A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application
Abstract
:1. Introduction
1.1. Structural Outline of ZnO
1.2. Motivation for Visible Light Activation of ZnO
1.3. Scope of ZnO Particles and Their Environmental Impact
1.4. Overview of ZnO Particles’ Photocatalytic Properties and Relevance of Their Environmental Application
2. ZnO Structures and Photocatalytic Properties
2.1. Types of ZnO Structures and Their Properties
2.2. Photocatalytic Mechanism Under UV and Visible Light
2.3. Band Gap Properties and Absorption Characteristics of ZnO
2.4. Modification Strategies to Expand the Light Absorption of ZnO
2.4.1. Modification Strategies for Visible Light Activation
Metal and Non-Metal Doping
Coupling with Narrow Bandgap Semiconductors
Surface Sensitization with Plasmonic Nanoparticles
Morphology Engineering
Mechanistic Insights
3. Methods for Enhancing ZnO Photocatalytic Efficiency
3.1. Non-Metal Doping of ZnO
3.1.1. Role of Non-Metals Such as Nitrogen, Carbon, and Sulfur
3.1.2. Impact on Light Absorption and Catalytic Efficiency
3.1.3. Effects of Transition Metals Like Fe and Cu on ZnO Photocatalysis
3.2. ZnO–Semiconductor Composites
3.2.1. Benefits of Coupling ZnO with Other Semiconductors (e.g., TiO2, g-C3N4) for Enhanced Charge Separation
3.2.2. Mechanisms of Photocatalytic Action in ZnO
3.2.3. Key Pathways in the Photocatalytic Degradation of Pollutants by ZnO
4. Applications of Visible-Light-Active ZnO Photocatalysts
4.1. Water Treatment and Purification
Application of ZnO in Degrading Organic Pollutants and Disinfecting Water
4.2. Air Purification and VOC Removal
Use of ZnO for the Breakdown of Airborne Pollutants and Volatile Organic Compounds (VOCs)
4.3. Photocatalytic Hydrogen Production
ZnO Role in Water Splitting for Hydrogen Generation and Clean Energy
4.4. Protocols for Assessing the Photocatalytic Performance of ZnO Under Visible Light
4.5. Comparative Analysis with Other Photocatalysts Like TiO2
4.6. Potential Improvements for Real-World Applications, Including Stability Enhancements and Practical Scalability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pal, S.; Das, A.; Basak, D. Tailoring the electrical and magneto-electric transport properties of ZnO films via Ti ion implantation. J. Appl. Phys. 2024, 135, 145105. [Google Scholar] [CrossRef]
- Alshgari, R.A.; Ujjan, Z.A.; Shah, A.A.; Bhatti, M.A.; Tahira, A.; Shaikh, N.M.; Kumar, S.; Ibupoto, M.H.; Elhawary, A.; Nafady, A. ZnO nanostructures doped with various chloride ion concentrations for efficient photocatalytic degradation of methylene blue in alkaline and acidic media. Molecules 2022, 27, 8726. [Google Scholar] [CrossRef] [PubMed]
- Jafarova, V.; Orudzhev, G. Structural and electronic properties of ZnO: A first-principles density-functional theory study within LDA (GGA) and LDA (GGA)+ U methods. Solid State Commun. 2021, 325, 114166. [Google Scholar] [CrossRef]
- Yıldırım, Ö.A.; Unalan, H.E.; Durucan, C. Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO: Ag) nanoparticles: Structural, optical, and photocatalytic properties. J. Am. Ceram. Soc. 2013, 96, 766–773. [Google Scholar] [CrossRef]
- Gwaydi, J.S.; Sawa, H.B.; Rwenyagila, E.R.; Komba, N.R.; Kibona, T.E.; Mlyuka, N.R.; Samiji, M.E.; Mwakyusa, L.P. Influence of Stacking Order on the Structural and Optical Properties of Cu2ZnSnS4 Absorber Layer Prepared from DC-Sputtered Oxygenated Precursors. Tanzan. J. Sci. 2024, 50, 115–125. [Google Scholar] [CrossRef]
