Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Samples Synthesized with Bi/Mo = 1/1
Sample | Phases According to XRD | Phases According to Raman | Surface Area (BET) [m2/g] | Bi/Mo Ratio Bulk a | Bi/Mo Ratio Surface b |
---|---|---|---|---|---|
Initial ratio Bi/Mo = 2/1 | |||||
Bi2Mo1_pH7 | γ-Bi2MoO6 | - | 13 | - | - |
Bi2Mo1_pH8 | γ-Bi2MoO6 | - | 7 | - | - |
Initial ratio Bi/Mo = 1/1 | |||||
Bi1Mo1_pH1 | α-Bi2Mo3O12, Mo4O11, Bi2O3 | α-Bi2Mo3O12 | 3 | 1.0 | - |
Bi1Mo1_pH4 | γ-Bi2MoO6, α-Bi2Mo3O12, Bi2O3, Bi26Mo10O69 | α-Bi2Mo3O12, γ-Bi2MoO6, β-Bi2O3 | 18 | 0.9 | 1.1 |
Bi1Mo1_pH5 | γ-Bi2MoO6, MoO3∙2H2O | γ-Bi2MoO6, Mo7O246− or MoO3(H2O)2 | 32 | 1.1 | 1.1 |
Bi1Mo1_pH6 | γ-Bi2MoO6 | γ-Bi2MoO6 | 26 | 1.8 | 1.7 |
Bi1Mo1_pH7 | γ-Bi2MoO6 | γ-Bi2MoO6 | 17 | 1.8 | 1.8 |
Bi1Mo1_pH8 | γ-Bi2MoO6 | γ-Bi2MoO6 | 10 | 1.9 | 2.5 |
Bi1Mo1_pH9 | γ-Bi2MoO6 | γ-Bi2MoO6 | 4 | 2.1 | |
Initial ratio Bi/Mo = 2/3 | |||||
Bi2Mo3_pH1 | α-Bi2Mo3O12, H0.68(NH4)2 Mo14.16O4.34∙6.92H2O | α-Bi2Mo3O12 | 5 | - | - |
Bi2Mo3_pH4 | γ-Bi2MoO6, MoO3∙2H2O, Bi5O7NO3 | γ-Bi2MoO6, Mo7O246− or MoO3(H2O)2, NO3− | 17 | - | - |
Bi2Mo3_pH9 | γ-Bi2MoO6 | γ-Bi2MoO6 | 5 | - | - |
2.2. Variation of the Bi/Mo Ratio
2.3. Catalytic Performance in Propylene Oxidation to Acrolein
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Tests
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Idol, J.D. Process for the Manufacture of Acrylonitrile. U.S. Patent 2,904,580, 15 September 1959. [Google Scholar]
- Callahan, J.L.; Foreman, R.W.; Veatch, F. Attrition Resistant Oxidation Catalysts. U.S. Patent 3,044,966, 17 July 1962. [Google Scholar]
- Grasselli, R.K.; Burrington, J.D. Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. Adv. Catal. 1981, 30, 133–163. [Google Scholar]
- Snyder, T.P.; Hill, C.G. The mechanism of the partial oxidation of propylene over bismuth molybdate catalysts. Catal. Rev. Sci. Eng. 1989, 31, 43–95. [Google Scholar] [CrossRef]
- Hoefs, E.V.; Monnier, J.R.; Keulks, G.W. Investigation of the type of active oxygen for the oxidation of propylene over bismuth molybdate catalysts using Infrared and Raman spectroscopy. J. Catal. 1979, 57, 331–337. [Google Scholar] [CrossRef]
- Batist, P.A. Bismuth molybdates—Preparation and catalysis. J. Chem. Technol. Biotechnol. 1979, 29, 451–466. [Google Scholar] [CrossRef]
- German, K.; Grzybows, B.; Haber, J. Active centers for oxidation of propylene on Bi–Mo–O catalysts. Acad. Pol. Sci. Chim. 1973, 21, 319–325. [Google Scholar]
- Krenzke, L.D.; Keulks, G.W. Catalytic oxidation of propylene 6. Mechanistic studies utilizing isotopic tracers. J. Catal. 1980, 61, 316–325. [Google Scholar] [CrossRef]
- Carson, D.; Coudurier, G.; Forissier, M.; Védrine, J.C.; Laarif, A.; Theobald, F. Synergy effects in the catalytic properties of bismuth molybdates. J. Chem. Soc. Faraday Trans. 1 1983, 79, 1921–1929. [Google Scholar] [CrossRef]
- Zhou, B.; Sun, P.; Sheng, S.; Guo, X. Cooperation between the α and γ phases of bismuth molybdate in the selective oxidation of propene. J. Chem. Soc. Faraday Trans. 1990, 86, 3145–3150. [Google Scholar]
- Le, M.T.; van Well, W.J.M.; Stoltze, P.; van Driessche, I.; Hoste, S. Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to arcrolein. Appl. Catal. A 2005, 282, 189–194. [Google Scholar] [CrossRef]
