Hydrogen Production from Ethanol Steam Reforming by Stable LaNixCu1−xO3−λ Perovskite-Type Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Hydrogen Production from ESR
2.3. Stability Tests
3. Experimental Section and Calculations
3.1. Preparation of LaNixCu1−xO3−λ Catalyst
3.2. Characterization
3.3. Activity and Stability Test
3.4. Data Analysis and Calculation
3.5. Determination of the Equilibrium Constant for the Ethanol Steam Reforming (ESR) Reaction
3.6. Reaction Kinetics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dou, B.; Wu, K.; Zhang, H.; Chen, B.; Chen, H.; Xu, Y. Sorption-enhanced chemical looping steam reforming of glycerol with CO2 in-situ capture and utilization. Chem. Eng. J. 2023, 452, 139703. [Google Scholar] [CrossRef]
- Chen, B.; Rickard, S.; Bao, Z.; Wu, Z.; Kidder, M.K.; Savara, A. Evidence of redox cycling as a sub-mechanism in hydrogen production during ethanol steam reforming over La0.7Sr0.3MnO3−x perovskite oxide catalysts. Appl. Surf. Sci. 2023, 617, 156603. [Google Scholar] [CrossRef]
- Kourtelesis, M.; Panagiotopoulou, P.; Verykios, X.E. Influence of structural parameters on the reaction of low temperature ethanol steam reforming over Pt/Al2O3 catalysts. Catal. Today 2015, 258, 247–255. [Google Scholar] [CrossRef]
- Dou, B.; Wang, K.; Jiang, B.; Song, Y.; Zhang, C.; Chen, H.; Xu, Y. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. Int. J. Hydrogen Energy 2016, 41, 3803–3810. [Google Scholar] [CrossRef]
- de la Piscina, P.R.; Homs, N. Use of biofuels to produce hydrogen (reformation processes). Chem. Soc. Rev. 2008, 37, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.; Pant, K.K.; Dalai, A.K. Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Appl. Catal. A Gen. 2015, 499, 19–31. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Rodrigues, A.E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem. Eng. J. 2006, 117, 39–49. [Google Scholar] [CrossRef]
- da Silva, A.G.; Robles-Dutenhefner, P.A.; Dias, A.; Fajardo, H.V.; Lovón, A.S.; Lovón-Quintana, J.J.; Valença, G.P. Gold, palladium and gold–palladium supported on silica catalysts prepared by sol–gel method: Synthesis, characterization and catalytic behavior in the ethanol steam reforming. J. Sol-Gel Sci. Technol. 2013, 67, 273–281. [Google Scholar] [CrossRef]
- Ghita, D.; Stanica Ezeanu, D.; Cursaru, D.; Rosca, P. Hydrogen production by steam reforming of bioethanol over Pt based catalysts. Rev. Chim. 2016, 67, 145–149. [Google Scholar]
- Bilal, M.; Jackson, S.D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: The effect of impurities on selectivity and catalyst deactivation. Appl. Catal. A Gen. 2017, 529, 98–107. [Google Scholar] [CrossRef]
- Mudiyanselage, K.; Al-Shankiti, I.; Foulis, A.; Llorca, J.; Idriss, H. Reactions of ethanol over CeO2 and Ru/CeO2 catalysts. Appl. Catal. B Environ. 2016, 197, 198–205. [Google Scholar] [CrossRef]
- Lindstrm, B.; Pettersson, L.J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications. Int. J. Hydrogen Energy 2001, 26, 923–933. [Google Scholar] [CrossRef]
- Lua, A.C.; Wang, H.Y. Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles. Appl. Catal. B Environ. 2014, 156–157, 84–93. [Google Scholar] [CrossRef]
- Dou, B.; Zhang, H.; Cui, G.; Cui, G.; Wang, Z.; Jiang, B.; Wang, K.; Chen, H.; Xu, Y. Hydrogen production and reduction of Ni-based oxygen carriers during chemical looping steam reforming of ethanol in a fixed-bed reactor. Int. J. Hydrogen Energy 2017, 26, 217–230. [Google Scholar] [CrossRef]
- Dou, B.; Song, Y.; Wang, C.; Wang, C.; Chen, H.; Xu, Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew. Sustain. Energy Rev. 2014, 30, 950–960. [Google Scholar] [CrossRef]