- Etafo, N.O.; Bamidele, M.O.; Bamisaye, A.; Alli, Y.A. Revolutionizing photocatalysis: Unveiling efficient alternatives to titanium (IV) oxide and zinc oxide for comprehensive environmental remediation. J. Water Process. Eng. 2024, 62, 105369. [Google Scholar] [CrossRef]
- Aftab, S.; Shabir, T.; Shah, A.; Nisar, J.; Shah, I.; Muhammad, H.; Shah, N.S. Highly efficient visible light active doped ZnO photocatalysts for the treatment of wastewater contaminated with dyes and pathogens of emerging concern. Nanomaterials 2022, 12, 486. [Google Scholar] [CrossRef]
- Malik, K.A.; Malik, J.H.; Assadullah, I.; Bhat, A.A.; Tomar, R. A comparative experimental and theoretical study on the structural and optical properties of ZnO synthesized at room temperature using an ultrasonication technique. Energy Storage 2023, 5, e401. [Google Scholar] [CrossRef]
- Mehta, V.; Shikha, D.; Sharma, J.; Chauhan, R. Temperature effect on properties of chemical induced nanocrystalline ZnSe thin films. J. Mater. Sci. Mater. Electron. 2018, 29, 8801–8808. [Google Scholar] [CrossRef]
- Rehman, S.; Ullah, R.; Butt, A.; Gohar, N. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009, 170, 560–569. [Google Scholar] [CrossRef]
- Murali, A.; Singh, R.S.; Free, M.L.; Sarswat, P.K. Enhanced interfacial charge transfer by Z-scheme in defect-mediated ZnO-CdS nano-composite with rGO as a solid-state electron mediator for efficient photocatalytic applications. arXiv 2023, arXiv:2308.05211. [Google Scholar]
- Gultepe, O.; Atay, F.; Dikmen, Z. Hydrothermal synthesis of ZnO nanostructures for environmental applications: The role of different supporting ligands. Appl. Phys. A 2023, 129, 586. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Hayat, Z.; Zhang, D.-D.; Li, M.-Y.; Hu, S.; Wu, Q.; Cao, Y.-F.; Yuan, Y. Zinc oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Saxena, P.; Harish; Shah, D.; Rani, K.; Miglani, R.; Singh, A.K.; Sangela, V.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae. Environ. Sci. Pollut. Res. 2024, 31, 19105–19122. [Google Scholar] [CrossRef]
- Verma, Y.; Singh, S.K.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties. Environ. Geochem. Health 2022, 44, 221–234. [Google Scholar] [CrossRef]
- Salah, W.; Djeridi, W.; Houas, A.; Elsellami, L. Synergy between activated carbon and ZnO: A powerful combination for selective adsorption and photocatalytic degradation. Mater. Adv. 2024, 5, 1667–1675. [Google Scholar] [CrossRef]
- Joy, A.; Viswanathan, M.R.; Vijayan, B.K.; Silva, C.G.; Basheer, I.; Sugathan, S.; Mohamed, P.A.; Solaiappan, A.; Shereef, A. Solar photocatalysts: Non-metal (C, N, and S)-doped ZnO synthesized through an industrially sustainable in situ approach for environmental remediation applications. RSC Adv. 2024, 14, 21655–21667. [Google Scholar] [CrossRef]
- Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-ablated ZnO nanoparticles and their photocatalytic activity toward organic pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef]
- Wijesinghe, U.; Thiripuranathar, G.; Menaa, F.; Iqbal, H.; Razzaq, A.; Almukhlifi, H. Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum. Catalysts 2021, 11, 831. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098. [Google Scholar] [CrossRef]
- Panda, D.; Tseng, T.-Y. One-dimensional ZnO nanostructures: Fabrication, optoelectronic properties, and device applications. J. Mater. Sci. 2013, 48, 6849–6877. [Google Scholar] [CrossRef]