- Ayame, A.; Uchida, K.; Iwataya, M.; Miyamoto, M. X-ray photoelectron spectroscopic study on α- and γ-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Appl. Catal. A 2002, 227, 7–17. [Google Scholar] [CrossRef]
- Hanna, T.A. The role of bismuth in the SOHIO process. Coord. Chem. Rev. 2004, 248, 429–440. [Google Scholar] [CrossRef]
- Getsoian, A.B.; Shapovalov, V.; Bell, A.T. DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth. J. Phys. Chem. C 2013, 117, 7123–7137. [Google Scholar] [CrossRef]
- Morooka, Y.; Ueda, W. Multicomponent bismuth molybdate catalyst: A highly functionalized catalyst system for the selective oxidation of olefin. Adv. Catal. 1994, 40, 233–273. [Google Scholar]
- Ueda, W.; Morooka, Y.; Ikawa, T.; Matsuura, I. Promotion effect of iron for the multicomponent bismuth molybdate catalysts as revealed by 18O2 tracer. Chem. Lett. 1982, 1365–1368. [Google Scholar] [CrossRef]
- Millet, J.M.M.; Ponceblanc, H.; Coudurier, G.; Herrmann, J.M.; Védrine, J.C. Study of multiphasic molybdate-based catalysts. 2. Synergy effect between bismuth molybdates and mixed iron cobalt molybdates in mild oxidation of propene. J. Catal. 1993, 142, 381–391. [Google Scholar] [CrossRef]
- Carson, D.; Forissièr, M.; Védrine, J.C. Kinetic study of the partial oxidation of propene and 2-methylpropene on different bismuth molybdate and on a bismuth iron molybdate phase. J. Chem. Soc. Faraday Trans. 1 1984, 80, 1017–1028. [Google Scholar] [CrossRef]
- Krenzke, L.D.; Keulks, G.W. The catalytic oxidation of propylene. 8. An investigation of kinetics over Bi2Mo3O12, Bi2MoO6 and Bi3FeMo2O12. J. Catal. 1980, 64, 295–302. [Google Scholar] [CrossRef]
- Monnier, J.R.; Keulks, G.W. The catalytic oxidation of propylene. 9. The kinetics and mechanism over β-Bi2Mo2O9. J. Catal. 1981, 68, 51–66. [Google Scholar] [CrossRef]
- Brazdil, J.F.; Suresh, D.D.; Grasselli, R.K. Redox kinetics of bismuth molybdate ammoxidation catalysts. J. Catal. 1980, 66, 347–367. [Google Scholar] [CrossRef]
- Schuh, K.; Kleist, W.; Høj, M.; Trouillet, V.; Jensen, A.D.; Grunwaldt, J.-D. One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Chem. Commun. 2014, 50, 15404–15406. [Google Scholar] [CrossRef] [PubMed]
- Snyder, T.P.; Hill, C.G. Stability of bismuth molybdate catalysts at elevated temperatures in air under reaction conditions. J. Catal. 1991, 132, 536–555. [Google Scholar] [CrossRef]
- Batist, P.A.; Bouwens, J.F.H.; Schuit, G.C.A. Bismuth molybdate catalysts—Preparation, characterization and activity of different compounds in Bi–Mo–O System. J. Catal. 1972, 25, 1–11. [Google Scholar] [CrossRef]
- Keulks, G.W.; Hall, J.L.; Daniel, C.; Suzuki, K. Catalytic oxidation of propylene. 4. Preparation and characterization of α-bismuth molybdate. J. Catal. 1974, 34, 79–97. [Google Scholar] [CrossRef]
- Soares, A.P.V.; Dimitrov, L.D.; de Oliveira, M.; Hilaire, L.; Portela, M.F.; Grasselli, R.K. Synergy effects between beta and gamma phases of bismuth molybdates in the selective catalytic oxidation of 1-butene. Appl. Catal. A 2003, 253, 191–200. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Singh, A.K.; Shukla, C.S. Kinetics and mechanism of solid-state reaction between bismuth(III) oxide and molybdenum(VI) oxide. J. Solid State Chem. 1982, 42, 136–148. [Google Scholar] [CrossRef]