- Hu, M.; Laghari, M.; Cui, B.; Xiao, B.; Zhang, B.; Guo, D. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy 2018, 145, 228–237. [Google Scholar] [CrossRef]
- De Lima, S.M.; Pena, M.A.; Fierro, J.L.; Assaf, J.M. La1−xCaxNiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane. Catal. Lett. 2008, 124, 195–203. [Google Scholar] [CrossRef]
- Nalbandian, L.; Evdou, A.; Zaspalis, V. La1−xSrxMyFe1−yO3−δ perovskites as oxygen-carrier materials for chemical-looping reforming. Int. J. Hydrogen Energy 2011, 36, 6657–6670. [Google Scholar] [CrossRef]
- de Lima, S.M.; da Silva, A.M.; da Costa, L.O.; Assaf, J.M.; Mattos, L.V.; Sarkari, R.; Venugopal, A.; Noronha, F.B. Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl. Catal. B Environ. 2012, 121–122, 1–9. [Google Scholar] [CrossRef]
- Morales, M.; Segarra, M. Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3−δ perovskite as catalyst precursor for hydrogen production. Appl. Catal. A Gen. 2015, 502, 305–311. [Google Scholar] [CrossRef]
- Agüero, F.N.; Morales, M.R.; Larrégola, S.; Izurieta, E.M.; Lopez, E.; Cadús, L.E. La1−xCaxAl1−yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming. Int. J. Hydrogen Energy 2015, 40, 15510–15520. [Google Scholar] [CrossRef]
- Urasaki, K.; Tokunaga, K.; Sekine, Y.; Matsukata, M.; Kikuchi, E. Production of hydrogen by steam reforming of ethanol over cobalt and nickel catalysts supported on perovskite-type oxides. Catal. Commun. 2008, 9, 600–604. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Koike, M.; Koso, S.; Nakagawa, Y.; Xu, Y.; Tomishige, K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Appl. Catal. A Gen. 2011, 392, 248–255. [Google Scholar] [CrossRef]
- Heo, D.H.; Lee, R.; Hwang, J.H.; Sohn, J.M. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound. Catal. Today 2016, 265, 95–102. [Google Scholar] [CrossRef]
- Nejat, T.; Jalalinezhad, P.; Hormozi, F.; Bahrami, Z. Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support. J. Taiwan Inst. Chem. Eng. 2019, 97, 216–226. [Google Scholar] [CrossRef]
- Ávila-Neto, C.N.; Oliveira, K.D.; Oliveira, K.F.; Arouca, A.M.; Ferreira, R.A.; Hori, C.E. Interconnection between feed composition and Ni/Co ratio in (La-Ni-Co-O) based perovskites and its effects on the stability of LPG steam reforming. Appl. Catal. A Gen. 2017, 550, 184–197. [Google Scholar] [CrossRef]
- Yu, X.P.; Chu, W.; Wang, N.; Ma, F. Hydrogen Production by Ethanol Steam Reforming on NiCuMgAl Catalysts Derived from Hydrotalcite-Like Precursors. Catal. Lett. 2011, 141, 1228–1236. [Google Scholar] [CrossRef]
- Liu, J.Y.; Su, W.N.; Rick, J.; Yang, S.C.; Cheng, J.H.; Pan, C.J.; Lee, J.F.; Hwang, B.J. Hierarchical Copper-Decorated Nickel Nanocatalysts Supported on La2O3 for Low-Temperature Steam Reforming of Ethanol. ChemSusChem 2013, 2, 570–576. [Google Scholar] [CrossRef]
- Lin, K.H.; Wang, C.B.; Chien, S.H. Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3 perovskite. Int. J. Hydrogen Energy 2013, 38, 3226–3232. [Google Scholar] [CrossRef]
- Jing, Z.; Li, H.; Jiang, Z. The chemical interaction of support and active phase in sintering resistant La0.8Ca0.2FeO3 perovskite catalysts. Fuel 2019, 243, 322–331. [Google Scholar] [CrossRef]
- Gallego, G.S.; Mondragón, F.; Tatibouët, J.-M.; Barrault, J.; Batiot-Dupeyrat, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-characterization of carbon deposition. Catal. Today 2008, 133, 200–209. [Google Scholar] [CrossRef]
- Gallego, G.S.; Mondragón, F.; Barrault, J.; Tatibouët, J.-M.; Batiot-Dupeyrat, C. CO2 reforming of CH4 over La-Ni based perovskite precursors. Appl. Catal. A Gen. 2006, 311, 164–171. [Google Scholar] [CrossRef]
- Barros, B.S.; Melo, D.M.; Libs, S.; Kiennemann, A. CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwaveassisted self-combustion method. Appl. Catal. A Gen. 2010, 378, 69–75. [Google Scholar] [CrossRef]