- Agarwal, S.; Jangir, L.K.; Rathore, K.S.; Kumar, M.; Awasthi, K. Morphology-dependent structural and optical properties of ZnO nanostructures. Appl. Phys. A 2019, 125, 553. [Google Scholar] [CrossRef]
- Bhosale, A.; Abitkar, K.; Sadalage, P.; Pawar, K.; Garadkar, K. Photocatalytic and antibacterial activities of ZnO nanoparticles synthesized by chemical method. J. Mater. Sci. Mater. Electron. 2021, 32, 20510–20524. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Zhu, Y. Preparation of visible light-driven gC3N4@ZnO hybrid photocatalyst via mechanochemistry. Phys. Chem. Chem. Phys. 2014, 16, 17627–17633. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Yang, D.; Liu, J.; He, L.; Tang, M.; Feng, W.; Wu, X. Fabrication, characterization and high photocatalytic activity of Ag–ZnO heterojunctions under UV-visible light. RSC Adv. 2021, 11, 27257–27266. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a functional material, a review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef]
- Nowak, E.; Szybowicz, M.; Stachowiak, A.; Koczorowski, W.; Schulz, D.; Paprocki, K.; Fabisiak, K.; Los, S. A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method. Appl. Phys. A 2020, 126, 552. [Google Scholar] [CrossRef]
- Jan, F.A.; Ullah, R.; Ullah, N.; Usman, M. Exploring the environmental and potential therapeutic applications of Myrtus communis L. assisted synthesized zinc oxide (ZnO) and iron doped zinc oxide (Fe-ZnO) nanoparticles. J. Saudi Chem. Soc. 2021, 25, 101278. [Google Scholar]
- Nagasundari, S.M.; Muthu, K.; Kaviyarasu, K.; Al Farraj, D.A.; Alkufeidy, R.M. Current trends of Silver doped Zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf. Interfaces 2021, 23, 100931. [Google Scholar] [CrossRef]
- Yadesa, D.; Guyasa, J.N.; Beyene, T.T. Effect of codoping zinc oxide nanoparticles with sulfur and nitrogen on its energy bandgap, antioxidant properties, and antibacterial activity. Adv. Mater. Sci. Eng. 2024, 2024, 4275035. [Google Scholar] [CrossRef]
- Khan, A.; Altaf, M.; Shahid, M.; Zeyad, M.T. In situ solid-state fabrication of Z-Scheme BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient-light visible activity and their antibacterial properties against bacterial pathogens. J. Mol. Struct. 2024, 1300, 137222. [Google Scholar] [CrossRef]
- Nugroho, D.; Wannakan, K.; Nanan, S.; Benchawattananon, R. The Synthesis of carbon dots//zincoxide (CDs/ZnO-H400) by using hydrothermal methods for degradation of ofloxacin antibiotics and reactive red azo dye (RR141). Sci. Rep. 2024, 14, 2455. [Google Scholar] [CrossRef]
- Mu, W.; Xu, M.; Sun, X.; Liu, G.; Yang, H. Oxygen-vacancy-tunable mesocrystalline ZnO twin “cakes” heterostructured with CdS and Cu nanoparticles for efficiently photodegrading sulfamethoxazole. J. Environ. Chem. Eng. 2024, 12, 112367. [Google Scholar] [CrossRef]
- Azmi, D.; Yudasari, N.; Putri, K.; Djuhana, D. LSPR Sensitivity of Ag-X NRs Core-Shell (X=Au, Al, TiO2, ZnO, SiO2): A Boundary Element Method Simulation Study. J. Phys. Conf. Ser. 2024, 2866, 012046. [Google Scholar] [CrossRef]
- Ntemogiannis, D.; Tsarmpopoulou, M.; Stamatelatos, A.; Grammatikopoulos, S.; Karoutsos, V.; Anyfantis, D.I.; Barnasas, A.; Alexopoulos, V.; Giantzelidis, K.; Ndoj, E.A. ZnO matrices as a platform for tunable localized surface plasmon resonances of silver nanoparticles. Coatings 2024, 14, 69. [Google Scholar] [CrossRef]