- Thang, L.M.; Bac, L.H.; van Driessche, I.; Hoste, S.; van Well, W.J.M. The synergy effect between gamma and beta phase of bismuth molybdate catalysts: Is there any relation between conductivity and catalytic activity? Catal. Today 2008, 131, 566–571. [Google Scholar]
- Le, M.T.; van Craenenbroeck, J.; van Driessche, I.; Hoste, S. Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene. Appl. Catal. A 2003, 249, 355–364. [Google Scholar] [CrossRef]
- Van Well, W.J.M.; Le, M.T.; Schiødt, N.C.; Hoste, S.; Stoltze, P. The influence of the calcination conditions on the catalytic activity of Bi2MoO6 in the selective oxidation of propylene to acrolein. J. Mol. Catal. A 2006, 256, 1–8. [Google Scholar] [CrossRef]
- Nell, A.; Getsoian, A.B.; Werner, S.; Kiwi-Minsker, L.; Bell, A.T. Preparation and Characterization of High-Surface-Area Bi(1−x)/3V1−xMoxO4 Catalysts. Langmuir 2014, 30, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Feng, S.; Cao, C. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater. Lett. 2000, 44, 215–218. [Google Scholar] [CrossRef]
- Beale, A.M.; Sankar, G. In situ study of the formation of crystalline bismuth molybdate materials under hydrothermal conditions. Chem. Mater. 2003, 15, 146–153. [Google Scholar] [CrossRef]
- Yu, J.Q.; Kudo, A. Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates. Chem. Lett. 2005, 34, 1528–1529. [Google Scholar] [CrossRef]
- Xie, H.; Shen, D.; Wang, X.; Shen, G. Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Mater. Chem. Phys. 2008, 110, 332–336. [Google Scholar] [CrossRef]
- Li, H.; Li, K.; Wang, H. Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials. Mater. Chem. Phys. 2009, 116, 134–142. [Google Scholar] [CrossRef]
- Gruar, R.; Tighe, C.J.; Reilly, L.M.; Sankar, G.; Darr, J.A. Tunable and rapid crystallisation of phase pure Bi2MoO6 (koechlinite) and Bi2Mo3O12 via continuous hydrothermal synthesis. Solid State Sci. 2010, 12, 1683–1686. [Google Scholar] [CrossRef]
- Kongmark, C.; Coulter, R.; Cristol, S.; Rubbens, A.; Pirovano, C.; Loefberg, A.; Sankar, G.; van Beek, W.; Bordes-Richard, E.; Vannier, R.-N. A Comprehensive Scenario of the Crystal Growth of γ-Bi2MoO6 Catalyst during Hydrothermal Synthesis. Cryst. Growth Des. 2012, 12, 5994–6003. [Google Scholar] [CrossRef]
- Yoshimura, M.; Byrappa, K. Hydrothermal processing of materials: Past, present and future. J. Mater. Sci. 2008, 43, 2085–2103. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.; Zhao, X.; Zhu, Y. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B 2010, 98, 138–146. [Google Scholar] [CrossRef]
- Ren, J.; Wang, W.; Shang, M.; Sun, S.; Gao, E. Heterostructured Bismuth Molybdate Composite: Preparation and Improved Photocatalytic Activity under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2011, 3, 2529–2533. [Google Scholar] [CrossRef] [PubMed]
- Aleshina, G.I.; Joshi, C.; Tarasova, D.V.; Kustova, G.N.; Nikoro, T.A. Catalytic properties of Bi/Mo oxide catalysts prepared via precipitation. React. Kinet. Catal. Lett. 1984, 26, 203–208. [Google Scholar] [CrossRef]
