The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits
Abstract
:1. Introduction
- Waste prevention instead of remediation
- Atom economy or efficiency
- Use of less hazardous and toxic chemicals
- Safer products by design
- Innocuous solvents and auxiliaries
- Energy efficiency by design
- Preferred use of renewable raw materials
- Shorter syntheses (avoid derivatization)
- Catalytic rather than stoichiometric reagents
- Design products to undergo degradation in the environment
- Analytical methodologies for pollution prevention
- Inherently safer processes
2. Biocatalysis in Residues
2.1. Use of Solid Waste to Obtain Biocatalysts
2.2. Detoxification and Improvement of the Nutritional Quality of Residues for Animal Feed
2.3. Production of Generic Fermentation Feedstock Medium
3. Biocatalysts in Effluent Treatment
3.1. Use of Biocatalysts in the Treatment of Effluents from Food Industries
3.2. Application of Biocatalysts on Color Removal of Effluents
3.3. Application of Biocatalysts in the Elimination of Phenolic Compounds
4. Biofuels and Energy
4.1. Biodiesel
4.2. Lignocellulose Ethanol
4.3. Methane
4.4. Biohydrogen
5. Pharmaceutical Products and Chemicals
6. Summary and Outlook
Acknowledgments
Conflicts of Interest
References
- Chemistry & Industry. Building a Greener Future, 2009. Available online: http://search.ebscohost.com/login.aspx?authtype=uid&user=ns240517main&password=main&profile=ehost&defaultdb=bth (accessed on 20 July 2014).
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Chemical Business. Green Chemical Principles, 2013. Available online: http://search.ebscohost.com/login.aspx?authtype=uid&user=ns240517main&,password=main&profile=ehost&defaultdb=bth (accessed on 20 July 2014).
- Rangarajan, S. Green chemistry and clean energy. Pop. Plast. Packag. 2012, 57, 48. [Google Scholar]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; p. 30. [Google Scholar]
- Sjöström, J. Green chemistry in perspective—Models for GC activities and GC policy and knowledge areas. Green Chem. 2006, 8, 130–137. [Google Scholar] [CrossRef]
- Straathof, A.J.J. Transformation of biomass into commodity chemicals using enzymes or cells. Chem. Rev. 2014, 114, 1871–1908. [Google Scholar] [CrossRef] [PubMed]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Ferreira-Leitão, V.S.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass Valoriz. 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Nigam, P.S.; Gupta, N.; Anthwal, A. Pre-treatment of Agro-Industrial Residues. In Biotechnology for Agro-Industrial Residues Utilisation; Nigam, P.S., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 13–33. [Google Scholar]
- Salihu, A.; Alam, M.Z.; Abdulkarim, M.I.; Salleh, H.M. Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycl. 2012, 58, 36–44. [Google Scholar] [CrossRef]
- Freire, D.M.G.; Gutarra, M.L.E.; Ferreira-Leitão, V.S.F.; Coelho, M.A.Z.; Cammarota, M.C. Biocatalysis in Enviromental Technology. In Biocatalysis Research Progress; Romano, F.H., Russo, A., Eds.; Nova Science Publishers: New York, NY, USA, 2008; pp. 5–25. [Google Scholar]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil cakes and their biotechnological applications—A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Gombert, A.K.; Pinto, A.L.; Castilho, L.R.; Freire, D.M.G. Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem. 1999, 35, 85–90. [Google Scholar] [CrossRef]
- Azeredo, L.A.I.; Gomes, P.M.; Sant’Anna, G.L., Jr.; Castilho, L.R.; Freire, D.M.G. Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Curr. Microbiol. 2007, 54, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Castilho, L.R.; Medronho, R.A.; Alves, T.L.M. Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 2000, 71, 45–50. [Google Scholar] [CrossRef]
- Castilho, L.R.; Polato, C.M.S.; Baruque, E.A.; Sant’Anna, G.L., Jr.; Freire, D.M.G. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J. 2000, 4, 239–247. [Google Scholar] [CrossRef]
- Mahanta, N.; Gupta, A.; Khare, S.K. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour. Technol. 2008, 99, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Selwal, M.K.; Yadav, A.; Selwal, K.K.; Aggarwal, N.K.; Gupta, R.; Gautam, S.K. Tannase production by Penicillium atramentosum KM under SSF and its applications in wine clarification and tea cream solubilization. Braz. J. Microbiol. 2011, 42, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Da Penha, M.P.; Leao, M.; Leite, S.G.F. Sugarcane Bagasse as support for the production of coconut aroma by solid state fermentation (SSF). Bioresources 2012, 7, 2366–2375. [Google Scholar] [CrossRef]
- Ghoshal, G.; Basu, S.; Shivhare, U.S. Solid State Fermentation in Food Processing. Int. J. Food Eng. 2012, 8, 1–16. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; Mahmoud, M.G.; Asker, M.M.S.; Lotfy, S.N. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron. J. Biotechnol. 2015, 18, 5–9. [Google Scholar] [CrossRef]
- Velmurugan, P.; Hur, H.; Balachandar, V.; Kamala-Kannan, S.; Lee, K.; Lee, S.; Chae, J.C.; Shea, P.J.; Oh, B.T. Monascus pigment production by solid-state fermentation with corn cob substrate. J. Biosci. Bioeng. 2011, 112, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.E.; Lüth, P.; Oostra, J.; et al. The fungal biocontrol agent Coniothyrium minitans: Production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol. 2010, 56, 58–68. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, L.; Gong, A.; Cao, Y.; Wang, B. Solid-state fermentation of kitchen waste for production of Bacillus thuringiensis-based biopesticide. Bioresources 2013, 8, 1124–1135. [Google Scholar] [CrossRef]
- Ballardo, C.; Abraham, J.; Barrena, R.; Artola, A.; Gea, T.; Sanchez, A. Valorization of soy waste through SSF for the production of compost enriched with Bacillus thuringiensis with biopesticide properties. J. Environ. Manag. 2016, 169, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, L.S.P.; Soccol, C.R.; Pandey, A.; Lebeault, J.M. Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour. Technol. 2000, 74, 175–178. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Brar, S.K.; Vera, M.; Tyagi, R.D. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem. Eng. J. 2011, 54, 83–92. [Google Scholar] [CrossRef]
- Holker, U.; Hofer, M.; Lenz, J. Biotechnological advantages of laboratory-scale solidstate fermentation with fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Viniegra-González, G.; Favela-Torres, E.; Aguilar, C.N.; Rómero-Gomez, C.J.; Dı́az-Godı́nez, G.; Augur, C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003, 13, 157–167. [Google Scholar] [CrossRef]
- Diaz, J.C.M.; Rodríguez, J.A.; Roussos, S.; Cordova, J.; Abousalham, A.; Carriere, F.; Baratti, J. Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Technol. 2006, 39, 1042–1050. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Mateos, J.C.; Nungaray, J.; González, V.; Bhagnagar, T.; Roussos, S.; Cordova, J.; Baratti, J. Improving lipase production by nutrient modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 2006, 41, 2264–2269. [Google Scholar] [CrossRef]
- Gutarra, M.L.E.; Cavalcanti, E.D.C.; Castilho, R.L.; Freire, D.M.G.; Sant’anna, G.L., Jr. Lipase production by solid-state fermentation cultivation conditions and operation of tray and packed-bed bioreactors. Appl. Biochem. Biotechnol. 2005, 121–124, 105–116. [Google Scholar] [CrossRef]