- Gulab, H.; Fatima, N.; Tariq, U.; Gohar, O.; Irshad, M.; Khan, M.Z.; Saleem, M.; Ghaffar, A.; Hussain, M.; Jan, A.K.; et al. Advancements in zinc oxide nanomaterials: Synthesis, properties, and diverse applications. Nano-Struct. Nano-Objects 2024, 39, 101271. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Ma, J.; Xian, T.; Liu, G.; Yang, H. Synthesis of strongly interactive FeWO4/BiOCl heterostructures for efficient photoreduction of CO2 and piezo-photodegradation of bisphenol A. Chem. Eng. J. 2024, 496, 153961. [Google Scholar] [CrossRef]
- Kumari, V.; Mittal, A.; Jindal, J.; Yadav, S.; Kumar, N. S-, N-and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Sharma, V.; Prasad, M.; Jadkar, S.; Pal, S. Influence of carbon and phosphorus doping on electronic properties of ZnO. J. Mater. Sci. Mater. Electron. 2016, 27, 12318–12322. [Google Scholar] [CrossRef]
- Elias, M.; Uddin, M.N.; Saha, J.K.; Hossain, M.A.; Sarker, D.R.; Akter, S.; Siddiquey, I.A.; Uddin, J. A highly efficient and stable photocatalyst; N-doped ZnO/CNT composite thin film synthesized via simple sol-gel drop coating method. Molecules 2021, 26, 1470. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, L.; Zhang, J.; Lei, J.; Liu, Y. The preparation, and applications of gC3N4/TiO2 heterojunction catalysts—A review. Res. Chem. Intermed. 2017, 43, 2081–2101. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, J.; Yue, H.; Cheng, G.; Xue, X. Construction of g-C3N4 nanoparticles modified TiO2 nanotube arrays with Z-scheme heterojunction for enhanced photoelectrochemical properties. J. Mater. Sci. 2023, 58, 2676–2688. [Google Scholar] [CrossRef]
- Zheng, A.; Abdullah, C.; Chung, E.; Andou, Y. Recent progress in visible light-doped ZnO photocatalyst for pollution control. Int. J. Environ. Sci. Technol. 2023, 20, 5753–5772. [Google Scholar] [CrossRef]
- Javed, M.; Qamar, M.A.; Shahid, S.; Alsaab, H.O.; Asif, S. Highly efficient visible light active Cu–ZnO/SgC 3 N 4 nanocomposites for efficient photocatalytic degradation of organic pollutants. RSC Adv. 2021, 11, 37254–37267. [Google Scholar] [CrossRef]
- Gebretekle, B.G.; Teklu Gebretsadik, T.; Mekonnen, K.N.; Asgedom, A.G. Insights on phytoremediation of chromium from tannery wastewater contaminated soil. Int. J. Phytoremediat. 2024, 26, 1923–1931. [Google Scholar] [CrossRef]
- Yadav, S.M.; Desai, M.A.; Sartale, S.D. Simplistic synthesis of ZnO/g-C3N4 heterojunction photocatalyst for improved photodegradation performance. J. Mater. Sci. Mater. Electron. 2024, 35, 1116. [Google Scholar] [CrossRef]
- Linley, S.; Thomson, N.R. Environmental applications of nanotechnology: Nano-enabled remediation processes in water, soil and air treatment. Water Air Soil Pollut. 2021, 232, 59. [Google Scholar] [CrossRef]
- Taghipour, S.; Hosseini, S.M.; Ataie-Ashtiani, B. Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. New J. Chem. 2019, 43, 7902–7927. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Liu, Y.; Fan, Y.; Dang, F.; Qiu, Y.; Zhou, H.; Wang, W.; Liu, Y. Solvothermal synthesis of ZnO nanoparticles for photocatalytic degradation of methyl orange and p-nitrophenol. Water 2021, 13, 3224. [Google Scholar] [CrossRef]