- Rynkowski, J.; Samulkiewicz, P.; Ladavos, A.; Pomonis, P. Catalytic performance of reduced La2−xSrxNiO4 perovskite-like oxides for CO2 reforming of CH4. Appl. Catal. A Gen. 2004, 263, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Flytzani-Stephanopoulos, M. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl. Catal. B Environ. 2000, 27, 179–191. [Google Scholar] [CrossRef]
- Sanchez, E.; Comelli, R. Hydrogen by glycerol steam reforming on a nickel-alumina catalyst: Deactivation processes and regeneration. Int. J. Hydrogen Energy 2012, 37, 14740–14746. [Google Scholar] [CrossRef]
- Shen, Q.; Shao, Z.; Li, S.; Yang, G.; Sunden, B. Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1−xO3−δ perovskite in methanol steam reforming. Energy 2023, 268, 126540. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Jiang, B.; Wang, K.; Tang, D.; Dou, B. An intelligent oxygen carrier of La2−xSrxNiO4−λ for hydrogen production by chemical looping reforming of ethanol. Int. J. Hydrogen Energy 2017, 42, 17102–17111. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Jiang, B.; Tang, D.; Dou, B. Hydrogen by chemical looping reforming of ethanol: The effect of promoters on La2−xMxNiO4−λ (M = Ca, Sr and Ce) oxygen carriers. Chem. Eng. Sci. 2017, 174, 259–267. [Google Scholar] [CrossRef]
- Qiu, H.; Yuan, B.; Zhao, C.; Dang, J.; Zhang, C.; Wang, Q.; Xia, L.; Miao, H.; Yuan, J. A high-entropy and low-cobalt perovskite of La0.7Sr0.3Co0.2Mn0.2Ni0.2Fe0.2Al0.2O3−x for both oxygen evolution and methanol oxidation reactions. Int. J. Hydrogen Energy 2024, 51, 593–604. [Google Scholar] [CrossRef]
- Dou, B.; Zhang, H.; Cui, G.; Wang, Z.; Jiang, B.; Wang, K.; Chen, H.; Xu, Y. Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies. Energy Convers. Manag. 2018, 1551, 243–252. [Google Scholar] [CrossRef]
- Wang, C.; Dou, B.; Chen, H.; Song, Y.; Xu, Y.; Du, X.; Luo, T.; Tan, C. Hydrogen Production from Steam Reforming of Glycerol by Ni-Mg-Al based Catalysts in a Fixed-bed Reactor. Chem. Eng. J. 2013, 220, 133–142. [Google Scholar] [CrossRef]
Catalysts | SBET (m2/g) | Vpore (cm3/g) | Content (mmol/g) | Average Pore Size (nm) | |
---|---|---|---|---|---|
Ni | Cu | ||||
LaNiO3−λ | 4.52 | 0.253 | 6.83 | - | 46.5 |
LaNi0.5Cu0.5O3−λ | 5.51 | 0.257 | 3.41 | 3.41 | 45.3 |
LaNi0.9Cu0.1O3−λ | 6.73 | 0.266 | 6.16 | 0.67 | 43.6 |
Catalysts | Ea (KJ·mol−1) | k0 (s−1) | R02 |
---|---|---|---|
LaNiO3−λ | 83.6 | 1.6801 | 0.9948 |
LaNi0.5Cu0.5O3−λ | 69.1 | 1.7332 | 0.9936 |
LaNi0.9Cu0.1O3−λ | 57.9 | 0.9920 | 0.9989 |
Catalysts | SBET (m2/g) | Vpore (cm3/g) | Content (mmol/g) | Average Pore Size (nm) | |
---|---|---|---|---|---|
Ni | Cu | ||||
LaNiO3−λ | 4.49 | 0.250 | 6.81 | - | 45.7 |
LaNi0.5Cu0.5O3−λ | 5.13 | 0.225 | 3.38 | 3.37 | 41.0 |
LaNi0.9Cu0.1O3−λ | 6.70 | 0.262 | 6.15 | 0.65 | 42.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, C.; Dou, B.; Chen, N.; Zhang, H. Hydrogen Production from Ethanol Steam Reforming by Stable LaNixCu1−xO3−λ Perovskite-Type Catalysts. Catalysts 2025, 15, 9. https://doi.org/10.3390/catal15010009
Ruan C, Dou B, Chen N, Zhang H. Hydrogen Production from Ethanol Steam Reforming by Stable LaNixCu1−xO3−λ Perovskite-Type Catalysts. Catalysts. 2025; 15(1):9. https://doi.org/10.3390/catal15010009
Chicago/Turabian StyleRuan, Chenjie, Binlin Dou, Na Chen, and Hua Zhang. 2025. "Hydrogen Production from Ethanol Steam Reforming by Stable LaNixCu1−xO3−λ Perovskite-Type Catalysts" Catalysts 15, no. 1: 9. https://doi.org/10.3390/catal15010009
APA StyleRuan, C., Dou, B., Chen, N., & Zhang, H. (2025). Hydrogen Production from Ethanol Steam Reforming by Stable LaNixCu1−xO3−λ Perovskite-Type Catalysts. Catalysts, 15(1), 9. https://doi.org/10.3390/catal15010009