Sulfur Dioxide-Tolerant Core@shell Ru@Pt Catalysts Toward Oxygen Electro-Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Electrocatalytic Performance
2.3. Mechanism of SO2 Tolerance
3. Materials and Methods
3.1. Chemical and Material Characterization
3.2. Synthesis of Catalysts
3.3. Electrochemical Measurements
3.4. DFT Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, X.; Chan, K.W.; Wu, T.; Wang, G.; Zhang, X.; Liu, J. Wasserstein distance-based expansion planning for integrated energy system considering hydrogen fuel cell vehicles. Energy 2023, 272, 127011. [Google Scholar] [CrossRef]
- Bao, C.; Jiang, Y.; Zhong, H.; Ren, H.; Wang, J.; Liu, B.; Zhao, Q.; Jin, F.; Chong, Y.M.; Sun, J. Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chin. Chem. Lett. 2024, 35, 109353. [Google Scholar] [CrossRef]
- Snitkoff-Sol, R.Z.; Rimon, O.; Bond, A.M.; Elbaz, L. Direct measurement of the oxygen reduction reaction kinetics on iron phthalocyanine using advanced transient voltammetry. Nat. Catal. 2024, 7, 139–147. [Google Scholar] [CrossRef]
- Wang, J.; Pan, F.; Chen, W.; Li, B.; Yang, D.; Ming, P.; Wei, X.; Zhang, C. Pt-based intermetallic compound catalysts for the oxygen reduction reaction: Structural control at the atomic scale to achieve a win–win situation between catalytic activity and stability. Electrochem. Energy Rev. 2023, 6, 6. [Google Scholar] [CrossRef]
- Alenazey, F.; Alyousef, Y.; AlOtaibi, B.; Almutairi, G.; Minakshi, M.; Cheng, C.K.; Vo, D.-V.N. Degradation behaviors of solid oxide fuel cell stacks in steady-state and cycling conditions. Energy Fuels 2020, 34, 14864–14873. [Google Scholar] [CrossRef]
- Zhao, S.L.; Yang, Y.C.; Tang, Z.Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem. Int. Ed. 2022, 61, e202110186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xu, G.; Dong, W.; Zhang, Y.; Zhao, Z.; Qiu, L.; Dong, J. Progress and perspective for in situ studies of oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Sci. 2023, 10, 2300550. [Google Scholar] [CrossRef]
- Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Wan, Z.; Chen, X.; Chan, S.H.; Tu, Z. Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review. Renew. Sust. Energy Rev. 2022, 155, 111908. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.Y.; Yu, J.F.; Wang, H.Y.; Qin, Y.K.; Xing, L.X.; Du, L. Research Progress of Pt-Based Catalysts toward Cathodic Oxygen Reduction Reactions for Proton Exchange Membrane Fuel Cells. Catalysts 2024, 14, 569. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Zhang, Y.; Hu, Y.; He, X.; Chen, W. Assessing outdoor air quality vertically in an urban street canyon and its response to microclimatic factors. J. Environ. Sci. 2023, 124, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Sato, K.; Isobe, N.; Samjeské, G.; Uruga, T.; Tada, M. Spatial imaging of catalyst poisoning with SO2 on Pt/C PEFC electrocatalyst by operando Pt L III-edge XAFS-CT imaging. Catal. Sci. Technol. 2023, 13, 4360–4366. [Google Scholar] [CrossRef]
- Kuo, J.-K.; Thamma, U.; Wongcharoen, A.; Chang, Y.-K. Optimized fuzzy proportional integral controller for improving output power stability of active hydrogen recovery 10-kW PEM fuel cell system. Int. J. Hydrogen Energy 2024, 50, 1080–1093. [Google Scholar] [CrossRef]
- Main, R.M.; Vornholt, S.M.; Ettlinger, R.; Netzsch, P.; Stanzione, M.G.; Rice, C.M.; Elliott, C.; Russell, S.E.; Warren, M.R.; Ashbrook, S.E. In Situ single-crystal X-ray diffraction studies of physisorption and chemisorption of SO2 within a metal–organic framework and its competitive adsorption with water. J. Am. Chem. Soc. 2024, 146, 3270–3278. [Google Scholar] [CrossRef] [PubMed]
- Baturina, O.A.; Gould, B.D.; Korovina, A.; Garsany, Y.; Stroman, R.; Northrup, P.A. Products of SO2 adsorption on fuel cell electrocatalysts by combination of sulfur K-edge XANES and electrochemistry. Langmuir 2011, 27, 14930–14939. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Zhang, W.-Y.; Han, G.-K.; Zhou, Y.-W.; Li, L.-F.; Kang, C.; Kong, F.-P.; Gao, Y.-Z.; Du, C.-Y.; Wang, J.-J. Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO2 and NO. Catal. Sci. Technol. 2022, 12, 2929–2934. [Google Scholar] [CrossRef]
