Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subsection Electrocatalyst Characterization
2.2. OER Performance
3. Experimental and Theoretical Calculations
3.1. Synthesis of Fe2B–HPHT
3.2. Synthesis of High-Temperature-Sintered Fe2B (Fe2B–HS)
3.3. Characterization
3.4. Electrochemical Measurements
3.5. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunn, B.; Kamath, H.; Tarascon, J. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Larcher, D.; Tarascon, J. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Martins, A.A.; Caetano, N. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.T.; De Luna, P.; Yu, Z.; Rasouli, A.S.; Brodersen, P. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 3. [Google Scholar] [CrossRef]
- McCrory, C.C.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhao, X.; Wang, Y.; Li, Q.; Wang, Q.; Tang, Y.; Lei, Y. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J. Mater. Sci. Technol. 2022, 110, 128–135. [Google Scholar] [CrossRef]
- Hu, C.; Hu, Y.; Zhang, B.; Zhang, H.; Bao, X.; Zhang, J.; Yuan, P. Advanced Catalyst Design Strategies and In-Situ Characterization Techniques for Enhancing Electrocatalytic Activity and Stability of Oxygen Evolution Reaction. Electrochem. Energy Rev. 2024, 7, 19. [Google Scholar] [CrossRef]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wei, C.; Huang, Z.F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Mariappan, V.K.; Krishnamoorthy, K.; Pazhamalai, P.; Swaminathan, R.; Kim, S.J. Stimulus of Work Function on Electron Transfer Process of Intermetallic Nickel-Antimonide Toward Bifunctional Electrocatalyst for Overall Water Splitting. Small 2024, 20, 2402355. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hu, Y.; Zhu, Z.; Li, J.; Huang, Y.; Zhang, S.; Balogun, M.S.; Tong, Y. High-performance multidimensional-structured N-doped nickel modulated Mo2N/FeOxNy bifunctional electrocatalysts for efficient alkaline seawater splitting. Chem. Eng. J. 2024, 489, 151348. [Google Scholar] [CrossRef]
- Kawashima, K.; Márquez, R.A.; Smith, L.A.; Vaidyula, R.R.; Carrasco-Jaim, O.A.; Wang, Z.; Son, Y.J.; Cao, C.L.; Mullins, C. A review of transition metal boride, carbide, pnictide, and chalcogenide water oxidation electrocatalysts. Chem. Rev. 2023, 123, 12795–13208. [Google Scholar] [CrossRef]
- He, L.; Cai, Z.; Zheng, D.; Ouyang, L.; He, X.; Chen, J.; Li, Y.; Guo, X.; Liu, Q.; Li, L. Three-dimensional porous NiCoP foam enabled high-performance overall seawater splitting at high current density. J. Mater. Chem. A 2024, 12, 2680–2684. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Ogunjinmi, O.E.; Adegoke, O.R.; Bello, O. Bifunctional two-dimensional metal organic frameworks for oxygen reaction and water splitting. Nano Energy 2024, 128, 109897. [Google Scholar] [CrossRef]
- Zhang, R.; Pan, L.; Guo, B.; Huang, Z.-F.; Chen, Z.; Wang, L.; Zhang, X.; Guo, Z.; Xu, W.; Loh, K. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, Z.; Li, J.; Tian, F.; Xia, X.; Chen, S.; Yu, X.; Li, G.; Chen, C.; Xu, Q. Technology, Molten salt electrosynthesis of self-supporting FeCoNi medium entropy alloy electrocatalysts for efficient oxygen evolution reactions. J. Mater. Sci. Technol. 2024, 198, 63–72. [Google Scholar] [CrossRef]
- Qi, M.; Zheng, X.; Tong, H.; Liu, Y.; Li, D.; Yan, Z.; Jiang, D. Synergizing ruthenium oxide with bimetallic Co2CrO4 for highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 2025, 677, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Z.; Zhong, Y.L.; Jin, Y.; Saha, P.; Cheng, Q. Heterogeneous Cr-doped Co3S4/NiMoS4 bifunctional electrocatalyst for efficient overall water splitting. J. Power Sources 2024, 614, 234969. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Wang, L.; Qu, Z.; Yan, N. Surface nano-traps of Fe0/COFs for arsenic (III) depth removal from wastewater in non-ferrous smelting industry. Chem. Eng. J. 2020, 381, 122559. [Google Scholar] [CrossRef]
