Ru/Beta Zeolite Catalysts for Levulinic Acid Hydrogenation: The Importance of Catalyst Synthesis Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Activity
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Wang, W.; Zheng, M.; Zhang, T. General Reaction Mechanisms in Hydrogenation and Hydrogenolysis for Biorefining. In Catalytic Hydrogenation for Biomass Valorization; Rinaldi, R., Ed.; RSC: London, UK, 2015; pp. 22–52. [Google Scholar]
- Lazaridis, P.; Karakoulia, S.; Teodorescu, C.; Apostol, N.; Macovei, D.; Panteli, A.; Delimitis, A.; Coman, S.; Parvulescu, V.; Triantafyllidis, K. High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon. Appl. Catal. B 2017, 214, 1–14. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349–8402. [Google Scholar] [CrossRef]
- Jin, X.; Yin, B.; Xia, Q.; Fang, T.; Shen, J.; Kuang, L.; Yang, C. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges. ChemSusChem 2019, 12, 71–92. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584–595. [Google Scholar] [CrossRef]
- Tan, J.; Cui, J.; Deng, T.; Cui, X.; Ding, G.; Zhu, Y.; Li, Y. Water-Promoted Hydrogenation of Levulinic Acid to γ-Valerolactone on Supported Ruthenium Catalyst. ChemCatChem 2015, 7, 508–512. [Google Scholar] [CrossRef]
- Wright, W.R.H.; Palkovits, R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone. ChemSusChem 2012, 5, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, Y.; Pan, T.; Xu, Q.; Guo, Q.-X.; Fu, Y. Conversion of Carbohydrate Biomass to γ-Valerolactone by using Water-Soluble and Reusable Iridium Complexes in Acidic Aqueous Media. ChemSusChem 2013, 6, 1163. [Google Scholar] [CrossRef]
- Piskun, A.S.; Van de Bovenkamp, H.H.; Rasrendra, C.B.; Winkelman, J.G.M.; Heeres, H.J. Kinetic modeling of levulinic acid hydrogenation to γ-valerolactone in water using a carbon supported Ru catalyst. Appl. Catal. A 2016, 525, 158–167. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Bond, J.Q.; Alonso, D.M.; Pham, H.N.; Datye, A.K.; Dumesic, J.A. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B 2012, 117–118, 321–329. [Google Scholar] [CrossRef]
- Seretis, A.; Diamantopoulou, P.; Thanou, I.; Tzevelekidis, P.; Fakas, C.; Lilas, P.; Papadogianakis, G. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Front. Chem. 2020, 8, 221. [Google Scholar] [CrossRef]
- Mustafin, K.; Cárdenas-Lizana, F.; Keane, M.A. Continuous Gas Phase Catalytic Transformation of Levulinic Acid to γ-Valerolactone over Supported Au Catalysts. J. Chem. Technol. Biotechnol. 2017, 92, 2221–2228. [Google Scholar] [CrossRef]
- Feng, J.; Li, M.; Zhong, Y.; Xu, Y.; Meng, X.; Zhao, Z.; Feng, C. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability. Micropor. Mesopor. Mater. 2020, 294, 109858. [Google Scholar] [CrossRef]
- Nemanashi, M.; Noh, J.-H.; Meijboom, R. Hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by mesoporous supported dendrimer-derived Ru and Pt catalysts: An alternative method for the production of renewable biofuels. Appl. Catal. A 2018, 550, 77–89. [Google Scholar] [CrossRef]
- Michel, C.; Gallezot, P. Why Is Ruthenium an Efficient Catalyst for the Aqueous-Phase Hydrogenation of Biosourced Carbonyl Compounds? ACS Catal. 2015, 5, 4130–4132. [Google Scholar] [CrossRef]