- Gutarra, M.L.E.; Godoy, M.G.; Maugeri, F.; Rodrigues, M.I.; Freire, D.M.G.; Castilho, L.R. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour. Technol. 2009, 100, 5249–5254. [Google Scholar] [CrossRef] [PubMed]
- Godoy, M.G.; Gutarra, M.L.E.; Maciel, F.M.; Felix, S.P.; Bevilaqua, J.V.; Machado, O.L.T.; Freire, D.M.G. Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme Microb. Technol. 2009, 44, 317–322. [Google Scholar] [CrossRef]
- Kempka, A.P.; Lipke, N.L.; Pinheiro, T.L.F.; Menoncin, S.; Treichel, H.; Freire, D.M.G.; di Luccio, M.; de Oliveira, D. Response surface method to optimize the production and characterization of lipase from Penicillium verucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 2008, 31, 119–125. [Google Scholar] [CrossRef] [PubMed]
- López, E.; Deive, F.J.; Longo, M.; Sanromán, A. Strategies for utilisation of foodprocessing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioprocess Biosyst. Eng. 2010, 33, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Mahadik, N.D.; Puntambekar, U.S.; Bastawde, K.B.; Khire, J.M.; Gokhale, D.V. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem. 2002, 38, 715–721. [Google Scholar] [CrossRef]
- Soares, V.F.; Castilho, L.R.; Bon, E.P.S.; Freire, D.M.G. High-yield Bacillus subtilis protease production by solid-state fermentation. Appl. Biochem. Biotechnol. 2005, 121–124, 311–319. [Google Scholar] [CrossRef]
- Azeredo, L.A.I.; Lima, M.B.; Coelho, R.R.; Freire, D.M.G. A low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and corn steep liquor. Curr. Microbiol. 2006, 53, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Vishwanatha, K.S.; Rao, A.G.A.; Singh, S.A. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: Optimization of process parameters. J. Ind. Microbiol. Biotechnol. 2010, 37, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Cen, P. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem. 1999, 34, 909–912. [Google Scholar] [CrossRef]
- Li, Y.; Peng, X.; Chen, H. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 2013, 116, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Wiacek-zychlinska, A.; Czakaj, J.; Sawicka-zukowska, R. Xylanase production by fungal strains in solid-state fermentations. Bioresour. Technol. 1994, 49, 13–16. [Google Scholar] [CrossRef]
- Park, Y.S.; Kang, S.W.; Lee, J.S.; Hong, S.I.; Kim, S.W. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 2002, 58, 761–766. [Google Scholar] [PubMed]
- Patil, S.R.; Dayanand, A. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour. Technol. 2006, 97, 2340–2344. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Patel, A.K.; Nampoothiri, K.M.; Francis, F.; Nagy, V.; Szakacs, G.; Pandey, A. Coconut oil cake—A potential raw material for the production of α-amylase. Bioresour. Technol. 2004, 93, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.M.; de Andréa, T.V.; Castilho, L.R.; Freire, D.M.G. Use of Mesophilic Fungal Amylases Produced by Solid-state Fermentation in the Cold Hydrolysis of Raw Babassu Cake Starch. Appl. Biochem. Biotechnol. 2010, 162, 1612–1625. [Google Scholar] [CrossRef] [PubMed]
- Roses, R.P.; Guerra, N.P. Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J. Microbiol. Biotechnol. 2009, 25, 1929–1939. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, D.E.; Parada, J.L.; Medeiros, A.B.P.; de Carvalho, J.C.; Lacerda, L.G.; Rodriguez-Leon, J.A.; Soccol, C.R. Concentration by ultrafiltration and stabilization of phytase produced by solid-state fermentation. Process Biochem. 2013, 48, 374–379. [Google Scholar] [CrossRef]
- Sapna; Singh, B. Phytase Production by Aspergillus oryzae in Solid-State Fermentation and its Applicability in Dephytinization of Wheat Ban. Appl. Biochem. Biotechnol. 2014, 173, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Gaind, S.; Singh, S. Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int. Biodeterior. Biodegrad. 2015, 99, 15–22. [Google Scholar] [CrossRef]
- Selvakumar, P.; Pandey, A. Solid state fermentation for the synthesis of inulinase from the strains of Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem. 1999, 34, 851–855. [Google Scholar] [CrossRef]
- Mazutti, M.A.; Zabot, G.; Boni, G.; Skovronski, A.; de Oliveira, D.; di Luccio, M.; Rodrigues, M.I.; Treichel, H.; Maugeri, F. Optimization of inulinase production by solid-state fermentation in a packed bed bioreactor. J. Chem. Technol. Biotechnol. 2010, 85, 109–114. [Google Scholar] [CrossRef]
- Beniwal, V.; Goel, R.; Kumar, A.; Chhokar, A. Production of tannase through solid-state fermentation using Indian rosewood (Dalbergia sissoo) daw dust—A timber industry waste. Ann. Microbiol. 2013, 63, 583–590. [Google Scholar] [CrossRef]
- Madeira, J.V., Jr.; Ferreira, L.R.; Macedo, J.; Macedo, G.A. Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization. Biocatal. Agric. Biotechnol. 2015, 4, 91–97. [Google Scholar]
- Ohara, A.; de Castro, R.J.S.; Nishide, T.G.; Dias, F.F.G.; Bagagli, M.P.; Sato, H.H. Invertase production by Aspergillus niger under solid state fermentation: Focus on physical–chemical parameters, synergistic and antagonistic effects using agro-industrial wastes. Biocatal. Agric. Biotechnol. 2015, 4, 645–652. [Google Scholar] [CrossRef]
- Novelli, P.K.; Barros, M.M.; Fleuri, L.F. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization. Food Chem. 2016, 198, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.M.; Castilho, L.R.; Freire, D.M.G. Characterization of babassu, canola, castor seed and sunflower residual cakes for use as raw materials for fermentation processes. Ind. Crops Prod. 2016, 83, 140–148. [Google Scholar] [CrossRef]
- Castro, A.M.; Andréa, T.V.; Carvalho, D.F.; Teixeira, M.M.P.; Castilho, L.R.; Freire, D.M.G. Valorization of residual agroindustrial cakes by fungal production of multienzyme complexes and their use in cold hydrolysis of raw starch. Waste Biomass Valoriz. 2011, 2, 291–302. [Google Scholar] [CrossRef]
- Gutarra, M.L.E.; Godoy, M.G.; Castilho, L.R.; Freire, D.M.G. Ioculum strategies for Penicillium simplicissimum lipase production by solid-state fermentation using a residue from the babassu oil industry. J. Chem. Technol. Biotechnol. 2007, 82, 313–318. [Google Scholar] [CrossRef]
- Holker, U.; Lenz, J. Solid-state fermentation—Are there any biotechnological advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- Brand, D.; Pandey, A.; Roussos, S.; Soccol, C.R. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb. Technol. 2000, 27, 127–133. [Google Scholar] [CrossRef]
- Godoy, M.G.; Fernandes, K.V.; Gutarra, M.L.E.; Melo, E.J.T.; Castro, A.M.; Machado, O.L.T.; Freire, D.M.G. Use of Vero cell line to verify the biodetoxification efficiency of castor bean waste. Process Biochem. 2012, 47, 578–584. [Google Scholar] [CrossRef]
- Godoy, M.G.; Gutarra, M.L.E.; Castro, A.M.; Machado, O.L.T.; Freire, D.M.G. Adding value to a toxic residue from the biodiesel industry: Production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J. Ind. Microbiol. Biotechnol. 2011, 38, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Madeira, J.V., Jr.; Macedo, J.A.; Macedo, G.A. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour. Technol. 2011, 102, 7343–7348. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.; Mathur, P.; Khare, S.K. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 2011, 102, 4815–4819. [Google Scholar] [CrossRef] [PubMed]