- Brambilla, A.; Sessi, P.; Cantoni, M.; Finazzi, M.; Rougemaille, N.; Belkhou, R.; Vavassori, P.; Duò, L.; Ciccacci, F. Frustration-driven micromagnetic structure in Fe/CoO/Fe thin film layered systems. Phys. Rev. B 2009, 79, 172401. [Google Scholar] [CrossRef]
- Fujii, J.; Borgatti, F.; Panaccione, G.; Hochstrasser, M.; Maccherozzi, F.; Rossi, G. Magnetic properties of epitaxial Fe films on MnPt/Fe (1 0 0). Surf. Sci. 2007, 601, 4288–4291. [Google Scholar] [CrossRef]
- Nakajima, K.; Leparoux, M.; Kurita, H.; Lanfant, B.; Cui, D.; Watanabe, M.; Sato, T.; Narita, F. Additive manufacturing of magnetostrictive Fe–Co alloys. Materials 2022, 15, 709. [Google Scholar] [CrossRef]
- Sari, F.N.I.; Abdillah, S.; Ting, J. FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chem. Eng. J. 2021, 416, 129165. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, D.; Bao, X.; Huang, G.; Huang, B. One-pot synthesis of Fe2O3/C by urea combustion method as an efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 2877–2882. [Google Scholar] [CrossRef]
- Xin, S.; Tang, Y.; Jia, B.; Zhang, Z.; Li, C.; Bao, R.; Li, C.; Yi, J.; Wang, J.; Ma, T. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co (OH) 2/Fe2O3 heterostructure for enhanced electrochemical water oxidation. Adv. Funct. Mater. 2023, 33, 2305243. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Wu, Y.; Zhang, G.; Wu, H.; Lyu, F.; He, J.; Fan, J.; Lu, J.; Li, Y. Identifying Fe as OER active sites and ultralow-cost bifunctional electrocatalysts for overall water splitting. Small 2023, 19, 2301715. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.X.; Xu, H.; Dong, Y.T.; Ye, S.H.; Tong, Y.X.; Li, G. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 3694–3698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shang, X.; Ren, H.; Chi, J.; Fu, H.; Dong, B.; Liu, C.; Chai, Y. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107. [Google Scholar] [CrossRef]
- Mei, J.; Deng, Y.; Cheng, X.; Wu, Q. Facile and scalable synthesis of Ni3S2/Fe3O4 nanoblocks as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2024, 660, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, L.; Zhang, Q.; Lin, H.; Wang, R.; Feng, C.; Xu, Y.; Jiao, Y.; You, L.; Chen, J. Breaking the barriers: Engineering the crystalline-amorphous interface of Fe3O4@Fe electrode material for unparalleled energy storage and water splitting efficiency. Int. J. Hydrogen Energy 2024, 49, 103–115. [Google Scholar] [CrossRef]
- Sohail, M.; Ayyob, M.; Wang, A.; Sun, Z.; El Maati, L.; Altuijri, R.; Zairov, R.; Ahmad, I. An efficient Fe2Se3/Fe2O3 heterostructure electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 52, 1290–1297. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Xiong, Z.; Wang, Y.; Zhou, Y.; Li, X. A rising 2D star: Novel MBenes with excellent performance in energy conversion and storage. Nano-Micro Lett. 2023, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.; Gao, Y.; Owusu, K.A.; Liu, W.; Wu, Y.; Ramiere, A.; Guo, H.; Tsiakaras, P.; Cai, X. Ternary Mo2NiB2 as a superior bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2104303. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Patel, M.K.; Miotello, A.; Patel, N. Metal Boride-Based Catalysts for Electrochemical Water-Splitting: A Review. Adv. Funct. Mater. 2019, 30, 1906481. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, Y.; Tao, Q.; Yang, L.; Cheng, J.; Liu, X.; Cao, J.; Fan, H.; Wei, M.; Zhu, P.; et al. Constructing 1D Boron Chains in the Structure of Transition Metal Monoborides for Hydrogen Evolution Reactions. Catalysts 2021, 11, 1265. [Google Scholar] [CrossRef]