- Kasar, G.B.; Medhekar, R.S.; Bhosale, P.N.; Rode, C.V. Kinetics of Hydrogenation of Aqueous Levulinic Acid over Bimetallic Ru−Ni/MMT Catalyst. Ind. Eng. Chem. Res. 2019, 58, 19803–19817. [Google Scholar] [CrossRef]
- Cao, W.; Luo, W.; Ge, H.; Su, Y.; Wang, A.; Zhang, T. UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chem. 2017, 19, 2201–2211. [Google Scholar] [CrossRef]
- Yan, L.; Yao, Q.; Fu, Y. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chem. 2017, 19, 5527–5547. [Google Scholar] [CrossRef]
- Wang, Q.; Ling, X.; Ye, T.; Zhou, Y.; Wang, J. Ionic mesoporous polyamides enable highly dispersed ultrafine Ru nanoparticles: A synergistic stabilization effect and remarkable efficiency in levulinic acid conversion into γ-valerolactone. J. Mater. Chem. A 2019, 7, 19140–19151. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Jędrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. ChemSusChem 2019, 12, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Rivas, S.; Galletti, A.M.R.; Antonetti, C.; Licursi, D.; Santos, V.; Parajó, J.C. A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for γ-Valerolactone Sustainable Preparation. Catalysts 2018, 8, 169. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Chen, J.; Chen, L. Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium. Catal. Lett. 2016, 146, 2041–2052. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Chen, J.; Betancourt, L.E.; Tu, C.; Liao, M.; Ning, X.; Zheng, J.; Li, R. Efficient and Sustainable Hydrogenation of Levulinic Acid to γ-Valerolactone in Aqueous Phase over Ru/MCM-49 Catalysts. Ind. Eng. Chem. Res. 2020, 59, 17338–17347. [Google Scholar] [CrossRef]
- Jacobs, P.A.; Dusselier, M.; Sels, B.F. Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angew. Chem. Int. Ed. 2014, 53, 8621–8626. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Peeters, E.; Makshina, E.V.; Parvulescu, V.I.; Sels, B.F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 2019, 48, 2366–2421. [Google Scholar] [CrossRef]
- Luo, W.; Deka, U.; Beale, A.M.; van Eck, E.R.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. J. Catal. 2013, 301, 175–186. [Google Scholar] [CrossRef]
- Abusuek, D.A.; Tkachenko, O.P.; Bykov, A.V.; Sidorov, A.I.; Matveeva, V.G.; Sulman, M.G.; Nikoshvili, L.Z. ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: Influence of the reaction conditions and the zeolite acidity. Catal. Today 2022, 423, 113885. [Google Scholar] [CrossRef]
- Abusuek, D.A.; Nikoshvili, L.Z.; Sorokina, S.A.; Matveeva, V.G.; Sulman, M.G. Catalytic Hydrogenation of Levulinic Acid Using Ruthenium Dioxide Supported on Zeolites. Chem. Eng. Trans. 2021, 88, 277–282. [Google Scholar]
- Piskun, A.; Winkelman, J.G.M.; Tang, Z.; Heeres, H.J. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts. Catalysts 2016, 6, 131. [Google Scholar] [CrossRef]
- Hu, L.; Wei, X.-Y.; Zong, Z.-M. Ru/Hβ catalyst prepared by the deposition-precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin-derived bio-oil to produce hydrocarbons. J. Energy Inst. 2021, 97, 48–57. [Google Scholar] [CrossRef]