- Awad, M.; Saleh, M.; Ohsaka, T. Impact of SO2 poisoning of platinum nanoparticles modified glassy carbon electrode on oxygen reduction. J. Power Sources 2011, 196, 3722–3728. [Google Scholar] [CrossRef]
- Reshetenko, T.; Laue, V.; Krewer, U.; Artyushkova, K. Study of degradation and spatial performance of low Pt-loaded proton exchange membrane fuel cells under exposure to sulfur dioxide in an oxidant stream. J. Power Sources 2020, 458, 228032. [Google Scholar] [CrossRef]
- Punyawudho, K.; Ma, S.; Van Zee, J.; Monnier, J. Effect of O2 on the adsorption of SO2 on carbon-supported Pt electrocatalysts. Langmuir 2011, 27, 7524–7530. [Google Scholar] [CrossRef]
- Dourado, A.H.; Munhos, R.L.; Silva Jr, N.A.; Colle, V.D.; Carvalho, G.G.; Oliveira, P.V.; Arenz, M.; Varela, H.; Cordoba de Torresi, S.I. Opportunities and knowledge gaps of SO2 electrocatalytic oxidation for H2 electrochemical generation. ACS Catal. 2019, 9, 8136–8143. [Google Scholar] [CrossRef]
- Tang, M.H.; Zhang, S.M.; Chen, S.L. Pt utilization in proton exchange membrane fuel cells: Structure impacting factors and mechanistic insights. Chem. Soc. Rev. 2022, 51, 1529–1546. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Zhang, Y.; Fu, Z.; Zhao, D.; Chu, L.; Zhou, F. Investigation of Topologies and Control Strategies of Fuel Cell Vehicles. In Proceedings of the International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII), Zhengzhou, China, 11–12 April 2015; pp. 1651–1654. [Google Scholar]
- Liu, Y.; Ye, J.; Kong, F.; Du, C.; Zuo, P.; Du, L.; Yin, G. Pt/C-TiO2 as oxygen reduction electrocatalysts against sulfur poisoning. Catalysts 2022, 12, 571. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Zhang, W.-Y.; Han, G.-K.; Zhou, Y.-W.; Li, L.-F.; Kong, F.-P.; Gao, Y.-Z.; Du, C.-Y.; Wang, J.-J.; Du, L. Deactivated Pt electrocatalysts for the oxygen reduction reaction: The regeneration mechanism and a regenerative protocol. ACS Catal. 2021, 11, 9293–9299. [Google Scholar] [CrossRef]
- Liu, Y.; Du, L.; Kong, F.; Han, G.; Gao, Y.; Du, C.; Zuo, P.; Yin, G. Sulfur dioxide-tolerant bimetallic PtRu catalyst toward oxygen electroreduction. ACS Sustain. Chem. Eng. 2019, 8, 1295–1301. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhang, A.; Yan, X.; Xue, W.; Peng, B.; Xin, H.L.; Pan, X.; Duan, X.; Huang, Y. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 2022, 17, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cheng, K.; Yu, Y.; Mu, S. One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2 electrooxidation. Electrochim. Acta 2017, 229, 253–260. [Google Scholar] [CrossRef]
- Xu, F.; Xu, R.; Mu, S. Enhanced SO2 and CO poisoning resistance of CeO2 modified Pt/C catalysts applied in PEM fuel cells. Electrochim. Acta 2013, 112, 304–309. [Google Scholar] [CrossRef]
- Xia, M.; Liu, Y.; Li, L.; Xiong, K.; Qi, X.; Yang, L.; Hu, B.; Xue, Y.; Wei, Z. A DFT study on PtMo resistance to SO2 poisoning. Sci. China Chem. 2013, 56, 1004–1008. [Google Scholar] [CrossRef]
- Pillay, D.; Johannes, M.; Garsany, Y.; Swider-Lyons, K. Poisoning of Pt3Co electrodes: A combined experimental and DFT study. J. Phys. Chem. C 2010, 114, 7822–7830. [Google Scholar] [CrossRef]
- Garsany, Y.; Baturina, O.A.; Swider-Lyons, K.E. Oxygen reduction reaction kinetics of SO2-contaminated Pt3Co and Pt/Vulcan carbon electrocatalysts. J. Electrochem. Soc. 2009, 156, B848. [Google Scholar] [CrossRef]
- You, S.-H.; Lee, W.; Jang, H.Y.; Kim, K.-S.; Baek, J.; Choe, G.; Ji, S.G.; Paidi, V.K.; Choi, C.H.; Back, S. Optimizing the Atomic Structure of Ruthenium Deposited on Pt/C Cathode Catalysts to Enhance Durability of Automotive Fuel Cell. Appl. Catal. B Environ. 2024, 359, 124486. [Google Scholar] [CrossRef]