- H. Alkallas, F.; Ben Gouider Trabelsi, A.; Nasser, R.; Fernandez, S.; Song, J.-M.; Elhouichet, H. Promising Cr-doped ZnO nanorods for photocatalytic degradation facing pollution. Appl. Sci. 2021, 12, 34. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Wassie, A.T.; Ahmed, I.N.; Bachheti, A.; Husen, A.; Bachheti, R.K. Role of Zinc Oxide Nanomaterials for Photocatalytic Degradation of Environmental Pollutants. In Metal and Metal-Oxide Based Nanomaterials: Synthesis, Agricultural, Biomedical and Environmental Interventions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 287–311. [Google Scholar]
- Feng, C.; Chen, Z.; Jing, J.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C 2020, 8, 3000–3009. [Google Scholar] [CrossRef]
- Mohamed, K.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Adeleke, J.; Theivasanthi, T.; Thiruppathi, M.; Swaminathan, M.; Akomolafe, T.; Alabi, A. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 2018, 455, 195–200. [Google Scholar] [CrossRef]
- Abou Zeid, S.; Leprince-Wang, Y. Advancements in ZnO-based photocatalysts for water treatment: A comprehensive review. Crystals 2024, 14, 611. [Google Scholar] [CrossRef]
- Berehe, B.A.; Assen, A.H.; Kumar, A.S.K.; Ulla, H.; Duma, A.D.; Chang, J.-Y.; Gedda, G.; Girma, W.M. Highly efficient visible light active ZnO/Cu-DPA composite photocatalysts for the treatment of wastewater contaminated with organic dye. Sci. Rep. 2023, 13, 16454. [Google Scholar] [CrossRef]
- Saadi, H.; Atmani, E.H.; Fazouan, N. Enhanced photocatalytic degradation of methylene blue dye by ZnO nanoparticles: Synthesis, characterization, and efficiency assessment. Environ. Prog. Sustain. Energy 2024, e14529. [Google Scholar] [CrossRef]
- Oksida-Polivinilpirolidon, Z. Photocatalytic degradation of industrial dye wastewater using zinc oxide-polyvinylpyrrolidone nanoparticles. Malays. J. Anal. Sci. 2018, 22, 693–701. [Google Scholar]
- Hanh, N.H.; Nguyet, Q.T.M.; Van Chinh, T.; Tien, T.X.; Van Duy, L.; Hoa, N.D. Enhanced photocatalytic efficiency of porous ZnO coral-like nanoplates for organic dye degradation. RSC Adv. 2024, 14, 14672–14679. [Google Scholar] [CrossRef] [PubMed]
- Muthirulan, P.; Meenakshisundararam, M.; Kannan, N. Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution. J. Adv. Res. 2013, 4, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Medina-Acosta, M.; Chinchillas-Chinchillas, M.J.; Garrafa-Gálvez, H.E.; Garcia-Maro, C.A.; Rosas-Casarez, C.A.; Lugo-Medina, E.; Luque-Morales, P.A.; Soto-Robles, C.A. Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract. Processes 2024, 12, 2456. [Google Scholar] [CrossRef]
- Hariharalakshmanan, R.K.; Ungerbuehler, D.; Burke, T.; White, C.; Karabacak, T. ZnO nanostructures by hot water treatment for photocatalytic bacterial disinfection. MRS Adv. 2022, 7, 865–869. [Google Scholar] [CrossRef]
- Güell, F.; Galdámez-Martínez, A.; Martínez-Alanis, P.R.; Catto, A.C.; da Silva, L.F.; Mastelaro, V.R.; Santana, G.; Dutt, A. ZnO-based nanomaterials approach for photocatalytic and sensing applications: Recent progress and trends. Mater. Adv. 2023, 4, 3685–3707. [Google Scholar] [CrossRef]
- Albiter, E.; Merlano, A.S.; Rojas, E.; Barrera-Andrade, J.M.; Salazar, Á.; Valenzuela, M.A. Synthesis, characterization, and photocatalytic performance of ZnO–graphene nanocomposites: A review. J. Compos. Sci. 2020, 5, 4. [Google Scholar] [CrossRef]
- Bakranova, D.; Nagel, D. ZnO for Photoelectrochemical Hydrogen Generation. Clean Technol. 2023, 5, 1248–1268. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Lin, S. p-type ZnO for photocatalytic water splitting. APL Mater. 2022, 10, 030901. [Google Scholar] [CrossRef]