- Feng, X.; Duan, X.; Cheng, H.; Qian, G.; Chen, D.; Yuan, W.; Zhou, X. Au/TS-1 catalyst prepared by deposition–precipitation method for propene epoxidation with H2/O2: Insights into the effects of slurry aging time and Si/Ti molar ratio. J. Catal. 2015, 325, 128–135. [Google Scholar] [CrossRef]
- Wang, Z.; Brouri, D.; Casale, S.; Delannoy, L.; Louis, C. Exploration of the preparation of Cu/TiO2 catalysts by deposition–precipitation with urea for selective hydrogenation of unsaturated hydrocarbons. J. Catal. 2016, 340, 95–106. [Google Scholar] [CrossRef]
- Otomo, R.; Tatsumi, T.; Yokoi, T. Beta zeolite: A universally applicable catalyst for the conversion of various types of saccharides into furfurals. Catal. Sci. Technol. 2015, 5, 4001–4007. [Google Scholar] [CrossRef]
- Chang, C.D.; Silvestri, A.J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 1977, 47, 249–259. [Google Scholar] [CrossRef]
- Osuga, R.; Yokoi, T.; Kondo, J.N. Probing the basicity of lattice oxygen on H-form zeolites using CO2. J. Catal. 2019, 371, 291–297. [Google Scholar] [CrossRef]
- Schröder, K.P.; Sauer, J. Preferred stability of aluminum-oxygen-silicon-oxygen-aluminum linkages in high-silica zeolite catalysts: Theoretical predictions contrary to Dempsey’s rule. J. Phys. Chem. 1993, 97, 6579–6581. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Moulijn, J.A.; Pérez-Ramírez, J. On the Introduction of Intracrystalline Mesoporosity in Zeolites Upon Desilication in Alkaline Medium. Micropor. Mesopor. Mater. 2004, 69, 29–34. [Google Scholar] [CrossRef]
- Podolean, I.; Dogaru, M.; Guzo, N.C.; Petcuta, O.A.; Jacobsen, E.E.; Nicolaev, A.; Cojocaru, B.; Tudorache, M.; Parvulescu, V.I.; Coman, S.M. Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine. Nanomaterials 2024, 14, 277. [Google Scholar] [CrossRef]
- Petcuta, O.; Guzo, N.; Parvulescu, V.I.; Coman, S.M. Bifunctional Ru/Beta Zeolite Catalysts for the Biomass Feedstock Upgrading; BioMat Proceedings Book; NTNU: Trondheim, Norway, 2022; Available online: https://chimie.unibuc.ro/edu/greencam/index.php/summer-school-2022 (accessed on 1 November 2024).
- Liu, J.; Lee, J.B.; Kim, D.H.; Kim, Y. Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloids Surf. A 2007, 302, 276–279. [Google Scholar] [CrossRef]
- Balcerzak, J.; Redzynia, W.; Tyczkowski, J. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films. Appl. Surf. Sci. 2017, 426, 852–855. [Google Scholar] [CrossRef]
- Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J. Catal. 2011, 279, 257–268. [Google Scholar] [CrossRef]
- Al-Shaal, M.G.; Wright, W.R.H.; Palkovits, R. Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem. 2012, 14, 1260–1263. [Google Scholar] [CrossRef]
- Wei, Z.; Li, X.; Deng, J.; Wang, J.; Li, H.; Wang, Y. Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Mol. Catal. 2018, 448, 100–107. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Sun, K.; Gao, G.; Li, C.; Zhang, L.; Zhang, S.; Xu, L.; Hu, G.; Hu, X. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni–Fe alloy. Renew. Energy 2021, 170, 1114–1128. [Google Scholar] [CrossRef]
- Weng, R.; Yu, Z.; Xiong, J.; Lu, X. Effects of water in the heterogeneous catalytic valorization of levulinic acid into γ-valerolactone and its derivatives. Green Chem. 2020, 22, 3013–3027. [Google Scholar] [CrossRef]