- Zhong, H.-L.; Ze, H.; Zhang, X.-G.; Zhang, H.; Dong, J.-C.; Shen, T.; Zhang, Y.-J.; Sun, J.-J.; Li, J.-F. In situ SERS probing the effect of additional metals on Pt-based ternary alloys toward improving ORR performance. ACS Catal. 2023, 13, 6781–6786. [Google Scholar] [CrossRef]
- Berova, V.; Manjón, A.G.; Paredes, M.V.; Schwarz, T.; Rivas, N.A.; Hengge, K.; Jurzinsky, T.; Scheu, C. Influence of the shell thickness on the degradation of Ru@ Pt core-shell catalysts in PEM fuel cells. J. Power Sources 2023, 554, 232327. [Google Scholar] [CrossRef]
- Yang, J.; Feng, J.; Cao, Y.; Xiao, Y.; Qiao, L.; An, K.; Yang, J.; Peng, J.; Pan, H.; Cheng, H.M. Highly dispersed Ru-Pt heterogeneous nanoparticles on reduced graphene oxide for efficient pH-universal hydrogen evolution. Adv. Funct. Mater. 2024, 34, 2411081. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Han, G.; Du, C.; Sun, Y.; Du, L.; An, M.; Yin, G.; Gao, Y.; Song, Y. Superior catalytic performance and CO tolerance of Ru@ Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction. Appl. Surf. Sci. 2019, 473, 943–950. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Cui, Y.; Yang, X.; Zhu, Y.; Weiss, C.M.; Li, M.; Chen, G.; Yan, Y.; Gu, M.D. Sub-3 nm Pt@ Ru toward outstanding hydrogen oxidation reaction performance in alkaline media. J. Am. Chem. Soc. 2023, 145, 27500–27511. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liang, J.; Li, S.; Zhang, S.; Su, D.; Cai, Z.; Huang, Y.; Elbaz, L.; Li, Q. Introducing electron buffers into intermetallic Pt alloys against surface polarization for high-performing fuel cells. J. Am. Chem. Soc. 2024, 146, 2033–2042. [Google Scholar] [CrossRef]
- Hoshi, N.; Nakamura, M.; Kubo, R.; Suzuki, R. Enhanced oxygen reduction reaction on caffeine-modified platinum single-crystal electrodes. Commun. Chem. 2024, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, M.; Wan, T.; Shi, H.; Lv, A.; Xiao, W.; Jiao, S. Novel (Pt-Ox)-(Co-Oy) nonbonding active structures on defective carbon from oxygen-rich coal tar pitch for efficient HER and ORR. Adv. Mater. 2022, 34, 2206960. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Huo, J.; Li, L.; Qu, J.; Zhao, Y.; Chen, W.; Liu, C.; Liu, H.; Wang, G. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 2022, 12, 2202119. [Google Scholar] [CrossRef]
- Wei, X.; Song, S.; Cai, W.; Kang, Y.; Fang, Q.; Ling, L.; Zhao, Y.; Wu, Z.; Song, X.; Xu, X.; et al. Pt Nanoparticle-Mn single-atom pairs for enhanced oxygen reduction. ACS Nano 2024, 18, 4308–4319. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zheng, Y.; Wang, Y.; Wang, J.; Liu, B.; Qiao, Z.-A. Ordered Mesoporous Intermetallic Ga-Pt nanoparticles: Phase-controlled synthesis and performance in oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202304420. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Meibom, J.L.; Hassan, N.U.; Chang, M.; Chu, Y.-C.; Krammer, A.; Sun, S.; Zheng, Y.; Bai, L.; Ma, W. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat. Catal. 2023, 6, 773–783. [Google Scholar] [CrossRef]
Sample | E1/2 (V) | Mass Activity (A mg−1Pt) | Specific Activity (mA cm−2) |
---|---|---|---|
Ru/C | 0.670 | - | - |
PtRu/C | 0.751 | 0.015 | 0.152 |
Pt/C | 0.862 | 0.252 | 2.570 |
Ru@Pt/C | 0.872 | 0.288 | 2.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bao, C.; Xu, G.; Du, L.; Huang, B. Sulfur Dioxide-Tolerant Core@shell Ru@Pt Catalysts Toward Oxygen Electro-Reduction. Catalysts 2025, 15, 139. https://doi.org/10.3390/catal15020139
Liu Y, Bao C, Xu G, Du L, Huang B. Sulfur Dioxide-Tolerant Core@shell Ru@Pt Catalysts Toward Oxygen Electro-Reduction. Catalysts. 2025; 15(2):139. https://doi.org/10.3390/catal15020139
Chicago/Turabian StyleLiu, Yuxin, Changyuan Bao, Guodong Xu, Lei Du, and Bing Huang. 2025. "Sulfur Dioxide-Tolerant Core@shell Ru@Pt Catalysts Toward Oxygen Electro-Reduction" Catalysts 15, no. 2: 139. https://doi.org/10.3390/catal15020139
APA StyleLiu, Y., Bao, C., Xu, G., Du, L., & Huang, B. (2025). Sulfur Dioxide-Tolerant Core@shell Ru@Pt Catalysts Toward Oxygen Electro-Reduction. Catalysts, 15(2), 139. https://doi.org/10.3390/catal15020139