- Guo, C.; Xu, J.; Wang, S.; Li, L.; Zhang, Y.; Li, X. Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres. Cryst. Eng. Commun. 2012, 14, 3602–3608. [Google Scholar] [CrossRef]
- Beale, A.M.; Jacques, S.D.M.; Sacaliuc-Parvalescu, E.; O’Brien, M.G.; Barnes, P.; Weckhuysen, B.M. An iron molybdate catalyst for methanol to formaldehyde conversion prepared by a hydrothermal method and its characterization. Appl. Catal. A 2009, 363, 143–152. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Dai, H.; Deng, J.; Wei, L.; He, H. Hydrothermal synthesis and catalytic performance of single-crystalline La2−xSrxCuO4 for methane oxidation. Catal. Today 2010, 153, 143–149. [Google Scholar] [CrossRef]
- Salamanca, M.; Licea, Y.E.; Echavarria, A.; Faro, A.C., Jr.; Palacio, L.A. Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane. Phys. Chem. Chem. Phys. 2009, 11, 9583–9591. [Google Scholar] [CrossRef] [PubMed]
- Ueda, W.; Oshihara, K. Selective oxidation of light alkanes over hydrothermally synthesized Mo–V–M–O (M = Al, Ga, Bi, Sb, and Te) oxide catalysts. Appl. Catal. A 2000, 200, 135–143. [Google Scholar] [CrossRef]
- Botella, P.; Garcia-Gonzalez, E.; Dejoz, A.; Nieto, J.M.L.; Vazquez, M.I.; Gonzalez-Calbet, J. Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. J. Catal. 2004, 225, 428–438. [Google Scholar] [CrossRef]
- Sanfiz, A.C.; Hansen, T.W.; Girgsdies, F.; Timpe, O.; Rödel, E.; Ressler, T.; Trunschke, A.; Schlögl, R. Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis—Influence of Reaction Parameters on Structure and Morphology. Top. Catal. 2008, 50, 19–32. [Google Scholar] [CrossRef]
- Schuh, K.; Kleist, W.; Høj, M.; Trouillet, V.; Beato, P.; Jensen, A.D.; Patzke, G.R.; Grunwaldt, J.-D. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates. Appl. Catal. A 2014, 482, 145–156. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Wachs, I.E. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy. J. Phys. Chem. 1991, 95, 10763–10772. [Google Scholar] [CrossRef]
- Noack, J.; Rosowski, F.; Schlögl, R.; Trunschke, A. Speciation of Molybdates under Hydrothermal Conditions. Z. Anorg. Allg. Chem. 2014, 640, 2730–2736. [Google Scholar] [CrossRef]
- Briand, G.G. Bifunctional Ligands in Discerning and Developing the Fundamental and Medicinal Chemistry of Bismuth(III). Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, July 1999. [Google Scholar]
- Trifiro, F.; Scarle, R.D.; Hoser, H. Relationships between structure and activity of mixed oxides as oxidation catalyst. 1. Preparation and solid state reactions of Bi-molybdates. J. Catal. 1972, 25, 12–24. [Google Scholar] [CrossRef]
- Dewangan, K.; Sinha, N.N.; Sharma, P.K.; Pandey, A.C.; Munichandraiah, N.; Gajbhiye, N.S. Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Li-ion intercalation applications. Cryst. Eng. Commun. 2011, 13, 927–933. [Google Scholar] [CrossRef]
- Chen, L.; Aarcon-Lado, E.; Hettick, M.; Sharp, I.D.; Lin, Y.; Javey, A.; Ager, J.W. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. J. Phys. Chem. C 2013, 117, 21635–21642. [Google Scholar] [CrossRef]
