CrossRef]
- Sakthi, P.M. Enhancement of Waste Activated Sludge Reduction Potential by Thermo-Fenton Treatment. Int. Res. J. Eng. Technol. 2020, 7, 3600–3605. Available online: https://www.irjet.net/archives/V7/i8/IRJET-V7I8616.pdf (accessed on 4 January 2025).
- Omi, F.R.; Rastgar, M.; Sadrzadeh, M. Synergistic effect of thermal dehydrating on the emerging contaminants removal via Electro-Fenton. J. Clean. Prod. 2022, 356, 131880. [Google Scholar] [CrossRef]
- Yew, G.Y.; Tan, X.; Chew, K.W.; Chang, J.S.; Tao, Y.; Jiang, N.; Show, P.L. Thermal-Fenton mechanism with sonoprocessing for rapid non-catalytic transesterification of microalgal to biofuel production. Chem. Eng. J. 2021, 408, 127264. [Google Scholar] [CrossRef]
- Herrera-Ibarra, L.M.; Ramírez-Zamora, R.M.; Martín-Domínguez, A.; Piña-Soberanis, M.; Schnabel-Peraza, D.; Bañuelos-Díaz, J.A. Treatment of Textile Industrial Wastewater by the Heterogeneous Solar Photo-Fenton Process Using Copper Slag. Top. Catal. 2022, 65, 1163–1179. [Google Scholar] [CrossRef]
- Bello, M.M.; Abdul Raman, A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Gasmi, I.; Kerboua, K.; Haddour, N.; Hamdaoui, O.; Alghyamah, A.; Buret, F. The Galvano-Fenton process: Experimental insights and numerical mechanistic investigation applied to the degradation of acid orange 7. Electrochim. Acta 2021, 373, 137897. [Google Scholar] [CrossRef]
- García-Rodríguez, O.; Bañuelos, J.A.; El-Ghenymy, A.; Godínez, L.A.; Brillas, E.; Rodríguez-Valadez, F.J. Use of a carbon felt-iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. J. Electroanal. Chem. 2016, 767, 40–48. [Google Scholar] [CrossRef]
- Castillo-Suárez, L.A.; Linares-Hernández, I.; Vasquez-Medrano, R.; Ibanez, J.G.; Santoyo-Tepole, F.; López-Rebollar, B.M.; Martínez-Miranda, V. Commercial herbicide degradation by solar corrosion Fenton processes of iron filaments in a continuous flow reactor and its computational fluid dynamics (CFD) simulation. J. Photochem. Photobiol. A Chem. 2021, 412, 113249. [Google Scholar] [CrossRef]
- Namkung, K.C.; Burgess, A.E.; Bremner, D.H. A fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide: A batch process study using model pollutants. Environ. Technol. 2005, 26, 341–352. [Google Scholar] [CrossRef]
- Li, P.; Du, M. Effect of chloride ion content on pitting corrosion of dispersion-strengthened-high-strength steel. Corros. Commun. 2022, 7, 23–34. [Google Scholar] [CrossRef]
- Kaczmarczyk, R.; Gurgul, S. Thermodynamic Analysis of Chloride Corrosion in Steel for Energy System Applications in Fe-O-Cl-Na Environments. Energies 2024, 17, 3223. [Google Scholar] [CrossRef]
- Zhao, C.; Dai, K.; Li, P.; Cheng, Z.; Xiao, K. Effect of UV Illumination on the Corrosion Behavior of Under a Thin NaCl Electrolyte Layer. Int. J. Electrochem. Sci. 2022, 17, 221164. [Google Scholar] [CrossRef]
- Kanjana, K.; Ampornrat, P.; Channuie, J. Gamma-radiation-induced corrosion of aluminum alloy: Low dose effect. J. Phys. Conf. Ser. 2017, 860, 012041. [Google Scholar] [CrossRef]
- Burleigh, T.D.; Ruhe, C.; Forsyth, J. Photo-Corrosion of Different Metals during Long-Term Exposure to Ultraviolet Light. Corrosion 2003, 59, 774–779. [Google Scholar] [CrossRef]
- Trompette, J.L.; Lahitte, J.F. Effects of some ion-specific properties in the electrocoagulation process with aluminum electrodes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127507. [Google Scholar] [CrossRef]
- Semarnat, S.d.M.A.y.R.N. NOM-001-SEMARNAT-2021 Límites Permisibles de Contaminantes en las Descargas de Aguas Residuales en Cuerpos Recptores Propiedad de la Nacion. 2021. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022#gsc.tab=0 (accessed on 10 July 2024).
