Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. Photocatalytic Performance
2.3. Photoelectric Property
2.4. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of Composite Photocatalysts
3.2.1. Synthesis of UiO-66(Zr)(U66)
3.2.2. Synthesis of (NH2-MIL-101) (NM101) and (UiO-66)-(NH2-MIL-101) (UNM)
3.2.3. Synthesis of (UiO-66)-(NH2-MIL-101)/CuInS2 (UNMC)
3.3. Characterization of Materials
3.4. Photocatalytic Experiment
3.4.1. Photocatalytic Hydrogen Evolution
3.4.2. Photocatalytic Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, I.; Aftab, M.A.; Fatima, A.; Mekkey, S.D.; Melhi, S.; Ikram, S. A comprehensive review on the advancement of transition metals incorporated on functional magnetic nanocomposites for the catalytic reduction and photocatalytic degradation of organic pollutants. Coord. Chem. Rev. 2024, 514, 215904. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Z.; Zou, Y.; Chen, J.; Shi, J.-W. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coord. Chem. Rev. 2024, 500, 215489. [Google Scholar] [CrossRef]
- Murali, G.; Reddy Modigunta, J.K.; Park, Y.H.; Lee, J.-H.; Rawal, J.; Lee, S.-Y.; In, I.; Park, S.-J. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano 2022, 16, 13370–13429. [Google Scholar] [CrossRef] [PubMed]
- Monisha, B.; Sridharan, R.; Kumar, P.S.; Rangasamy, G.; Krishnaswamy, V.G.; Subhashree, S. Sensing of azo toxic dyes using nanomaterials and its health effects—A review. Chemosphere 2023, 313, 137614. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, C.; Wasielewski, M.R. Advances in solar energy conversion. Chem. Soc. Rev. 2019, 48, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, D.; Zhang, J.; Li, Q.; Toe, C.Y.; Scott, J.; Antonietti, M.; Guo, J.; Amal, R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. Adv. Mater. 2024, 2404618. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, T.; Li, M.; Wang, X.; Zhou, X.; Yang, S.; Gao, Q.; Cai, X.; Liu, Y.; Fang, Y.; et al. Unveiling the Synergistic Role of Frustrated Lewis Pairs in Carbon-Encapsulated Ni/NiOx Photothermal Cocatalyst for Enhanced Photocatalytic Hydrogen Production. Adv. Mater. 2024, 36, 2313513. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, Y.; Jiao, Y.; Zhang, H.; Wang, J.; Gao, Y.; Zong, X. Depressing charge recombination in hybrid perovskites by introducing a dynamic electron/energy relay couple towards enhanced photocatalytic hydrogen production. Energy Environ. Sci. 2024, 17, 9526–9537. [Google Scholar] [CrossRef]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Spray-Deposited TiO2 Layers on Aluminum Foil for Sustainable Water Remediation. Crystals 2024, 14, 875. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Q.; Al-Enizi, A.M.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Q.-L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033. [Google Scholar] [CrossRef]
- Li, S.; Wu, F.; Lin, R.; Wang, J.; Li, C.; Li, Z.; Jiang, J.; Xiong, Y. Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chem. Eng. J. 2022, 429, 132217. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, C.; Sun, Y.; Chen, Q.; He, L.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L.-F. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord. Chem. Rev. 2020, 413, 213266. [Google Scholar] [CrossRef]
- Saleh, M.R.; El-Bery, H.M.; Abdelhamid, H.N. Co@ZIF-8/TiO2 heterojunction for green hydrogen generation. Appl. Organomet. Chem. 2022, 37, e6995. [Google Scholar] [CrossRef]