- Choi, J.G.; Thompson, L.T. XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 1996, 93, 143–149. [Google Scholar] [CrossRef]
- Herrmann, J.M.; el Jamal, M.; Forissier, M. Evidence by electrical conductivity for an excess of bismuth as Bi+ interstitial at the surface of gamma-phase Bi2MoO6—Consequence for selectivity in propene catalytic oxidation. React. Kinet. Catal. Lett. 1988, 37, 255–260. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Krishnan, R.; Rai, K.N. Oxygen depletion of oxide catalysts. J. Catal. 1976, 45, 270–273. [Google Scholar] [CrossRef]
- Jung, J.C.; Kini, H.; Choi, A.S.; Chung, Y.-M.; Kim, T.J.; Lee, S.J.; Oh, S.-H.; Song, I.K. Effect of pH in the preparation of γ-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and oxygen mobility of γ-Bi2MoO6. Catal. Commun. 2007, 8, 625–628. [Google Scholar] [CrossRef]
- Zhai, Z.; Getsoian, A.B.; Bell, A.T. The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts. J. Catal. 2013, 308, 25–36. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, X.; Licht, R.; Bell, A.T. Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide. J. Catal. 2015, 325, 87–100. [Google Scholar] [CrossRef]
- Grzybowska, B.; Haber, J.; Janas, J. Interaction of allyl iodide with molybdate catalysts for selective oxidation of hydrocarbons. J. Catal. 1977, 49, 150–163. [Google Scholar] [CrossRef]
- Swift, H.E.; Bozik, J.E.; Ondrey, J.A. Dehydrodimerization of propylene using bismuth oxide as oxidant. J. Catal. 1971, 21, 212–224. [Google Scholar] [CrossRef]
- Carrazán, S.R.G.; Martin, C.; Rives, V.; Vidal, R. Selective oxidation of isobutene to methacrolein on multiphasic molybdate-based catalysts. Appl. Catal. A 1996, 135, 95–123. [Google Scholar] [CrossRef]
- Parry, K.L.; Shard, A.G.; Short, R.D.; White, R.G.; Whittle, J.D.; Wright, A. ARXPS characterisation of plasma polymerised surface chemical gradients. Surf. Interface Anal. 2006, 38, 1497–1504. [Google Scholar] [CrossRef]
- Grunwaldt, J.-D.; Wildberger, M.D.; Mallat, T.; Baiker, A. Unusual redox properties of bismuth in sol-gel Bi–Mo–Ti mixed oxides. J. Catal. 1998, 177, 53–59. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Høj, M.; Jensen, A.D.; Grunwaldt, J.-D. Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis. Appl. Catal. A 2013, 451, 207–215. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuh, K.; Kleist, W.; Høj, M.; Trouillet, V.; Beato, P.; Jensen, A.D.; Grunwaldt, J.-D. Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts 2015, 5, 1554-1573. https://doi.org/10.3390/catal5031554
Schuh K, Kleist W, Høj M, Trouillet V, Beato P, Jensen AD, Grunwaldt J-D. Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts. 2015; 5(3):1554-1573. https://doi.org/10.3390/catal5031554
Chicago/Turabian StyleSchuh, Kirsten, Wolfgang Kleist, Martin Høj, Vanessa Trouillet, Pablo Beato, Anker Degn Jensen, and Jan-Dierk Grunwaldt. 2015. "Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene" Catalysts 5, no. 3: 1554-1573. https://doi.org/10.3390/catal5031554
APA StyleSchuh, K., Kleist, W., Høj, M., Trouillet, V., Beato, P., Jensen, A. D., & Grunwaldt, J.-D. (2015). Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts, 5(3), 1554-1573. https://doi.org/10.3390/catal5031554