- Wang, Y.; Ping, H.; Tan, T.; Wang, W.; Ma, P.; Xie, H. Enhanced hydrogen evolution from water splitting based on ZnO nanosheet/CdS nanoparticle heterostructures. RSC Adv. 2019, 9, 28165–28170. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Kumar, M.K.; Reddy, B.S.; Kim, H. Hydrogen production from water splitting: Fabrication of ZnO nanorod decorated Cu NW heterogeneous hybrid structures for photocatalytic applications. J. Clust. Sci. 2019, 30, 449–457. [Google Scholar] [CrossRef]
- Hanif, M.A.; Kim, Y.S.; Ameen, S.; Kim, H.G.; Kwac, L.K. Boosting the visible light photocatalytic activity of ZnO through the incorporation of N-doped for wastewater treatment. Coatings 2022, 12, 579. [Google Scholar] [CrossRef]
- Aadnan, I.; Zegaoui, O.; El Mragui, A.; Daou, I.; Moussout, H.; Esteves da Silva, J.C. Structural, optical and photocatalytic properties of Mn Doped ZnO nanoparticles used as photocatalysts for Azo-dye degradation under visible light. Catalysts 2022, 12, 1382. [Google Scholar] [CrossRef]
- Singh, N.; Madhav, H.; Yadav, S.; Jaiswar, G. Critical evaluation of thermal, optical and morphological properties of V, S and Dy doped-ZnO/PVDF/functionalized-PMMA blended Nanocomposites. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2121–2130. [Google Scholar] [CrossRef]
- Liu, G.; Qiao, X.; Gondal, M.; Liu, Y.; Shen, K.; Xu, Q. Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light. J. Nanosci. Nanotechnol. 2018, 18, 4142–4154. [Google Scholar] [CrossRef]
- Ramar, P.; Raghavendra, V.; Murugan, P. SAM (self-assembled monolayer)-based Photocatalytic Chip from Immobilized Polytriazoles. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Hanif, M.A.; Lee, I.; Akter, J.; Islam, M.A.; Zahid, A.A.; Sapkota, K.P.; Hahn, J.R. Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts 2019, 9, 608. [Google Scholar] [CrossRef]
- Luu, T.V.H.; Nguyen, H.Y.X.; Nguyen, Q.T.; Nguyen, Q.B.; Nguyen, T.H.C.; Pham, N.C.; Nguyen, X.D.; Nguyen, T.K.; Dao, N.N. Enhanced photocatalytic performance of ZnO under visible light by co-doping of Ta and C using hydrothermal method. RSC Adv. 2024, 14, 12954–12965. [Google Scholar] [CrossRef]
- Habib, M.A.; Shahadat, M.T.; Bahadur, N.M.; Ismail, I.M.; Mahmood, A.J. Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. Int. Nano Lett. 2013, 3, 5. [Google Scholar] [CrossRef]
- Hernández, S.; Hidalgo, D.; Sacco, A.; Chiodoni, A.; Lamberti, A.; Cauda, V.; Tresso, E.; Saracco, G. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 2015, 17, 7775–7786. [Google Scholar] [CrossRef]
- Sun, S.; Fan, K.; Yang, J.; Liu, J.; Li, X.; Zhao, L.; He, X.; Liu, X.; Jia, S.; Li, Q. Surface modification engineering on polymer materials toward multilevel insulation properties and subsequent dielectric energy storage. Mater. Today 2024, 80, 758–823. [Google Scholar] [CrossRef]
- Khalid, N.; Hammad, A.; Tahir, M.; Rafique, M.; Iqbal, T.; Nabi, G.; Hussain, M. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 2019, 45, 21430–21435. [Google Scholar] [CrossRef]
- You, Y.; Fang, G.; Fan, M.; Guo, J.; Li, Q.; Wan, J. Leveraging novel microwave techniques for tailoring the microstructure of energy storage materials. Microstructures 2024, 4, 2024035. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Zhang, D.; Li, Z.; Ren, G.; Han, W.; Guo, W. Effective stability enhancement in ZnO-based perovskite solar cells by MACl modification. J. Mater. Chem. A 2021, 9, 12161–12168. [Google Scholar] [CrossRef]