- Wang, H.; Tu, H.; Chen, F.; Xu, H.; Zhang, Z.; Chen, G.; Wei, C.; Xiang, X.; Xie, Z. Construction of highly dispersed NH2-MIL-101(Fe)/g-C3N4 heterostructure with excellent photocatalytic redox capability. J. Environ. Chem. Eng. 2023, 11, 109663. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, M.; Wang, Y.; Gao, J.; Xing, Z.; Li, Z.; Wang, N.; Zhou, W. NH2-MIL-101(Fe)@ZnIn2S4/ZnS heterojunction nanoreactors for efficient photocatalytic-Fenton performance via in-situ H2O2 evolution. Mater. Today Energy 2023, 38, 101419. [Google Scholar] [CrossRef]
- Le Huec, T.; López-Francés, A.; Abánades Lázaro, I.; Navalón, S.; Baldoví, H.G.; Giménez-Marqués, M. Heteroepitaxial MOF-on-MOF Photocatalyst for Solar-Driven Water Splitting. ACS Nano 2024, 18, 20201–20212. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. Angew. Chem. Int. Ed. 2017, 56, 15658–15662. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhang, C.; Zou, Y.; Bao, T.; Wang, J.; Tang, C.; Du, A.; Yu, C.; Liu, C. A S-Scheme MOF-on-MOF Heterostructure. Adv. Funct. Mater. 2023, 33, 2214627. [Google Scholar] [CrossRef]
- Kultaeva, A.; Biktagirov, T.; Sperlich, A.; Dörflinger, P.; Calvo, M.E.; Otal, E.; Dyakonov, V. Photoinduced Spin Centers in Photocatalytic Metal–Organic Framework UiO-66. Adv. Funct. Mater. 2024, 2413297. [Google Scholar] [CrossRef]
- Sepehrmansourie, H.; Alamgholiloo, H.; Noroozi Pesyan, N.; Zolfigol, M.A. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 2023, 321, 122082. [Google Scholar] [CrossRef]
- Shao, B.; Liu, X.; Liu, Z.; Zeng, G.; Liang, Q.; Liang, C.; Cheng, Y.; Zhang, W.; Liu, Y.; Gong, S. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem. Eng. J. 2019, 368, 730–745. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhao, H.; Song, S.; Liu, M.; Li, Z.; Zhou, W. MoS2@In2S3/Bi2S3 Core-shell dual Z-scheme tandem heterojunctions with Broad-spectrum response and enhanced Photothermal-photocatalytic performance. Chem. Eng. J. 2022, 431, 133355. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Hao, Q.; Zhang, K.; Shi, X.; Yang, L.; Yang, H.Y.; Ye, J.; Wu, Y. Promoting charge separation in CuInS2/CeO2 photocatalysts by an S-scheme heterojunction for enhanced photocatalytic H2 production. Chem. Eng. J. 2024, 493, 152534. [Google Scholar] [CrossRef]
- Rahman, A.; Jennings, J.R.; Khan, M.M. CuInS2 and CuInS2-based nanostructures as photocatalysts. Mater. Sci. Semicond. Process. 2024, 169, 107930. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Li, Z.; Yang, S.; Garcia, H. Metal–organic framework heterojunctions for photocatalysis. Chem. Soc. Rev. 2024, 53, 3002–3035. [Google Scholar] [CrossRef]
- Che, L.; Pan, J.; Cai, K.; Cong, Y.; Lv, S.-W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review. Separation Purif. Technol. 2023, 315, 123708. [Google Scholar] [CrossRef]
- Qiao, F.; Liu, W.; Yang, J.; Liu, Y.; Yuan, J. Fabrication of ZnO/CuInS2 heterojunction for boosting photocatalytic hydrogen production. Int. J. Hydrogen Energy 2024, 53, 840–847. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, Y.; Lu, Y.; Nie, D.; Zhu, H.; Yang, X. Z-scheme H-PDI supermolecule/NH2-MIL-101(Fe) for enhanced malathion degradation: Mechanism, pathway, and toxicity assessment. J. Environ. Chem. Eng. 2024, 12, 114358. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, B.; Li, Z.; Hao, H.; Wei, C.; Luo, W.; Jiao, L.; Zhang, S.; Zhou, B.; Ma, X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc–Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. Small 2023, 20, 2306820. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Xue, J.; Chen, Z.; Qu, J.; Huang, K.; Wang, M.; Sun, W. Development of hydrothermal carbonaceous carbon/NH2-MIL-101(Fe) composite photocatalyst with in-situ production and activation of H2O2 capabilities for effective sterilization. Chem. Eng. J. 2024, 498, 155263. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W.; Yu, Z.; Ge, S.; Shao, Q.; Pan, D.; Liu, B.; Wang, X.; Guo, Z. Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv. Compos. Hybrid Mater. 2021, 4, 1330–1342. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Abd El-Monaem, E.M.; El-Subruiti, G.M.; Abd El-Latif, M.M.; Omer, A.M. Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions. RSC Adv. 2020, 10, 19008–19019. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Li, M.; Su, Y.; Yin, G.; Lu, J.; He, D. Self-templated growth of CuInS2 nanosheet arrays for photoelectrochemical water splitting. J. Alloys Compd. 2019, 809, 151794. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, Y.; Lv, T.; Liu, H. Selective CO2 photoreduction into CO over Ti3C2 quantum dots decorated NH2-MIL-101(Fe) heterostructures. J. Alloys Compd. 2023, 954, 170088. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Liang, G.; Yan, M.; Wei, C.; Lu, Y. Regulation and photocatalytic degradation mechanism of a hydroxyl modified UiO-66 type metal organic framework. RSC Adv. 2023, 13, 5273–5282. [Google Scholar] [CrossRef] [PubMed]
- Cavdar, O.; Baluk, M.; Malankowska, A.; Żak, A.; Lisowski, W.; Klimczuk, T.; Zaleska-Medynska, A. Photocatalytic hydrogen evolution from glycerol-water mixture under visible light over zinc indium sulfide (ZnIn2S4) nanosheets grown on bismuth oxychloride (BiOCl) microplates. J. Colloid Interface Sci. 2023, 640, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, J.; Xu, Y.; Zhao, R.; Han, J.; Wang, L. Facile fabrication of CdSe/CuInS2 microflowers with efficient photocatalytic hydrogen production activity. Int. J. Hydrogen Energy 2022, 47, 8294–8302. [Google Scholar] [CrossRef]
- Li, K.; Lin, Y.-Z.; Wang, K.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, F.-T. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. Appl. Catal. B Environ. 2020, 268, 118402. [Google Scholar] [CrossRef]
- Cheng, T.; Xing, Z.; Zhang, N.; Sun, P.; Peng, H.; Li, Z.; Wang, N.; Zhou, W. Ti3C2 quantum dots-modified oxygen-vacancy-rich BiOBr hollow microspheres toward optimized photocatalytic performance. Chemosphere 2024, 364, 143255. [Google Scholar] [CrossRef]
- Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. A Twin S-Scheme Artificial Photosynthetic System with Self-Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Adv. Mater. 2022, 35. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhang, L.; Zhang, P.; Zeng, J.; Wang, T.; Ali, A.; Zeng, H. Stable and improved visible-light photocatalytic hydrogen evolution using copper(ii)–organic frameworks: Engineering the crystal structures. J. Mater. Chem. A 2017, 5, 6013–6018. [Google Scholar] [CrossRef]
- Yu, D.; Li, L.; Wu, M.; Crittenden, J.C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B Environ. 2019, 251, 66–75. [Google Scholar] [CrossRef]
- Kong, N.; Du, H.; Li, Z.; Lu, T.; Xia, S.; Tang, Z.; Song, S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf. A Physicochem. Eng. Aspects 2023, 663, 131005. [Google Scholar] [CrossRef]
- Yang, G.; Wang, L.; Zheng, S.; Wu, H.; Hao, D.; Li, Q.; Du, H.; Yamashita, H.; Wang, Q. Novel dual Z-scheme Ag-bridged AgI/FeVO4-C3N4 plasmonic heterojunction: A study on the performance and mechanism of photocatalytic reduction of Cr(VI). J. Environ. Chem. Eng. 2023, 11, 110071. [Google Scholar] [CrossRef]