- Nsanzimana, J.M.V.; Dangol, R.; Reddu, V.; Duo, S.; Peng, Y.; Dinh, K.N.; Huang, Z.; Yan, Q.; Wang, X. Facile Synthesis of Amorphous Ternary Metal Borides-Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Appl. Mater. Interfaces 2019, 11, 846–855. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Y.; You, C.; Cheng, J.; Liu, Z.; Qiang, Y.; Lian, M.; Ma, X.; Ge, Y.; Chen, Y.; et al. Enhancement of Thermoelectric Performance in Robust ZnO-Based Composite Ceramics Driven by A Stepwise Optimization Strategy. Adv. Funct. Mater. 2024, 34, 2308970. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Zhao, X.; Hao, W.; Ma, X.; Li, S.; Guo, Y. Surface-activated amorphous iron borides (FexB) as efficient electrocatalysts for oxygen evolution reaction. Adv. Mater. Interfaces 2019, 6, 1801690. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.; Bao, K.; Zhu, P.; Tao, Q.; Ma, S.; Cui, T. Insight the effect of rigid boron chain substructure on mechanical, magnetic and electrical properties of β-FeB. J. Alloy. Compd. 2022, 896, 162767. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, X.; Chen, L.; Fu, Y.; Zhao, W.; Ye, M.; Wang, F.; Tao, Q.; Dong, S.; Zhu, P. Synthesis of Ni-B Compounds by High-Pressure and High-Temperature Method. ACS Omega 2023, 8, 9265–9274. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, L.; Bao, K.; Zhu, P.; Tao, Q.; Ma, S.; Liu, B.; Ge, Y.; Li, D.; Cui, T. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B. Phys. Chem. Chem. Phys. 2020, 22, 27425–27432. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.K.; Lim, H.W.; Haryanto, A.; Yan, B.; Lee, C.W.; Kim, J. Intercalation-Induced Irreversible Lattice Distortion in Layered Double Hydroxides. ACS Nano 2024, 18, 20459–20467. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Shi, F.; Zhu, X.; Yang, W. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction. Nano Energy 2020, 73, 104761. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, X.; Wang, M.; Zhang, L.; Qian, T.; Yan, C.; Lu, J. The understanding, rational design, and application of high-entropy alloys as excellent electrocatalysts: A review. Sci. China Mater. 2023, 66, 2527–2544. [Google Scholar] [CrossRef]
- Chen, Y.; Rong, J.; Tao, Q.; Xing, C.; Lian, M.; Cheng, J.; Liu, X.; Cao, J.; Wei, M.; Lv, S. Modifying microscopic structures of MoS2 by high pressure and high temperature used in hydrogen evolution reaction. Electrochim. Acta 2020, 357, 136868. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, B.; Wang, L.; Tao, Q.; Zhu, P. Mechanical properties and multifunctionality of AlB2-type transition metal diborides. J. Phys. Condens. Matter 2022, 35, 074002. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Huang, Z.; Zhang, L.; Wang, Y.; Shen, Y.; He, L.; Zheng, Q.; Li, H. Influence of Cr addition on tribological properties of bulk Fe2B under dry friction and water lubrication. Mater. Res. Express 2018, 5, 076506. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Z.; Tong, X.; Xiong, Y.; Hu, C.; Bian, J.; Cheng, X.; Cao, Q. Preparation and infrared emissivity of metal borides (metal = V, Mo, Fe) and MnO2 co-doped NiCr2O4 coatings. Ceram. Int. 2022, 48, 5581–5589. [Google Scholar] [CrossRef]
- Singha Roy, S.; Madhu, R.; Karmakar, A.; Kundu, S. From Theory to Practice: A Critical and Comparative Assessment of Tafel Slope Analysis Techniques in Electrocatalytic Water Splitting. ACS Mater. Lett. 2024, 6, 3112–3123. [Google Scholar] [CrossRef]
- Jing, X.; Dong, J.; Mao, Y.; Zhou, L.; Ding, J.; Dong, H.; Zhang, L.; Zhang, Y.; Zhang, W. Synergistic Effect Enables the Dual-Metal Doped Cobalt Telluride Particles as Potential Electrocatalysts for Oxygen Evolution in Alkaline Electrolyte. Inorg. Chem. 2024, 63, 12764–12773. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rong, J.; Wang, Z.; Tao, Q.; Gan, Q.; Wang, F.; Ye, Y.; Liu, X.; Cao, J.; Fan, H. Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen evolution reaction. Inorg. Chem. Front. 2021, 8, 5130–5138. [Google Scholar] [CrossRef]
- Yanli, C.; Guangtao, Y.; Wei, C.; Yipu, L.; Guo-Dong, L.; Pinwen, Z.; Qiang, T.; Qiuju, L.; Jingwei, L.; Xiaopeng, S. Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373. [Google Scholar]
- Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Ge, Q. Mechanistic understanding on oxygen evolution reaction on γ-FeOOH (010) under alkaline condition based on DFT computational study. Chin. J. Catal. 2017, 38, 1621–1628. [Google Scholar] [CrossRef]