- Lv, Y.; Lin, J.; Peng, S.; Zhang, L.; Yu, L. Effective ways to enhance the photocatalytic activity of ZnO nanopowders: High crystalline degree, more oxygen vacancies, and preferential growth. New J. Chem. 2019, 43, 19223–19231. [Google Scholar] [CrossRef]
- Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [Google Scholar] [CrossRef]
- Yadawa, Y.; Singh, S.; Ranjan, A. Processing induced morphology change in ZnO-TiO2 multilayer thin films and its effect on their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B. 2023, 288, 116164. [Google Scholar] [CrossRef]
- Rahimzadeh, G.; Tajbakhsh, M.; Daraie, M.; Mohammadi, M.J.A.O.C. Dysprosium–balsalazide complex trapped between the functionalized halloysite and g-C3N4: A novel heterogeneous catalyst for the synthesis of annulated chromenes in water. Appl. Organomet. Chem. 2022, 36, e6829. [Google Scholar] [CrossRef]
- Xu, X.; Gao, L.; Yuan, S. Stepwise construction of multi-component metal–organic frameworks. Dalton Trans. 2023, 52, 15233–15252. [Google Scholar] [CrossRef]
- Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review. J. Phys. Energy 2020, 2, 022001. [Google Scholar] [CrossRef]
- Phogat, P.; Jha, R.; Singh, S. Harnessing ZnO morphologies in energy application and sustainable development. Phys. Scr. 2024, 99, 102004. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, C.; Lu, H.; Li, H.; Zhou, X.; Wang, Z.; Ma, J. Porous cellulose gel-regulated flower-like ZnO-Cu nanoparticles for enhancing interfacial catalysis activity and recyclability in environmental catalysis. Appl. Surf. Sci. 2022, 597, 153737. [Google Scholar] [CrossRef]
- Dimitropoulos, M.; Aggelopoulos, C.A.; Sygellou, L.; Tsantis, S.; Koutsoukos, P.; Yannopoulos, S. Unveiling the photocorrosion mechanism of zinc oxide photocatalyst: Interplay between surface corrosion and regeneration. J. Environ. Chem. Eng. 2024, 12, 112102. [Google Scholar] [CrossRef]
- Luo, Z.; Rong, P.; Yang, Z.; Zhang, J.; Zou, X.; Yu, Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024, 29, 3373. [Google Scholar] [CrossRef] [PubMed]
Property | Wurtzite ZnO | Sphalerite ZnO |
---|---|---|
Crystal system | Hexagonal | Cubic (Zinc Blende) |
Coordination number | Tetrahedral (each Zn and O atom is coordinated with four atoms) | Tetrahedral |
Lattice Parameters | a ≈ 3.25 Å, c ≈ 5.2 Å | a ≈ 4.62 Å |
Stability | Thermodynamically stable at ambient conditions | Metastable; forms under specific conditions |
Physical properties | Piezoelectric and pyroelectric | Centrosymmetric; lacks piezoelectricity |
Electronic Bandgap | ≈3.37 eV | Slightly similar (depends on preparation) |
Application | Sensors, optoelectronic devices, catalysts | Rare; specialized conditions |
ZnO Morphology | Synthesis Method | Target Contaminants | Removal Efficiency | Experimental Condition | Reference |
---|---|---|---|---|---|
Nanowires | Hydrothermal | Methylene Blue (MB) | 86% after 180 min | UV irradiation | [58] |
Nanowires | Hydrothermal | Methyl Orange (MO) | 49% after 180 min | UV irradiation | [58] |
Nanowires | Hydrothermal | Acid Red 14 (AR14) | 93% after 180 min | UV irradiation | [58] |
ZnO/Cu-DPA Composite | Co-precipitation | Methylene Blue (MB) | 87% within 80 min | Visible light irradiation | [59] |
ZnO Nanoparticles | Precipitation | Methylene Blue (MB) | 96.5% | Direct sunlight irradiation | [60] |