- Và, B.T.N.; Trường, M. C Ộ NG HÒA XÃ H Ộ I CH Ủ NGH Ĩ A VI Ệ T NAM QCVN 13-MT: 2015 / BTNMT QUY CHU Ẩ N K Ỹ THU Ậ T QU Ố C GIA QUY CHU Ẩ N K Ỹ THU Ậ T QU Ố C GIA V Ề N ƯỚ C TH Ả I CÔNG NGHI Ệ P D Ệ T NHU Ộ M National Technical Regulation on the Effluent of Textile Industry. 2015. Available online: https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Thong-tu-13-2015-TT-BTNMT-Quy-chuan-ky-thuat-quoc-gia-ve-moi-truong-270027.aspx (accessed on 25 June 2021).
- NSW Official. National Water Pollution Control Reg Ulation. 2004. Available online: https://www.mfa.gov.tr/turkiye_s-policy-on-water-issues.en.mfa (accessed on 10 July 2024).
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Alvarez-Bastida, C.; Martínez-Miranda, V.; Solache-Ríos, M.; Linares-Hernández, I.; Teutli-Sequeira, A.; Vázquez-Mejía, G. Drinking water characterization and removal of manganese. Removal of manganese from water. J. Environ. Chem. Eng. 2018, 6, 2119–2125. [Google Scholar] [CrossRef]
- Shekoohiyan, S.; Rtimi, S.; Moussavi, G.; Giannakis, S.; Pulgarin, C. Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2—Part 1: Iron salts as oxide precursors. Chem. Eng. J. 2019, 358, 211–224. [Google Scholar] [CrossRef]
- El-Nahas, S.; Osman, A.I.; Arafat, A.S.; Al-Muhtaseb, A.H.; Salman, H.M. Facile and affordable synthetic route of nano powder zeolite and its application in fast softening of water hardness. J. Water Process Eng. 2020, 33, 101104. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 21st ed.; Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Carbajal-Palacios, P.; Balderas-Hernández, P.; Roa-Morales, G.; Ibanez, J.G. A Greener UV and Peroxide-Based Chemical Oxygen Demand Test. Water. Air. Soil Pollut. 2017, 228, 313. [Google Scholar] [CrossRef]
- Castillo-Suárez, L.A.; Lugo-Lugo, V.; Linares-Hernández, I.; Martínez-Miranda, V.; Esparza-Soto, M.; Mier-Quiroga, M.D.L.Á. Biodegradability index enhancement of land fi ll leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic—Aerobic bioreactor. Sol. Energy 2019, 188, 989–1001. [Google Scholar] [CrossRef]
- Linares-Hernández, I.; Antonio Castillo-Suárez, L.; Ibanez, J.G.; Vasquez-Medrano, R.; Miguel López-Rebollar, B.; Santoyo-Tepole, F.; Alejandra Teutli-Sequeira, E.; Martínez-Cienfuegos, I.G. Degradation of commercial paraquat in a solar-Fenton pilot lagoon using iron oxalate as a chelating agent: Hydro-thermal analysis with CFD. J. Photochem. Photobiol. A Chem. 2022, 429, 113914. [Google Scholar] [CrossRef]
- Ruíz-Delgado, A.; Roccamante, M.A.; Oller, I.; Agüera, A.; Malato, S. Natural chelating agents from olive mill wastewater to enable photo-Fenton-like reactions at natural pH. Catal. Today 2019, 328, 281–285. [Google Scholar] [CrossRef]
Parameter | Raw | ± | Treatment † | ± | % Removal |
---|---|---|---|---|---|
pH | 3.44 | 0.06 | 2.6 | 0.07 | - |
COD (mg/L) | 1020.0 | 10.1 | 83.5 | 6.1 | 91.8 |
Color (Pt-Co) | 1808.3 | 23.5 | 29.3 | 0.7 | 98.4 |
Turbidity (NTU) | 237.0 | 1.5 | 30.0 | 0.0 | 87.3 |
Electrical conductivity (µS/cm) | 2.971 | 0.15 | 4.12 | 0.12 | - |
Chlorides (mg/L) | 345.4 | 3.6 | 280.7 | 1.9 | 18.7 |
Nitrates (mg/L) | 4.0 | 0.2 | 1.9 | 0.01 | 52.5 |
Ammoniacal nitrogen (mg/L) | 0.7 | 0.01 | 5.15 | 0.02 | - |
Hardness (mg/L) | 200.0 | 1.5 | 22.0 | 1.4 | 89.0 |