- Wu, J.; Xu, J.; Chen, M. Interfacial oxygen vacancy engineering of double Z-scheme heterojunction Bi2MoO6/MnWO4/g-C3N4 for efficient photocatalytic degradation of iodohydrin. Separation Purif. Technol. 2025, 354, 128759. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, D.; Cheng, C.; Zhong, D.; Hao, G.; Liu, G.; Li, J.; Zhao, Q. Preparation of a Dual-MOF Heterostructure (ZIF@MIL) for Enhanced Oxygen Evolution Reaction Activity. Chem. Asian J. 2020, 16, 64–71. [Google Scholar] [CrossRef]
- Liao, X.; Wang, F.; Wang, Y.; Cai, Y.; Liu, H.; Wang, X.; Zhu, Y.; Chen, L.; Yao, Y.; Hao, Q. Constructing Fe-based bi-MOFs for photo-catalytic ozonation of organic pollutants in Fischer-Tropsch waste water. Appl. Surf. Sci. 2020, 509, 145378. [Google Scholar] [CrossRef]
- Amdeha, E.; Mohamed, R.S. A green synthesized recyclable ZnO/MIL-101(Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Environ. Technol. 2021, 42, 842–859. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, X.; Jiang, B.; Wang, Z.; Feng, Y.; Li, X. Catalytic degradation of rhodamine B by α-DMACoPc/TiO2/MIL-101 (Fe) enhanced catalytic system. J. Nanoparticle Res. 2024, 26, 217. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Yu, X.; Dong, X.; Peng, Y.; Wei, K.; Cao, L.; He, X.; Zhang, Z.; Fan, J. Construction of heterogeneous structures of MIL-101(Fe)/Ce/g-C3N4 nanocomposites for enhanced photocatalytic activity under visible light. J. Solid State Chem. 2023, 323, 124013. [Google Scholar] [CrossRef]
- Jilani, A.; Melaibari, A.A. MoS2-Cu/CuO@graphene Heterogeneous Photocatalysis for Enhanced Photocatalytic Degradation of MB from Water. Polymers 2022, 14, 3259. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawad, S.M.H.; Aboud, K.H.; Imran, N.J.; Taher, S.Y. Copper Doping of CdS Nanoflakes and Nanoflowers for Efficient Photocatalytic Degradation of MB and MV Dyes. Plasmonics 2024. [Google Scholar] [CrossRef]
- Li, K.; Su, F.-Y.; Zhang, W.-D. Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl. Surf. Sci. 2016, 375, 110–117. [Google Scholar] [CrossRef]
- Ren, H.; Ye, K.; Chen, H.; Wang, F.; Hu, Y.; Shi, Q.; Yu, H.; Lv, R.; Chen, M. ZnO@ZnS core–shell nanorods with homologous heterogeneous interface to enhance photocatalytic hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129844. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, J.; Li, J. Reinforced photocatalytic H2 generation behavior of S-scheme NiO/g-C3N4 heterojunction photocatalysts with enriched nitrogen vacancies. Opt. Mater. 2023, 135, 113296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Wang, B.; Cheng, T.; Bi, M.; Chi, W.; Liu, Y.; Zhang, W.; Liu, Y. Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation. Catalysts 2025, 15, 69. https://doi.org/10.3390/catal15010069
Liang Y, Wang B, Cheng T, Bi M, Chi W, Liu Y, Zhang W, Liu Y. Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation. Catalysts. 2025; 15(1):69. https://doi.org/10.3390/catal15010069
Chicago/Turabian StyleLiang, Yuning, Baohui Wang, Tao Cheng, Mingchun Bi, Weimeng Chi, Yuxi Liu, Wenjing Zhang, and Yuxuan Liu. 2025. "Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation" Catalysts 15, no. 1: 69. https://doi.org/10.3390/catal15010069
APA StyleLiang, Y., Wang, B., Cheng, T., Bi, M., Chi, W., Liu, Y., Zhang, W., & Liu, Y. (2025). Dual MOF and CuInS2-Constructed Dual Z-Scheme Heterojunctions for Enhanced Photocatalytic Hydrogen Production and Methylene Blue Degradation. Catalysts, 15(1), 69. https://doi.org/10.3390/catal15010069