- Phengnuam, T.; Suntornsuk, W. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. J. Biosci. Bioeng. 2013, 115, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Veerabhadrappa, M.B.; Shivakumar, S.B.; Devappa, S. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J. Biosci. Bioeng. 2014, 117, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Dey, T.B.; Chakraborty, S.; Jain, K.Kr.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food. Sci. Technol. 2016, 53, 60–74. [Google Scholar]
- Bevilaqua, J.V.; Freire, D.M.G.; Sant’anna, L.M.M.; Castilho, L.R.; Ribeiro, M.C.M.; Gutarra, M.L.E.; Godoy, M.G. Método de Tratamento de Rejeito Agroindustrial Para Destoxificação e Redução da Alergenicidade, Com Produção de Lipases. BR Patent INPI PI 0703290-0, 11 July 2007. [Google Scholar]
- Zhang, X.; Yang, Z.; Liang, J.; Tang, L.; Chen, F. Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations. Int. Biodeterior. Biodegrad. 2016, 109, 202–210. [Google Scholar] [CrossRef]
- Graminha, E.B.N.; Gonçalves, A.Z.L.; Pirota, R.D.P.B.; Balsalobre, M.A.A.; Da Silva, R.; Gomes, E. Enzyme production by solid-state fermentation: Application to animal nutrition. Anim. Feed Sci. Technol. 2008, 144, 1–22. [Google Scholar] [CrossRef]
- Shojaosadati, S.A.; Faraidouni, R.; Madadi-Nouei, A.; Mohamadpour, I. Protein enrichment of lignocellulosic substrates by solid state fermentation using Neurospora sitophila. Resour. Conserv. Recycl. 1999, 27, 73–87. [Google Scholar] [CrossRef]
- Iluyemi, F.B.; Hanafi, M.M.; Radziah, O.; Kamarudin, M.S. Fungal solid-state culture of plam kernel cake. Bioresour. Technol. 2006, 97, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valero, J.R. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium e liberation and extraction of phenolic antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Koutinas, A.A.; Wang, R.-H.; Webb, C. Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enzyme Microb. Technol. 2005, 36, 629–638. [Google Scholar] [CrossRef]
- López, J.A.; Lázaro, C.C.; Castilho, L.R.; Freire, D.M.G.; Castro, A.M. Characterization of multienzyme solutions produced by solid-state fermentation of babassu cake, for use in cold hydrolysis of raw biomass. Biochem. Eng. J. 2013, 77, 231–239. [Google Scholar] [CrossRef]
- Batista, K.A.; Fernandes, K.F.; Pereira, W., Jr. Processo de Produção de Meios de Cultura Contendo Farinha de Feijão Extrussada em Substituição a Peptona e/ou Extrato de Levedura. BR Patent 102,012,024,405-5A2, 1 July 2014. [Google Scholar]
- Cinelli, B.A.; López, J.A.; Castilho, L.R.; Freire, D.M.G.; Castro, A.M. Granular starch hydrolysis of babassu agroindustrial residue: A bioprocess within the context of biorefinery. Fuel 2014, 124, 41–48. [Google Scholar] [CrossRef]
- Du, C.; Lin, S.K.C.; Koutinas, A.; Wang, R.; Dorado, P.; Webb, C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol. 2008, 99, 8310–8315. [Google Scholar] [CrossRef] [PubMed]
- Botella, C.; Diaz, A.B.; Wang, R.; Koutinas, A.; Webb, C. Particulate bioprocessing: A novel process strategy for biorefineries. Process Biochem. 2009, 44, 546–555. [Google Scholar] [CrossRef]
- Dimou, C.; Kopsahelis, N.; Papadaki, A.; Papanikolaou, S.; Kookos, I.K.; Mandala, I.; Koutinas, A.A. Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res. Int. 2015, 73, 81–87. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, R.-H.; Koutinas, A.A.; Webb, C. Microbial biodegradable plastic production from a wheat-based biorefining strategy. Process Biochem. 2010, 45, 153–163. [Google Scholar] [CrossRef]
- Wang, R.; Shaarani, S.M.; Godoy, L.C.; Melikoglu, M.; Vergara, C.S.; Koutinas, A.; Webb, C. Bioconversion of rapeseed meal for the production of a generic microbial Feedstock. Enzyme Microb. Technol. 2010, 47, 77–83. [Google Scholar] [CrossRef]
- Tsakona, S.; Kopsahelis, N.; Chatzifragkou, A.; Papanikolaou, S.; Kookos, I.K.; Koutinas, A.A. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J. Biotechnol. 2014, 189, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Chatzifragkou, A.; Papanikolaou, S.; Kopsahelis, N.; Kachrimanidou, V.; Dorado, M.P.; Koutinas, A.A. Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour. Technol. 2014, 159, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Demarche, P.; Junghanns, C.; Nair, R.R.; Agathos, S.N. Harnessing the power of enzymes for environmental stewardship. Research review paper. Biotechnol. Adv. 2012, 30, 933–953. [Google Scholar] [CrossRef] [PubMed]
- Ruggaber, T.P.; Talley, J.W. Enhancing Bioremediation with Enzymatic Processes: A Review. Practice Period. Hazard. Toxic Radioact. Waste Manag. 2006, 10, 73–85. [Google Scholar] [CrossRef]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef]
- Aitken, M.D. Waste treatment applications of enzymes: Opportunities and obstacles. Chem. Eng. J. 1993, 52, 49–58. [Google Scholar] [CrossRef]
- Mugdha, A.; Usha, M. Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci. Rev. Chem. Commun. 2012, 2, 31–40. [Google Scholar]
- Arca-Ramos, A.; Ammann, E.M.; Gasser, C.A.; Nastold, P.; Eibes, G.; Feijoo, G.; Lema, J.M.; Moreira, M.T.; Corvini, P.F.X. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environ. Sci. Pollut. Res. 2016, 23, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hu, Y.; Guo, C.; Huang, W.; Liu, C.-Z. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour. Technol. 2012, 110, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Nisha, S.; Karthick, S.A.; Gobi, N. A Review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett. 2012, 1, 148–155. [Google Scholar]
- Ahmad, R.; Sardar, M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem. 2015, 4, 178. [Google Scholar] [CrossRef]
- Kurnik, K.; Treder, K.; Skorupa-Kłaput, M.; Tretyn, A.; Tyburski, J. Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut. 2015, 226, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Chagas, P.M.B.; Torresa, J.A.; Silva, M.C.; Corrêa, A.D. Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater. Int. J. Biol. Macromol. 2015, 81, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Neoh, C.H.; Lam, C.Y.; Yahya, A.; Ware, I.; Ibrahim, Z. Utilization of agro-industrial residues from palm oil industry for production of lignocellulolytic enzymes by Curvularia clavata. Waste Biomass Valoriz. 2015, 6, 385–390. [Google Scholar] [CrossRef]
- Karam, J.; Nicell, J.A. Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol. 1997, 69, 141–153. [Google Scholar] [CrossRef]
- Henze, M.; Harremoës, P.; La Cour Jansen, J.; Arvin, E. Wastewater Treatment: Biological and Chemical Processes; Springer: Berlin/Heidelberg, Germany, 2001; pp. 36–37. [Google Scholar]
- Rajagopal, R.; Saady, N.M.C.; Torrijos, M.; Thanikal, J.V.; Hung, Y.-T. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process. Water 2013, 5, 292–311. [Google Scholar] [CrossRef]
- Efremenko, E.; Senko, O.; Zubaerova, D.; Podorozhko, E.; Lozinsky, V. New Biocatalyst with Multiple Enzymatic Activities for Treatment of Complex Food Wastewaters. Food Technol. Biotechnol. 2008, 46, 208–212. [Google Scholar]
- Alves, M.M.; Pereira, M.A.; Sousa, D.Z.; Cavaleiro, A.J.; Picavet, M.; Smidt, H.; Stams, A.J. Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA)—Mini review. Microb. Biotechnol. 2009, 2, 538–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirel, B.; Yenigun, O.; Onay, T.T. Anaerobic treatment of dairy wastewater: A review. Process Biochem. 2005, 40, 2583–2595. [Google Scholar] [CrossRef]