Alkalinity (mg/L as CaCO3) | 77.2 | 5.2 | 0.0 | 0.54 | 100.0 |
Acidity (mg/L as CaCO3) | 1200.0 | 10.2 | 629.2 | 4.4 | 47.5 |
Total dissolved solids (g/L) | 1.483 | 0.01 | 2.018 | 0.06 | - |
Total solids (mg/L) | 3540.0 | 70.8 | 3160.0 | 63.2 | 10.7 |
Suspended solids (mg/L) | 412.0 | 2.8 | 28.0 | 0.56 | 93.2 |
% Removal (Predicted) | % Removal (Observed) | HRT (min) | Ratio (w/v) | H2O2 Doses (mg/L) | R2 | SEE (%) * | |
---|---|---|---|---|---|---|---|
COD | 96.8 | 91.8 | 24.5 | 0.16 † | 1006.9 | 86.6 | 9.8 |
Color | 96.6 | 98.4 | 28.2 | 0.18 ψ | 1134.9 | 84.3 | 13.6 |
Turbidity | 85.6 | 87.3 | 28.4 | 0.18 | 1277.0 | 93.6 | 8.2 |
# Run | HRT (min) | Ratio | Dose H2O2 (mg/L) | COD Removal (%) | Color Removal (%) | Turbidity Removal (%) | Solar UVA Radiation (W/m2) |
---|---|---|---|---|---|---|---|
1 | 30 | 0.2 | 1000 | 93.40% | 92.6% | 80.3% | 46.5 abcd |
2 | 30 | 0.2 | 1000 | 98.71% | 98.2% | 85.2% | 53.2 ab |
3 | 30 | 0.2 | 1000 | 85.84% | 92.8% | 86.2% | 55.3 a |
4 | 20 | 0.1 | 1000 | 81.51 | 51.9% | 41.8% | 50.7 abc |
5 | 40 | 0.1 | 1000 | 77.79 | 52.1% | 22.8% | 30.5 cde |
6 | 20 | 0.3 | 1000 | 78.94 | 65.1% | 29.8% | 26.5 de |
7 | 40 | 0.3 | 1000 | 60.31 | 46.3% | 45.4% | 40.5 abcd |
8 | 20 | 0.2 | 500 | 84.21% | 70.2% | 44.7% | 33.4 bcde |
9 | 40 | 0.2 | 500 | 65.17 | 51.6% | 52.1% | 51.2 abc |
10 | 20 | 0.2 | 1500 | 83.72% | 71.4% | 66.7% | 13.6 e |
11 | 40 | 0.2 | 1500 | 62.72 | 53.7% | 43.2% | 46.7 abcd |
12 | 30 | 0.1 | 500 | 81.51% | 47.6% | 54.6% | 47.0 abcd |
13 | 30 | 0.3 | 500 | 66.72% | 34.3% | 44.6% | 40.7 abcd |
14 | 30 | 0.1 | 1500 | 88.09% | 90.9% | 75.2% | 33.8 abcde |
15 | 30 | 0.3 | 1500 | 34.12% | 46.9% | 47.6% | 25.2 de |
First Order | Second Order | BMG | |||||
---|---|---|---|---|---|---|---|
K (L/kJ) | R2 | k2 (L/mg L/kJ) | R2 | 1/m (L/kJ) | 1/b | R2 | |
COD | 0.0893 | 0.7667 | 0.1133 | 0.8784 | −3.3372 | 0.7705 | 0.9978 |
Color | 0.0198 | 0.8680 | 0.0474 | 0.9171 | 0.0141 | 0.9616 | 0.9179 |
Turbidity | 0.0081 | 0.8053 | 0.0136 | 0.7750 | 0.0016 | 2.9174 | 0.8202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenorio-Hernández, A.F.; Linares-Hernández, I.; Castillo-Suárez, L.A.; Martínez-Miranda, V.; Álvarez-Bastida, C. Optimization of Solar Corrosion Fenton Reactor for the Recovery of Textile Wastewater: In Situ Release of Fe2+. Catalysts 2025, 15, 63. https://doi.org/10.3390/catal15010063
Tenorio-Hernández AF, Linares-Hernández I, Castillo-Suárez LA, Martínez-Miranda V, Álvarez-Bastida C. Optimization of Solar Corrosion Fenton Reactor for the Recovery of Textile Wastewater: In Situ Release of Fe2+. Catalysts. 2025; 15(1):63. https://doi.org/10.3390/catal15010063
Chicago/Turabian StyleTenorio-Hernández, Ana Fernanda, Ivonne Linares-Hernández, Luis Antonio Castillo-Suárez, Verónica Martínez-Miranda, and Carolina Álvarez-Bastida. 2025. "Optimization of Solar Corrosion Fenton Reactor for the Recovery of Textile Wastewater: In Situ Release of Fe2+" Catalysts 15, no. 1: 63. https://doi.org/10.3390/catal15010063
APA StyleTenorio-Hernández, A. F., Linares-Hernández, I., Castillo-Suárez, L. A., Martínez-Miranda, V., & Álvarez-Bastida, C. (2025). Optimization of Solar Corrosion Fenton Reactor for the Recovery of Textile Wastewater: In Situ Release of Fe2+. Catalysts, 15(1), 63. https://doi.org/10.3390/catal15010063