- Velisoju, V.K.; Peddakasu, G.B.; Gutta, N.; Boosa, V.; Kandula, M.; Chary, K.V.R.; Akula, V. Influence of Support for Ru and Water Role on Product Selectivity in the Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone: Investigation by Probe-Adsorbed Fourier Transform Infrared Spectroscopy. J. Phys. Chem. C 2018, 122, 19670–19677. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, K.; Chen, B.; White, J.L.; Resasco, D.E. Factors that Determine Zeolite Stability in Hot Liquid Water. J. Am. Chem. Soc. 2015, 137, 11810–11819. [Google Scholar] [CrossRef]
- Pinto, B.P.; Fortuna, A.L.L.; Cardoso, C.P.; Mota, C.J.A. Hydrogenation of Levulinic Acid (LA) to γ-Valerolactone (GVL) over Ni–Mo/C Catalysts and Water-Soluble Solvent Systems. Catal. Lett. 2017, 147, 751–757. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, G.; Fu, Y. A nitrogen-doped carbon modified nickel catalyst for the hydrogenation of levulinic acid under mild conditions. Green Chem. 2021, 23, 7065–7073. [Google Scholar] [CrossRef]
- Hernando, H.; Moreno, I.; Fermoso, J.; Ochoa-Hernández, C.; Pizarro, P.; Coronado, J.M.; Čejka, J.; Serrano, D.P. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Convers. Bioref. 2017, 7, 289–304. [Google Scholar] [CrossRef]
- Zeng, W.; Cheng, D.-G.; Chen, F.; Zhan, X. Catalytic Conversion of Glucose on Al–Zr Mixed Oxides in Hot Compressed Water. Catal. Lett. 2009, 133, 221–226. [Google Scholar] [CrossRef]
- Groen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 2007, 46, 4193–4201. [Google Scholar] [CrossRef]
- Aireddy, D.R.; Ding, K. Heterolytic Dissociation of H2 in Heterogeneous Catalysis. ACS Catal. 2022, 12, 4707–4723. [Google Scholar] [CrossRef]
- Coman, S.M.; Parvulescu, V.I. Heterogeneous Diastereoselective Catalysis—A Powerful Strategy Toward C(15) Stereoselectivity from PGF2α Analogues Structure. Curr. Pharm. Des. 2015, 21, 5558–5572. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, A.M.; Grams, J.; Jedrzejczyk, M.; Matras-Michalska, J.; Keller, N.; Ostojska, K.; Sautet, P. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. ChemSusChem 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Pârvulescu, V.; Coman, S.; Palade, P.; Macovei, D.; Teodorescu, C.; Filoti, G.; Molina, R.; Poncelet, G.; Wagner, F. Reducibility of ruthenium in relation with zeolite structure. Appl. Surf. Sci. 1999, 141, 164–176. [Google Scholar] [CrossRef]
- Bhat, R.N.; Kumar, R. Synthesis of zeolite beta using silica gel as a source of SiO2. J. Chem. Technol. Biotechnol. 1990, 48, 453–466. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Gao, L.; Guo, J.K. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B 2000, 26, 207–215. [Google Scholar] [CrossRef]
- Teodorescu, C.M.; Esteva, J.M.; Karnatak, R.C.; El Afif, A. An approximation of the Voigt I profile for the fitting of experimental X-ray absorption data. Nucl. Instrum. Methods Phys. Res. Sect. A—Accel. Spectrom. Dect. Assoc. Equip. 1994, 345, 141–147. [Google Scholar] [CrossRef]
- Mardare, D.; Luca, D.; Teodorescu, C.M.; Macovei, D. On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf. Sci. 2007, 601, 4515–4520. [Google Scholar] [CrossRef]
Catalysts | Ru3d | Rux+/Ru0 | Si/Al | |
---|---|---|---|---|
Ru0, at% | Rux+, at% | |||