- Jeganathan, J.; Nakhla, G.; Bassi, A. Oily wastewater treatment using a novel hybrid PBR-UASB system. Chemosphere 2007, 67, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Valladão, A.B.G.; Cammarota, M.C.; Torres, A.G.; Freire, D.M.G. Profiles of fatty acids and triacylglycerols and their influence on the anaerobic biodegradability of effluents from poultry slaughterhouse. Bioresour. Technol. 2011, 102, 7043–7050. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, M.C.; Freire, D.M.G. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour. Technol. 2006, 97, 2195–3010. [Google Scholar] [CrossRef] [PubMed]
- Masse, L.; Kennedy, K.J.; Chou, S. Testing of alkaline enzymatic hydrolysis pretreatment for fat particles in slaughterhouse wastewater. Bioresour. Technol. 2001, 77, 145–155. [Google Scholar] [CrossRef]
- Masse, L.; Massé, D.I.; Kennedy, K.J. Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochem. 2003, 38, 1365–1372. [Google Scholar] [CrossRef]
- Shon, H.K.; Tian, D.; Kwon, D.-Y.; Jin, C.-S.; Lee, T.-J.; Chung, W.-J. Degradation of fat, oil, and grease (FOGs) by lipase producing bacterium Pseudomonas sp. strain D2D3. J. Microb. Biotechnol. 2002, 12, 583–591. [Google Scholar]
- Jeganathan, J.; Bassi, A.; Nakhla, G. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation. J. Hazard. Mater. 2006, 137, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Dors, G. Hidrólise Enzimática e Biodigestão de Efluentes da Indústria de Produtos Avícolas. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2006. [Google Scholar]
- Mendes, A.A.; Pereira, E.B.; Furigo, A., Jr.; Castro, H.F. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase. Braz. Arch. Biol. Technol. 2010, 53, 1279–1284. [Google Scholar] [CrossRef]
- Damasceno, F.R.C.; Freire, D.M.G.; Cammarota, M.C. Assessing a mixture of biosurfactant and enzyme pools in the anaerobic biological treatment of wastewater with a high-fat content. Environ. Technol. 2014, 35, 2035–2045. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.N.; Gutarra, M.L.E.; Freire, D.M.G.; Cammarota, M.C. Application of Home-Made Enzyme and Biosurfactant in the Anaerobic Treatment of Effluent with High Fat Content. J. Bioprocess. Biotechniq. 2013, 3, 3. [Google Scholar]
- Chatterjee, S.; Barbora, L.; Cameotra, S.S.; Mahanta, P.; Goswami, P. Silk-fiber immobilized lipase-catalyzed hydrolysis of emulsified sunflower oil. Appl. Biochem. Biotechnol. 2009, 157, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, G.; Wang, J.; Cai, W.; Xu, Y. Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis. Appl. Energy 2009, 86, 233–237. [Google Scholar] [CrossRef]
- Matsumiya, Y.; Wakita, D.; Kimura, A.; Sanpa, S.; Kubo, M. Isolation and characterization of a lipid-degrading bacterium and its application to lipid-containing wastewater treatment. J. Biosci. Bioeng. 2007, 103, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.G.; Silva, L.L.S.; Freire, D.M.G.; Cammarota, M.C.; Gutarra, M.L.E. Enzymatic hydrolysis and anaerobic biological treatment of fish industry effluent: Evaluation of the mesophilic and thermophilic conditions. Renew. Energy 2015, 83, 455–462. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Envriron. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Gad, S.S. Polyciclic Aromatic Amines. Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1038–1039. [Google Scholar]
- Arslan, S.; Eyvaz, M.; Gürbulak, E.; Yüksel, E. A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment—The Textile Industry Case. Textile Wastewater Treatment; Emriye Akcakoca Kumbasar, InTech. Available online: http://www.intechopen.com/books/textile-wastewater-treatment/a-review-of-state-of-the-art-technologies-in-dye-containing-wastewater-treatment-the-textile-industr (accessed on 10 November 2016). [CrossRef]
- Imran, M.; Crowley, D.E.; Khalid, A.; Hussain, S.; Mumtaz, M.W.; Arshad, M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Biotechnol. 2014, 14, 73–92. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Matto, M.; Husain, Q. Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin A layered calcium alginate-starch beads. J. Hazard. Mater. 2009, 164, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Khan, A.A.; Husain, Q. Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 2005, 60, 291–301. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.T.; Tiwari, R.; Sah, A.K.; Raghukumara, C. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb. Technol. 2006, 38, 504–511. [Google Scholar] [CrossRef]
- Karim, Z.; Adnan, R.; Husain, Q. A β-cyclodextrine chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. Int. Biodeterior. Biodegrad. 2012, 72, 10–17. [Google Scholar] [CrossRef]
- Khlifi, R.; Belbahri, L.; Woodward, S.; Ellouz, M.; Dhouib, A.; Sayadi, S.; Mechichi, T. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J. Hazard. Mater. 2010, 175, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Mishra, S.; Sreekrishnan, T.R. Combination of chemical and enzymatic treatment for efficient decolorization/degradation of textile effluent: High operational stability of the continuous process. Biochem. Eng. J. 2015, 93, 17–24. [Google Scholar] [CrossRef]
- Soares, G.M.B.; Amorim, M.T.P.; Lageiro, M.; Costa-Ferreira, M. Pilot-scale enzymatic decolorization of industrial dyeing process wastewater. Text. Res. J. 2006, 76, 4–11. [Google Scholar] [CrossRef]
- Loncar, N.; Janovic, B.; Vujcic, M.; Vujcic, Z. Decolorization of textile dyes and effluents using potato (Solanum tuberosum) phenoloxidase. Int. Biodeterior. Biodegrad. 2012, 72, 42–45. [Google Scholar] [CrossRef]
- Khan, A.A.; Husain, Q. Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase. Bioresour. Technol. 2007, 98, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.; Milagres, A.M.F.; Mussatto, S.I. Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Sep. Purif. Technol. 2014, 135, 183–189. [Google Scholar] [CrossRef]
- Silva, M.R.; Sá, L.R.V.; Russo, C.; Scio, E.; Ferreira-Leitão, V.S. The Use of HRP in Decolorization of Reactive Dyes and Toxicological Evaluation of Their Products. Enzyme Res. 2010, 2010, 703824. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.S.S.; Pereira, P.M.; Ferreira-Leitão, V.S. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae. Enzyme Res. 2010, 2010, 905896. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Leitão, V.S.; Carvalho, M.E.A.; Bon, E.S. Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods. Dyes Pigmet. 2007, 74, 230–236. [Google Scholar] [CrossRef]
- Mohammadi, S.; Kargari, A.; Sanaeepur, H.; Abbassian, K.; Najafi, A.; Mofarrah, E. Phenol removal from industrial wastewaters: A short review. Desalinat. Water Treat. 2015, 53, 2215–2234. [Google Scholar] [CrossRef]
- Mukherjee, S.; Basak, B.; Bhunia, B.; Dey, A.; Mondal, B. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev. Environ. Sci. Biol. 2013, 12, 61–73. [Google Scholar] [CrossRef]
- Dourou, A.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.-E.; Rywinska, A.; Papanikolaou, S.; Aggelis, G. Bioconversion of olive mill wastewater into high-added value products. J. Clean. Prod. 2016, 139, 957–969. [Google Scholar] [CrossRef]