- Li, F.; Tian, Y.; Su, S.; Wang, C.; Li, D.S.; Cai, D.; Zhang, S. Theoretical and experimental exploration of trimetallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B 2021, 299, 120665. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, M.; Sun, L.; Zheng, D.; Xu, H.; Kong, L.; Gao, C.; Yu, H.; Lin, J. FeSe/FeSe2 Heterostructure as a Low-Cost and High-Performance Electrocatalyst for Oxygen Evolution Reaction. ChemElectroChem 2022, 9, 202200399. [Google Scholar] [CrossRef]
- Gu, Y.; Meng, C.; Dong, S.; Zhu, H.; Liu, Q.; Luo, Y.; Kong, Q.; Li, T. Electrodeposition of Amorphous Fe−P Shell on Co(OH)F Nanowire Arrays for Boosting Oxygen Evolution Electrocatalysis in Alkaline Media. ChemNanoMat 2022, 8, 202200085. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Li, C.; Zhang, Z.; Zhang, H.; Zhang, J.; Jiao, S.; Chen, H. Fabrication of carbon-coated Na/Fe@C nanorods using soybean straw for efficient oxygen evolution reaction catalysts. Mol. Catal. 2023, 550, 113579. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, W.; Wang, W.; Wu, Z.; Li, H.; Lai, J.; Wang, L. Bamboo-Like Carbon Nanotube-Encapsulated Fe2C Nanoparticles Activate Confined Fe2O3 Nanoclusters Via d-p-d Orbital Coupling for Alkaline Oxygen Evolution Reaction. Small 2024, 21, 2409325. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, W.; Wang, R.; Li, L.; Zhao, X.; Zhang, W. Metal-Organic Frameworks-Derived FeS-Co9S8/NCA Porous Aerogel Electrocatalyst as a High-Performance Cathode for Zinc-Air Batteries. Langmuir 2024, 40, 1024–1034. [Google Scholar] [CrossRef]
- Pan, K.; Zhai, Y.; Zhang, J.; Yu, K. FeS2/C Nanowires as an Effective Catalyst for Oxygen Evolution Reaction by Electrolytic Water Splitting. Materials 2019, 12, 3362. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gao, P.; Lei, T.; Ouyang, C.; Wu, X.; Wu, A.; Du, Y. PANI-coated porous FeP sheets as bifunctional electrocatalyst for water splitting. Colloids Surf. 2022, 651, 129673. [Google Scholar] [CrossRef]
- Wan, S.; Bao, L.; Zong, Y.; Xiao, J.; He, J.; Gao, X.; Wang, H.; Ma, R. Fe/Co bimetallic borides with modified electronic structure for Efficient oxygen evolution reaction. Appl. Surf. Sci. 2025, 684, 161893. [Google Scholar] [CrossRef]
- Ding, J.; Mo, Z.; Zhu, X.; Zhu, J.; Yang, R.; Li, R.; Liu, N.; Guo, R. Amorphous cobalt-iron boride nanoparticles grown on B, N-doped carbon frame for efficient electrocatalytic oxygen evolution. Int. J. Hydrogen Energy 2024, 51, 259–270. [Google Scholar] [CrossRef]
- Silviya, R.; Bhide, A.; Gupta, S.; Bhabal, R.; Mali, K.H.; Bhagat, B.R.; Spreitzer, M.; Dashora, A.; Patel, N.; Fernandes, R. Bifunctional Amorphous Transition-Metal Phospho-Boride Electrocatalysts for Selective Alkaline Seawater Splitting at a Current Density of 2A cm−2. Small Methods 2024, 8, 2301395. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.; Pieler, T. Mesoporous Surface-Sulfurized Fe–Co3O4 Nanosheets Integrated with N/S Co-Doped Graphene as a Robust Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. Molecules 2010, 1, 413–426. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, X.; Liu, X.; Cao, J.; Yang, L.; Liu, H.; Zhu, P.; Zhou, Q.; Zhao, X.; Chen, Y.; et al. Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction. Catalysts 2025, 15, 89. https://doi.org/10.3390/catal15010089
Li H, Liu X, Liu X, Cao J, Yang L, Liu H, Zhu P, Zhou Q, Zhao X, Chen Y, et al. Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction. Catalysts. 2025; 15(1):89. https://doi.org/10.3390/catal15010089
Chicago/Turabian StyleLi, Haoyu, Xin Liu, Xiaoyan Liu, Jian Cao, Lili Yang, Huilian Liu, Pinwen Zhu, Qiang Zhou, Xingbin Zhao, Yanli Chen, and et al. 2025. "Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction" Catalysts 15, no. 1: 89. https://doi.org/10.3390/catal15010089
APA StyleLi, H., Liu, X., Liu, X., Cao, J., Yang, L., Liu, H., Zhu, P., Zhou, Q., Zhao, X., Chen, Y., Wei, M., & Tao, Q. (2025). Unveiling the Stacking Faults in Fe2B Induces a High-Performance Oxygen Evolution Reaction. Catalysts, 15(1), 89. https://doi.org/10.3390/catal15010089