1Ru/BEA12.5 * | 25.06 | 74.94 | 3.0 | 13.04 |
3Ru/BEA12.5 * | 23.87 | 76.13 | 3.2 | 12.24 |
3Ru/BEA150 | 30.40 | 69.60 | 2.3 | 42.64 |
3Ru/BEA12.5-B | 55.48 | 44.52 | 0.8 | 12.40 |
Sample | SBET, (m2/g) * | Sext, (m2/g) ** | Smicro, (m2/g) ** | Vtotal, (cm3/g) *** | Vmeso, (cm3/g) **** | Vmicro, (cm3/g) ***** | Pore Size Distribution, (nm) ****** |
---|---|---|---|---|---|---|---|
BEA12.5 | 495 | 186 | 309 | 0.72 | 0.58 | 0.14 | 9.4; 31.5 |
1Ru/BEA12.5 | 415 | 168 | 247 | 0.65 | 0.54 | 0.11 | 9.3; 30.0 |
2Ru/BEA12.5 | 502 | 186 | 316 | 0.80 | 0.66 | 0.14 | 9.4; 31.5 |
3Ru/BEA12.5-B | 262 | 172 | 90 | 0.38 | 0.34 | 0.04 | 4.0; 9.4 |
BEA150 | 497 | 133 | 364 | 0.29 | 0.12 | 0.17 | 3.8 |
1Ru/BEA150 | 281 | 217 | 64 | 0.35 | 0.32 | 0.03 | 3.9; 9.3 |
2Ru/BEA150 | 275 | 178 | 96 | 0.34 | 0.30 | 0.04 | 3.9; 7.7 |
3Ru/BEA150 | 421 | 273 | 148 | 0.38 | 0.31 | 0.07 | 3.9; 7.1 |
Catalyst * | XLA, % | YGVL, % | SGVL, % |
---|---|---|---|
1Ru/BEA12.5 | 3.9 | 3.6 | 93.3 |
2Ru/BEA12.5 | 4.9 | 4.6 | 94.0 |
3Ru/BEA12.5 | 5.4 | 5.1 | 95.0 |
3Ru/BEA12.5-B | 0 | - | - |
1Ru/BEA18.5 | 7.9 | 7.4 | 94.0 |
2Ru/BEA18.5 | 10.5 | 10.1 | 96.1 |
3Ru/BEA18.5 | 15.1 | 14.5 | 96.3 |
1Ru/BEA150 | 73.9 | 70.2 | 95.0 |
2Ru/BEA150 | 87.6 | 84.1 | 96.0 |
3Ru/BEA150 | 96.5 | 94.4 | 97.8 |
Sample | Acid Site Population, (μmols/g) | Total Acid Sites, (μmols/g) | Base Site Population, (μmols/g) | Total Base Sites (μmols/g) | Base–Acid Ratio | ||||
---|---|---|---|---|---|---|---|---|---|
Range of Temperature (°C) | Range of Temperature (°C) | ||||||||
50–200 | 200–300 | 300–400 | 100–200 | 200–400 | >400 | ||||
BEA12.5 | 61.8 | 36.2 (200 °C) | 10.2 | 98.3 | 50.0 | - | - | 50.0 | 0.51 |
3Ru/BEA12.5-B | 60.8 | 24.2 (248 °C) | - | 85.0 | 49.4 | 231.8 μ | 43.9 | 325.0 | 3.82 |
BEA18.5 | 74.3 | 17.0 (200 °C) | 15.8 | 107.1 | 60.2 | - | - | 60.2 | 0.56 |
1Ru/BEA18.5 | 71.2 | 51.7 (248 °C) | - | 122.9 | 70.4 | 80.2 | - | 150.6 | 1.23 |
BEA150 | 158.9 | - | - | 158.9 | 68.4 | 18.2 | - | 86.6 | 0.54 |
3Ru/BEA150 | 133.4 | 95.5 | - | 228.9 | 194.4 | 118.5 | - | 312.9 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petcuta, O.A.; Guzo, N.C.; Bordeiasu, M.; Nicolaev, A.; Parvulescu, V.I.; Coman, S.M. Ru/Beta Zeolite Catalysts for Levulinic Acid Hydrogenation: The Importance of Catalyst Synthesis Methodology. Catalysts 2025, 15, 80. https://doi.org/10.3390/catal15010080
Petcuta OA, Guzo NC, Bordeiasu M, Nicolaev A, Parvulescu VI, Coman SM. Ru/Beta Zeolite Catalysts for Levulinic Acid Hydrogenation: The Importance of Catalyst Synthesis Methodology. Catalysts. 2025; 15(1):80. https://doi.org/10.3390/catal15010080
Chicago/Turabian StylePetcuta, Oana Adriana, Nicolae Cristian Guzo, Mihai Bordeiasu, Adela Nicolaev, Vasile I. Parvulescu, and Simona M. Coman. 2025. "Ru/Beta Zeolite Catalysts for Levulinic Acid Hydrogenation: The Importance of Catalyst Synthesis Methodology" Catalysts 15, no. 1: 80. https://doi.org/10.3390/catal15010080
APA StylePetcuta, O. A., Guzo, N. C., Bordeiasu, M., Nicolaev, A., Parvulescu, V. I., & Coman, S. M. (2025). Ru/Beta Zeolite Catalysts for Levulinic Acid Hydrogenation: The Importance of Catalyst Synthesis Methodology. Catalysts, 15(1), 80. https://doi.org/10.3390/catal15010080