ZnO/PVP Nanoparticles | Sol-gel | Industrial dye wastewater | Significant degradation | UV irradiation | [61] |
Porous ZnO Coral-like Nanoplates | Wet-chemical | Methylene Blue (MB) | Enhanced efficiency | UV irradiation | [62] |
ZnO/Activated Carbon Composite | Co-precipitation | Acid Green 25 (AG25) | Faster degradation | UV irradiation | [63] |
ZnO Nanoparticles | Green synthesis | Various organic dyes | Effective degradation | UV irradiation | [64] |
Heterojunction | Materials Combined with ZnO | Key Benefits | Application |
---|---|---|---|
ZnO/TiO2 | Titanium Dioxide (TiO2) | Enhanced charge separation and visible light response | Photocatalysis, solar cells |
ZnO/g-C3N4 | Graphitic Carbon Nitride (g-C3N4) | Increased photocatalytic efficiency under visible light | Photocatalysis, hydrogen evolution |
ZnO/CuO | Copper Oxide (CuO) | Narrowed band gap, improved light absorption | Photocatalysis, gas sensors |
ZnO/Ag2O | Silver Oxide (Ag2O) | High photocatalytic efficiency and charge carrier mobility | Antibacterial activity, water purification |
ZnO/Graphene | Graphene | High conductivity, increased charge carrier transport | Sensors, supercapacitors, photocatalysis |
ZnO/CdS | Cadmium Sulfide (CdS) | Visible light absorption, improved photogenerated charge separation | Photo voltaic, photocatalysis |
ZnO/Fe2O3 | Hematite (Fe2O3) | Improved magnetic and photocatalytic properties | Magnetic materials, photocatalysis |
ZnO/MoS2 | Molybdenum Disulfide (MoS2) | Enhanced light absorption and carrier mobility | Photodetectors, solar energy conversion |
ZnO/SnO2 | Tin Dioxide (SnO2) | Enhanced sensitivity and response time for gas sensing | Gas sensors, photocatalysis |
ZnO/SrTiO3 | Strontium Titanate (SrTiO3) | High charge carrier separation and visible light activity | Photocatalysis, electronics |
Catalysts | Removal Efficiency (%) | Working Conditions | Stability & Reuse | Cost | Ease of Synthesis |
---|---|---|---|---|---|
ZnO | 85–95% (dyes, pollutants) | Visible light, pH 6–9, pollutant-specific | Moderate to High (5–6 cycles with doping) | Low | Very simple (hydrothermal, sol-gel) |
TiO2 | 75–90% (UV light) | UV light, acidic to neutral pH | High (5+ cycles) | Low | Simple and scalable |
g-C3N4 | 90–97% (organic pollutants) | Visible light, pH 6–10 | High (6+ cycles) | Moderate | Moderate (thermal polymerization) |
MOFs | 85–95% (dyes, heavy metals) | Visible light, pollutant-specific | High (7+ cycles) | High | Complex, costly (multi-step synthesis) |
Perovskites | 90–98% (broad pollutants) | Visible light, wide pH range | High (5–6 cycles) | Moderate to High | Moderate (solution combustion or sol-gel) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, A.; Siddique, M.; Panchal, S. A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts 2025, 15, 100. https://doi.org/10.3390/catal15020100
Baig A, Siddique M, Panchal S. A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts. 2025; 15(2):100. https://doi.org/10.3390/catal15020100
Chicago/Turabian StyleBaig, Alishay, Mohsin Siddique, and Sandeep Panchal. 2025. "A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application" Catalysts 15, no. 2: 100. https://doi.org/10.3390/catal15020100
APA StyleBaig, A., Siddique, M., & Panchal, S. (2025). A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts, 15(2), 100. https://doi.org/10.3390/catal15020100