- Rupani, P.F.; Singh, R.P.; Ibrahim, M.H.; Esa, N. Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. World Appl. Sci. J. 2010, 10, 1190–2001. [Google Scholar]
- Fia, R.L.; Matos, A.T.; Borges, A.C.; Fia, R.; Cecon, P.R. Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: Performance and kinetic modeling. J. Environ. Manag. 2012, 108, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res. 2012, 46, 1684–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ansari, M.M.; Modaressi, K.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Soybean Peroxidase-Catalyzed Oxidative Polymerization of Phenols in Coal-Tar Wastewater: Comparison of Additives. Environ. Eng. Sci. 2010, 27, 967–975. [Google Scholar] [CrossRef]
- Wagner, M.; Nicell, J.A. Treatment of a foul condensate from kraft pulping with horseradish peroxidase and hydrogen peroxide. Water Res. 2001, 35, 485–495. [Google Scholar] [CrossRef]
- D’Annibale, A.; Stazi, S.R.; Vinciguerra, V.; Sermanni, G.G. Oxirane-immobilized Lentinula edodes laccase: Stability and phenolics removal efficiency in olive mill wastewater. J. Biotechnol. 2000, 77, 265–273. [Google Scholar] [CrossRef]
- Iamarino, G.; Rao, M.A.; Gianfreda, L. Dephenolization and detoxification of olive-mill wastewater (OMW) by purified biotic and abiotic oxidative catalysts. Chemosphere 2009, 74, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Steevensz, A.; Madur, S.; Feng, W.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Crude soybean hull peroxidase treatment of phenol in synthetic and real wastewater: Enzyme economy enhanced by Triton X-100. Enzyme Microb. Technol. 2014, 55, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Steevensz, A.; Al-Ansari, M.M.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Comparison of soybean peroxidase with laccase in the removal of phenol from synthetic and refinery wastewater samples. J. Chem. Technol. Biotechnol. 2009, 84, 761–769. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pagliaro, M. Green chemistry in the fine chemicals and pharmaceutical Industries. Org. Process Res. Dev. 2013, 17, 1479–1484. [Google Scholar] [CrossRef]
- Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A Review of the Current State of Biodiesel Production Using Enzymatic Transesterification. Biotechnol. Bioeng. 2009, 102, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Robles-Medina, A.; González-Moreno, P.A.; Esteban-Cerdán, L.; Molina-Grima, E. Biocatalysis: Towards ever greener biodiesel production. Biotechnol. Adv. 2009, 27, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Al-Zuhair, S. Production of biodiesel: Possibilities and challenges. Biofuels Bioprod. Biorefin. 2007, 1, 57–66. [Google Scholar] [CrossRef]
- Soares, D.; Pinto, A.F.; Gonçalves, A.G.; Mitchell, D.A.; Krieger, N. Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochem. Eng. J. 2013, 81, 15–23. [Google Scholar] [CrossRef]
- Fernandes, M.L.M.; Saad, E.B.; Meira, J.A.; Ramos, L.P.; Mitchell, D.A.; Krieger, N. Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J. Mol. Catal. B Enzym. 2007, 44, 8–13. [Google Scholar] [CrossRef]
- Salum, T.F.C.; Villeneuve, P.; Barea, B.; Yamamoto, C.I.; Côcco, L.C.; Mitchell, D.A.; Krieger, N. Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem. 2010, 45, 1348–1354. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Meng, X.; Yan, Y. Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process. Technol. 2013, 106, 303–309. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Wang, S.; Chen, W. Solid-supported microorganism of Burkholderia cenocepacia cultured via solid state fermentation for biodiesel production: Optimization and kinetics. Appl. Energy 2014, 113, 713–721. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; Cavalcanti-Oliveira, E.D.; Castro, A.M.; Langone, M.A.P.; Freire, D.M.G. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 2014, 135, 315–321. [Google Scholar] [CrossRef]
- Soares, D.; Serres, J.D.S.; Corazza, M.L.; Mitchell, D.A.; Gonçalves, A.G.; Krieger, N. Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel 2015, 159, 364–372. [Google Scholar] [CrossRef]
- Barros, M.; Fleuri, L.F.; Macedo, G.A. Seed lipases: Sources, applications and properties—A review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef]
- Cavalcanti, E.D.C.; Maciel, F.M.; Villeneuve, P.; Lago, R.C.A.; Machado, O.L.T.; Freire, D.M.G. Acetone powder from dormant seeds of Ricinus communis. Appl. Biochem. Biotechnol. 2007, 136–140, 57–65. [Google Scholar]
- Sousa, J.S.; Cavalcanti-Oliveira, E.D.; Aranda, D.A.G.; Freire, D.M.G. Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. J. Mol. Catal. B Enzym. 2010, 65, 133–137. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 18 November 2014).
- Sims, R.; Taylor, M.; Saddler, J.; Mabee, W. From 1st to 2nd Generation Biofuel Technologies; The Organisation for Economic Co-operation and Development/International Energy Agency: Paris, France, 2008. [Google Scholar]
- IRENA—Global Bioenergy Supply and Demand Projections—A working paper for Remap 2030. Available online: http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=446 (accessed on 14 November 2014).
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Parisutham, V.; Kim, T.H.; Lee, S.K. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour. Technol. 2014, 161, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Zhaoyang, X.; Fang, H. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 2014, 174, 43–62. [Google Scholar]
- Da Silva, A.S.; Teixeira, R.S.S.; Endo, T.; Bon, E.P.S.; Lee, S.-H. Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chem. 2013, 15, 1991–2001. [Google Scholar] [CrossRef]
- Ferreira-Leitão, V.S.; Perrone, C.C.; Rodrigues, J.; Franke, A.P.M.; Macrelli, S.; Zacchi, G. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnol. Biofuels 2010, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Moutta, R.O.; Ferreira-Leitão, V.S.; Bon, E.P.S. Enzymatic hydrolysis of sugarcane bagasse and straw mixtures pretreated with diluted acid. Biocatal. Biotransform. 2014, 32, 93–100. [Google Scholar] [CrossRef]
- Moutta, R.O.; Silva, M.C.; Corrales, R.C.N.R.; Cerullo, M.A.; Ferreira-Leitão, V.S.; Bon, E.P.S. Comparative response and structural characterization of sugarcane bagasse, straw and bagasse-straw 1:1 mixtures subjected to hydrothermal pretreatment and enzymatic conversion. J. Microbial. Biochem. Technol. 2013. [Google Scholar] [CrossRef]
- Andersen, N.; Johansen, K.S.; Michelsen, M.; Stenby, E.H.; Krogh, K.B.R.M.; Olsson, L. Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme Microb. Technol. 2008, 42, 362–370. [Google Scholar] [CrossRef]
- Coughlan, M.P.; Ljungdahl, L.G. Comparative biochemistry of fungal and bacterial cellulolytic enzyme system. In Biochemistry and Genetics of Cellulose Degradation; Aubert, J.-P., Beguin, P., Millet, J., Eds.; Academic Press: Cambridge, MA, USA, 1988; pp. 11–30. [Google Scholar]
- Singh, R.; Shukla, A.; Tiwari, S.; Srivastava, M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energy Rev. 2014, 32, 713–728. [Google Scholar] [CrossRef]
- Meng, X.; Ragauskas, A.J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol. 2014, 27, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- GranBio. Available online: http://www.granbio.com.br/wp-content/uploads/2014/09/partida_portugues.pdf (accessed on 10 November 2014).
- UNICA. Available online: http://www.unica.com.br/noticia/6338422920320945974/acordo-novozymes-raizen-marca-inicio-da-producao-em-larga-escala-de-etanol-celulosico-no-brasil/ (accessed on 10 November 2014).
- Canilha, L.; Chandel, A.K.; Milessi, T.S.S.; Antunes, F.A.F.; Freitas, W.L.C.; Felipe, M.G.A.; Silva, S.S. Bioconversion of sugarcane biomas sinto ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J. Biomed. Biotechnol. 2012, 2012, 989572. [Google Scholar] [CrossRef] [PubMed]
- RAIZEN. Available online: http://www.raizen.com/plano-para-o-etanol-2g (accessed on 9 November 2014).
- DSM. Available online: http://www.dsm.com/corporate/media/informationcenter-news/2014/09/29–14-first-commercial-scale-cellulosic-ethanol-plant-in-the-united-states-open-for-business.html (accessed on 11 November 2014).
- European Biofuels Technology Platform. Available online: http://www.biofuelstp.eu/cellulosic-ethanol.html#abengoa (accessed on 10 November 2014).
- Nieto, P.P.; Hidalgo, D.; Irusta, R.; Kraut, D. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain). Water Sci. Technol. 2012, 66, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Zeb, B.S.; Mahmood, Q.; Pervez, A. Characteristics and Performance of Anaerobic Wastewater Treatment (A Review). J. Chem. Soc. Pak. 2013, 35, 217–232. [Google Scholar]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources, 2nd ed.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 2012, 11, 325–341. [Google Scholar] [CrossRef]
- Ometto, F.; Quiroga, G.; Psenicka, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 2015, 158, 35–41. [Google Scholar] [CrossRef]
- Ogejo, J.A.; Li, L. Enhancing biomethane production from flush dairy manure with turkey processing wastewater. Appl. Energy 2010, 87, 3171–3177. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Kotay, M.K.; Das, D. Biohydrogen as a renewable energy resource—Prospects and potentials. Int. J. Hydrog. Energy 2008, 33, 258–363. [Google Scholar]
- Das, D.; Veziroglu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrog. Energy 2001, 26, 13–28. [Google Scholar] [CrossRef]
- Wong, Y.M.; Wu, T.Y.; Juan, J.C. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew. Sustain. Energy Rev. 2014, 34, 471–482. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrère, H.; Steyer, J.-P. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrog. Energy 2010, 35, 10660–10673. [Google Scholar] [CrossRef]
- Ntaikou, I.; Antonopoulou, G.; Lyberatos, G. Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste Biomass Valoriz. 2010, 1, 21–39. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrog. Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Show, K.Y.; Lee, D.J.; Tay, J.H.; Lin, C.Y.; Chang, J.S. Biohydrogen production: Current perspectives and the way forward. Int. J. Hydrog. Energy 2012, 37, 15616–15631. [Google Scholar] [CrossRef]
- Mudhoo, A.; Forster-Carneiro, T.; Sánchez, A. Biohydrogen production and bioprocess enhancement: A review. Crit. Rev. Biotechnol. 2011, 31, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, G.; Pantoja-Filho, J.L.R.; Agnelli, J.A.B.; Barboza, M.; Zaiat, M. Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Appl. Biochem. Biotechnol. 2012, 168, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Luo, G.; Xie, L.; Zhou, Q.; Angelidaki, I. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour. Technol. 2011, 102, 8700–8706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Liu, D.; Zeng, R.J.; Angelidaki, I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 2006, 40, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ren, N.-Q.; Wang, A.J. Enhanced biohydrogen production from corn stover hydrolyzate by pretreatment of two typical seed sludges. Int. J. Hydrog. Energy 2014, 39, 14653–14662. [Google Scholar] [CrossRef]
- Ramprakask, B.; Muthukumar, K. Comparative study on the production of biohydrogen from rice mill wastewater. Int. J. Hydrog. Energy 2014, 39, 14613–14621. [Google Scholar] [CrossRef]
- Guo, Y.-C.; Dai, Y.; Bai, Y.-X.; Li, Y.-H.; Fan, Y.-T.; Hou, H.-W. Co-producing hydrogen and methane from higher-concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion. Int. J. Hydrog. Energy 2014, 39, 14204–14211. [Google Scholar] [CrossRef]
- Tawfik, A.; Salem, A.H. Optimization of hydrogen production from pretreated rice straw waste in a mesophilic up-flow anaerobic staged reactor. Int. J. Energy Res. 2014, 38, 1155–1161. [Google Scholar] [CrossRef]
- Santos, S.C.; Rosa, P.R.F.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int. J. Hydrog. Energy 2014, 39, 9599–9610. [Google Scholar] [CrossRef]
- Fernandez, C.; Carracedo, B.; Martinez, E.J.; Gomez, X. Application of a packed bed reactor for the production of hydrogen from cheese whey permeate: Effect of organic loading rate. J. Environ. Sci. Health Part A 2014, 49, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, S.R.; Chaganti, S.R.; Lalman, J.A.; Daniel, H. Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR. Int. J. Hydrog. Energy 2014, 39, 10003–10015. [Google Scholar] [CrossRef]
- Veeravalli, S.S.; Chaganti, S.R.; Lalman, J.A.; Heath, D.D. Fermentative H2 production using a switchgrass steam exploded liquor fed to mixed anaerobic cultures: Effect of hydraulic retention time, linoleic acid and nitrogen sparging. Int. J. Hydrog. Energy 2014, 39, 9994–10002. [Google Scholar] [CrossRef]
- Chookaew, T.; O-Thong, S.; Prasertsan, P. Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int. J. Hydrog. Energy 2014, 39, 9580–9587. [Google Scholar] [CrossRef]
- Phummala, K.; Imai, T.; Reungsang, A.; Chairattanamanokorn, P.; Sekine, M.; Higuchi, T.; Yamamoto, K.; Kanno, A. Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring. J. Environ. Sci. 2014, 26, 1361–1368. [Google Scholar] [CrossRef]
- Gadhe, A.; Sonawane, S.S.; Varma, M.N. Ultrasonic pretreatment for an enhancement of biohydrogen production from complex food waste. Int. J. Hydrog. Energy 2014, 39, 7721–7729. [Google Scholar] [CrossRef]
- De Sá, L.R.V.; Cammarota, M.C.; Oliveira, T.C.; Oliveira, E.M.M.; Matos, A.; Ferreira-Leitão, V.S. Pentoses, hexoses and glycerin as substrates for biohydrogen production: An approach for Brazilian biofuel integration. Int. J. Hydrog. Energy 2013, 38, 2986–2997. [Google Scholar] [CrossRef]
- Faber, M.O.; Ferreira-Leitão, V.S. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production. Bioresour. Technol. 2016, 219, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Downey, W. Trends in Biopharmaceutical Contract Manufacturing. Chim. Oggi-Chem. Today 2013, 31, 19–24. [Google Scholar]
- Meyer, H.-P.; Eichhorn, E.; Hanlon, S.; Lütz, S.; Schürmann, M.; Wohlgemuth, R.; Coppolecchia, R. The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortim (SIBC). Catal. Sci. Technol. 2013, 3, 29–40. [Google Scholar] [CrossRef]
- Wenda, S.; Illner, S.; Mell, A.; Kragl, U. Industrial biotechnology—The future of green chemistry? Green Chem. 2011, 13, 3007–3047. [Google Scholar] [CrossRef]
- Ansorge-Schumacher, M.B.; Thum, O. Immobilised lipases in the cosmetics industry. Chem. Soc. Rev. 2013, 42, 6475–6490. [Google Scholar] [CrossRef] [PubMed]
- The Organisation for Economic Co-operation and Development. Available online: http:// www.oecd.org (accessed on 17 November 2014).
Solid Substrate | Microorganism | Enzyme | Reference |
---|---|---|---|
Babassu cake | Penicillium simplicissimum | Lipase | [34] |
Penicillium restricitum | [14] | ||
Castor bean waste | Penicillium simplicissimum | [35] | |
Soybean bran | Penicillium verrusosum | [36] | |
Barley bran | Rhizopus oryzae | [37] | |
Sugarcane bagasse | Rhizopus homothallicus (IRD13a) | [32] | |
Wheat bran | Aspergillus niger | [38] | |
Feather meal supplemented with corn steep liquor | Streptomyces sp. 594 | Protease | [40] |
Soy cake | Bacillus subtilis | [39] | |
Wheat bran | Aspergillus oryzae MTCC 5341 | [41] | |
Corncob residue | Trichodermareesei ZU-02 | Cellulase | [42] |
Steam exploded wheat straw | Neurosporasitophila | [43] | |
Wheat bran, beet pulp, and apple pomace | Chaetomium globosum and Aspergillus niger | Xylanase | [44] |
Rice straw | Aspergillus niger KK2 mutant | [45] | |
Wheat bran | Aspergillus niger | Pectinase | [16] |
Dried deseeded sunflower head | Aspergillus niger | [46] | |
Coconut oil cake | Aspergillus oryzae | Amylase | [47] |
Babassu cake | Aspergillus awamori IOC-3914 | [48] | |
Sugarcane bagasse | Aspergillus niger | [49] | |
Wheat bran, wheat straw, cotton oil cake, and gram bran | Aspergillus oryzae SBS50 | Phytase | [51] |
Citrus peel | Aspergillus niger | [50] | |
Mustard cake | Aspergillus flavus | [52] | |
Rosewood saw dust | Aspergillus heteromorphus MTCC 8818 | Tannase | [55] |
Citrus residue | Paecilomyces variotii | [56] | |
Wheat bran | Staphylococcus sp. and Kluyveromyces marxianus | Inulinase | [53] |
Sugarcane bagasse and soybean bran | Kluyveromyces marxianus | [54] | |
Mixture of soybean meal and wheat bran | Aspergillus niger | Invertase | [57] |
Mixture of soybean meal and cottonseed meal |
Solid Substrate | Microorganism Used to SSF | Feedstock for Hydrolysis | Product | Reference |
---|---|---|---|---|
Babassu cake | A. awamori | Babassu flour | Ethanol | [83] |
Wheat bran | A. awamori and A. oryzae | Gluten-free flour and gluten from wheat | Succinic acid | [84] |
Pearled whole wheat grains | A. awamori | Pearled whole wheat grains | Polyhydroxybutyrate (PHB) and ethanol | [85] |
Wheat milling by-products | A. awamori | Flour-rich waste | Microbial oil | [89] |
Rapeseed meal | A. oryzae | Rapessed meal | 1,3-propanediol (PDO) | [90] |
Enzyme/Source | Effluent/Treatment Conditions | Decolorization | Reference |
---|---|---|---|
Bitter gourd (Momordica charantia) peroxidases (BGP—99 U/mg protein)—immobilized on concanavalin A layered calcium alginate—starch beads | Textile effluent (diluted) Continuous two-reactor system—first column with immobilized BGP (1162 U) and second column with activated silica, 1.0 mmol/L hydroxybenzotriazole, 0.72 mmol/L H2O2, 16 mL/h, pH 5.0, 37 °C, 2 months |
| [131] |
Bitter gourd (Momordica charantia) peroxidases (BGP—99 U/mg protein)—soluble and immobilized on Sephadex G-50 | Dyeing effluent, 0.125 U/mL, pH 3.5, 0.75 mmol/L H2O2, 30 °C, stirring, 8 h |
| [132] |
Crude enzyme produced by a marine white-rot fungus (921 U/L laccase) | Textile and paper and pulp industry effluents, 9 U/mL laccase, pH 6, 60 °C, 6–12 h |
| [133] |
Horseradish peroxidase (HRP) immobilized on β-cyclodextrin-chitosan complex (3500 U/g) | Textile effluent (diluted 1:20) Continuous bed reactors filled with the un-crosslinked or crosslinked HRP (4200 U each), 20 mL/h, 0.6 mmol/L H2O2, 50 °C |
| [134] |
Laccase from Trametes trogii | Textile factory effluent (20%), laccase with or without a mediator (1-hdroxybenzotriazole—HBT, pH 5, 30 °C) |
| [135] |
Laccase (2.35 U/mg protein) produced by basidiomycete fungus Cyathus bulleri | Dyeing bath effluent, pH 9, 0.15 g/L alum, coagulated dye reconstituted in phosphate buffer (pH 5.6). 2-2´ azinobis (3-ethylbenzthiazoline-6-sulfonate (ABTS)) 100 µmol/L) and laccase (10 U/L), Enzyme membrane reactor 1 L (polyacrylonitrile membrane of 20 kDa), HRT 10 h |
| [136] |
Laccase and peroxidases Baysolex (an enzymatic cocktail containing laccase, catechol oxidase), bilirubin oxidase and peroxidase from Bayer | Wastewater from the dyeing process of the textile company containing Reactive Black 5, Reactive Red 158, and Reactive Yellow 27. Stirred-tank 1 m3, pH 6.4, addition of hydrogen peroxide and a redox mediator, 42 °C, 20 min |
| [137] |
Potato (Solanum tuberosum) polyphenol oxidase | Textile dyeing industry, 424 U/mL, pH 3.0, 25 °C, 1 h |
| [138] |
Potato polyphenol oxidase (PPO)—soluble and immobilized on Celite 545 | Dyeing effluent, 1.5 U/mL, pH 3, 37 °C, stirring/1 h |
| [139] |
Salt-tolerant laccase from Peniophora cinerea | Textile industry effluent (diluted 1:10), pH 4.0, 1.0 U/mL pre-purified laccase, 1 mmol/L syringaldehyde, 1 mmol/L MnSO4, 1 mmol/L sodium oxalate, 50 °C, 72 h |
| [140] |
Horseradish peroxidase (HRP) from Horseradish (Armoracia rusticana) | Simulated textile wastewater containing (120 mL/L) Drimarene Blue X-3LR (DMBLR), Drimarene Blue X-BLN (DMBBLN), Drimarene Rubinol X-3LR (DMR), and Drimarene Blue CL-R (RBBR); 35 °C, 0.55 mmol/L and 1 h | Color removal for DMBLR (99%), DMBBLN (77%), DMR (94%), and RBBR (97%). | [141] |
Commercial laccase from Aspergillus oryzae and a laccase rich extract from Pleurotus ostreatus | Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR); 0.02 U/mL, 0.017 mM of ABTS, 35 °C and pH 4 | Decolorization of DMR (80%–90%, 1 h) and RBBR (80%–90%, 24 h) with both laccases (presence of ABTS). DMBLR (85%–97%, 1 h) and DMBBLN (63%–84%, 24 h) with both laccases (absence of ABTS) | [142] |
Lignin peroxidase from Phanerochaete chrysosporium | Methylene blue (MB) 50 mg/L, 30 °C, pH 4, 30 min, ratio MB:H2O2 of 1:5 | Efficient removal of 90% color in reactions with MB | [143] |
Enzyme/Source | Effluent/Treatment Conditions | Results | Reference |
---|---|---|---|
Crude extract of soybean peroxidase (SBP) | Coal-tar effluent containing phenols (15 mmol/L), SBP, peroxide, and polyethylene glycol (PEG), sodium dodecyl sulfate (SDS) or Triton X-100 |
| [150] |
Horseradish peroxidase and catalase from Sigma | Phenol-containing (10–14 mg/L) condensates from the scrubber of a recovery furnace from hardwood Kraft pulp and paper mill, pH 7.0, HRP, 0.70 mmol/L H2O2 |
| [151] |
Laccase from Lentinula edodes immobilized on Eupergit® C (170 U/g) | Olive mill wastewater containing 1.35 g total Phenols/L and 0.89 g o-diphenols/L, fluidized bed reactor with 2.7 g Eupergit-laccase complex, effluent volume: catalyst weight ratio of 200, OMW 5 mL/min, 35 °C, recirculation for 2 h |
| [152] |
Laccase from the Japanese lacquer tree R. vernicifera (Sigma–Aldrich) | Olive mills wastewaters containing 3.2 (C1) and 5.8 g total phenols/L (C2) and organic extracted fractions (EC1 and EC2), 100 U laccase, 2.5 or 5.0 mg/mL birnessite (δ-MnO2), pH 5.0, 30 °C, stirring, 24–48 h |
| [153] |
Soybean peroxidase (SBP) | Alkyd resin manufacturing effluent containing TOC (>40 g/L) and phenol (6.8–27.7 mmol/L), pH 7.0, Triton X-100, enzyme, hydrogen peroxide (peroxide/phenol molar ratio of 1.5), 2 h |
| [154] |
Soybean peroxidase (SBP) | Oil refinery effluent, SBP, polyethylene glycol (PEG), pH 6.0–8.0, 3 h |
| [155] |
Plant peroxidase from potato pulp | Wastewater from fine mechanics industry, potato pulp, hydrogen peroxide, pH 4.0–8.0, 2 h |
| [100] |
Soybean hull peroxidase (SBP) | Coffee processing wastewater, 218 mg/L total phenols, free and immobilized SBP (crosslinked chitosan beads), hydrogen peroxide 3 mM, pH 6, 45–90 min |
| [101] |
Solid Substrate | Microorganism | Oil | Conversion (%) and Time (h) | Reference |
---|---|---|---|---|
Corn bran | Burkholderia cepacia | Oleic acid | 94%/18 h | [161] |
Sugarcane bagasse and sunflower seed meal | Burkholderia cepacia | Soybean oil | 95%/46 h | [162] |
Sugarcane bagasse and sunflower seed Cake | Burkholderia cenocepacia | Soybean oil | 86%/96 h | [163] |
Sugarcane bagasse and sunflower seed meal | Burkholderia cepacia | FFAs from hydrolysis of soybean soapstock acid oil | 93%/31 h | [160] |
Babassu cake | Rhizomucor miehei | FFAs from hydrolysis of macauba oil | 91%/8 h | [165] |
Substrate | Inocula | H2 production Generation Performance | Reference |
---|---|---|---|
Corn stover | River sediments | 4.17 mmol H2/g utilized sugar | [213] |
Anaerobic granular sludge | 2.84 mmol H2/g utilized sugar | ||
Rice mill wastewater | Enterobacter aerogenes and Citrobacter ferundii | 1.74 mol H2/mol reducing sugar | [214] |
Corn stalk | Cow dung compost | 2.56 mol H2/mol hexose | [215] |
Rice straw | Pilot-scale anaerobic reactor for H2 production from municipal food waste | 2.1 mol H2/g COD removal | [216] |
Sugarcane vinasse | Seed sludge from distillery plant | 2.86 mmol H2/g COD added | [217] |
Whey powder solution | Biosolid pellets from the wastewater treatment | 0.025 m3 H2/Kg COD | [218] |
Corn stalk | Culture microbial from brewery wastewater treatment | 98 mL/g TVS | [219] |
Switchgrass | Anaerobic granular culture from a brewery wastewater treatment facility | 2.56 mol H2/mol hexose | [220] |
Crude glycerol | Klebsiella sp. TR17 | 44.27 mmol H2/g glycerol consumed | [221] |
Wooden chopsticks | Enriched culture from an hot spring | 195 mL H2/g total sugars consumed | [222] |
Food waste | UASB reactor of the dairy industry | 149 mL/g VS added | [223] |
Synthetic media for different substrates related to biofuels production (hexoses, pentoses and glycerin) | Municipal sewage treatment plant | 4.24 mol H2/mol sucrose; 2.19 mol H2/mol glucose; 2.09 mol H2/mol fructose; 1.88 mol H2/mol xylose and 0.80 mol H2/mol glycerin | [224] |
Residual glycerin from biodiesel production | Municipal sewage treatment plant | 2.44 mol H2/mol glycerin | [225] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Leitão, V.S.; Cammarota, M.C.; Gonçalves Aguieiras, E.C.; Vasconcelos de Sá, L.R.; Fernandez-Lafuente, R.; Freire, D.M.G. The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts 2017, 7, 9. https://doi.org/10.3390/catal7010009
Ferreira-Leitão VS, Cammarota MC, Gonçalves Aguieiras EC, Vasconcelos de Sá LR, Fernandez-Lafuente R, Freire DMG. The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts. 2017; 7(1):9. https://doi.org/10.3390/catal7010009
Chicago/Turabian StyleFerreira-Leitão, Viridiana Santana, Magali Christe Cammarota, Erika Cristina Gonçalves Aguieiras, Lívian Ribeiro Vasconcelos de Sá, Roberto Fernandez-Lafuente, and Denise Maria Guimarães Freire. 2017. "The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits" Catalysts 7, no. 1: 9. https://doi.org/10.3390/catal7010009
APA StyleFerreira-Leitão, V. S., Cammarota, M. C., Gonçalves Aguieiras, E. C., Vasconcelos de Sá, L. R., Fernandez-Lafuente, R., & Freire, D. M. G. (2017). The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 7(1), 9. https://doi.org/10.3390/catal7010009