Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Details
3.1. General Procedure for the Synthesis of N-Methoxybenzamide from Acid Chloride
3.2. General Procedure for the Synthesis of N-Methoxybenzamide from Acid
3.3. General Procedure for the Synthesis of 2,3-Allenoic Acid Esters
3.4. General Procedure for Pd-Catalyzed Oxidative Annulation with 2,3-Allenoic Acid Esters
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hasrat, J.A.; De Bruyne, T.; De Backer, J.P.; Vauquelin, G.; Vlietinck, A.J. Isoquinoline derivatives isolated from the fruit of Annona muricata as 5-HTergic 5-HT1A receptor agonists in rats: Unexploited antidepressive (lead) products. J. Pharm. Pharmacol. 1997, 49, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Kim, K.H.; Lee, S.O.; Lee, K.R.; Son, M.; Jin, M. Tetrahydroberberine, an isoquinoline alkaloid isolated from corydalis tuber, enhances gastrointestinal motor function. J. Pharmacol. Exp. Ther. 2011, 338, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Solecka, J.; Sitkowski, J.; Bocian, W.; Bednarek, E.; Kawecki, R.; Kozerski, L. A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part II: Physicochemical properties and structure elucidation. J. Antibiot. 2009, 62, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Toth, C.E.; Ferrari, M.; Contessa, A.R.; Santi, R. Study on the mechanism of spasmolytic acion of some isoquinoline drugs. Arch. Int. Pharmacodyn. Ther. 1966, 162, 123–139. [Google Scholar] [PubMed]
- Appenzeller, O.; Schnieden, H. Effect of some drugs on reflex vasodilatation of hand produced by radiant heating of trunk. J. Appl. Physiol. 1964, 19, 995–998. [Google Scholar] [PubMed]
- Noon, J.P.; Walker, B.R.; Hand, M.F.; Webb, D.J. Studies with iontophoretic administration of drugs to human dermal vessels in vivo: Cholinergic vasodilatation is mediated by dilator prostanoids rather than nitric oxide. Br. J. Clin. Pharmacol. 1998, 45, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Praskurnichii, E.A.; Shevchenko, O.P.; Makarova, S.V.; Zhukova, V.A.; Savel’eva, S.A. Effect of antihypertensive drugs of various pharmacological groups on reaction of arterial pressure under conditions of stree testing. Part II. Value of various strategies of potentiation of systemic vasodilatation. Kardiologiia 2008, 48, 18–24. [Google Scholar] [PubMed]
- Panchaud, P.; Bruyere, T.; Blumstein, A.C.; Bur, D.; Chambovey, A.; Ertel, E.A.; Gude, M.; Hubschwerlen, C.; Jacob, L.; Kimmerlin, T.; et al. Discovery and optimization of isoquinoline ethyl ureas as antibacterial agents. J. Med. Chem. 2017, 60, 3755–3775. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.L.; Liou, Y.F.; Lu, S.T. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Gaoxiong Yi Xue Ke Xue Za Zhi 1989, 5, 132–145. [Google Scholar] [PubMed]
- Fadaeinasab, M.; Taha, H.; Fauzi, P.N.; Ali, H.M.; Widyawaruyanti, A. Anti-malarial activity of isoquinoline alkaloids from the stem bark of actinodaphne macrophylla. Nat. Prod. Commun. 2015, 10, 1541–1542. [Google Scholar] [PubMed]
- Iwasa, K.; Moriyasu, M.; Tachibana, Y.; Kim, H.S.; Wataya, Y.; Wiegrebe, W.; Bastow, K.F.; Cosentino, L.M.; Kozuka, M.; Lee, K.H. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorg. Med. Chem. 2001, 9, 2871–2884. [Google Scholar] [CrossRef]
- Miller, J.F.; Gudmundsson, K.S.; D’Aurora Richardson, L.; Jenkinson, S.; Spaltenstein, A.; Thomson, M.; Wheelan, P. Synthesis and sar of novel isoquinoline CXCR4 antagonists with potent anti-HIV activity. Bioorg. Med. Chem. Lett. 2010, 20, 3026–3030. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, H.; Li, L.; Guo, J.; Wang, Y.; Zhao, M.; Peng, S. Design, synthesis, and testing of an isoquinoline-3-carboxylic-based novel anti-tumor lead. Bioorg. Med. Chem. Lett. 2015, 25, 4434–4436. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Yang, Y.; Zhao, M.; Zhang, X.; Wu, J.; Chen, G.; Peng, L.; Wang, Y.; Peng, S. A class of novel N-isoquinoline-3-carbonyl-l-amino acid benzylesters: Synthesis, anti-tumor evaluation and 3D QSAR analysis. Eur. J. Med. Chem. 2011, 46, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Enomoto, K. Studies on anti-tumor activity of isoquinoline derivatives. I. On the relationship between chemical constituion and antitumor (Hela and Ehrlich) activity. Yakugaku Zasshi 1968, 88, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.E.; Hrudka, J.J.; Dudley, G.B. Thermal cycloisomerization of putative allenylpyridines for the synthesis of isoquinoline derivatives. Org. Lett. 2016, 18, 4104–4107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.P.; Liu, M.C.; Cai, Q.; Jia, F.C.; Wu, A.X. A cascade coupling strategy for one-pot total synthesis of beta-carboline and isoquinoline-containing natural products and derivatives. Chemistry 2013, 19, 10132–10137. [Google Scholar] [CrossRef] [PubMed]
- Brossi, A. New approaches on the synthesis of isoquinoline derivatives related with natural products. Trans. N. Y. Acad. Sci. 1966, 28, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Angelov, P.A.; Ivanov, I.I.; Venkov, A.P. Synthesis of some novel 11b-substituted pyrimido[6,1-a]-isoquinoline derivatives. Molecules 2004, 9, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.; Cohrt, A.E.; Petersen, M.A.; Wu, P.; Clausen, M.H.; Nielsen, T.E. Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a pictet-spengler cyclization/metal-catalyzed cross coupling/amidation sequence. Bioorg. Med. Chem. 2015, 23, 2646–2649. [Google Scholar] [CrossRef] [PubMed]
- Kapdi, A.R.; Maiti, D. (Eds.) Strategies for Palladium-Catalyzed Non-Directed and Directed C–H Bond Functionalization; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Li, G. Chapter 8—Directed meta-selective C–H bond functionalizations a2. In Strategies for Palladium-Catalyzed Non-Directed and Directed C–H Bond Functionalization; Kapdi, A.R., Maiti, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 289–325. [Google Scholar]
- Balme, G.; Bossharth, E.; Monteiro, N. Pd-assisted multicomponent synthesis of heterocycles. Eur. J. Org. Chem. 2003, 4101–4111. [Google Scholar] [CrossRef]
- Gulias, M.; Mascarenas, J.L. Metal-catalyzed annulations through activation and cleavage of C–H bonds. Angew. Chem. Int. Ed. Engl. 2016, 55, 11000–11019. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front. 2015, 2, 1107–1295. [Google Scholar] [CrossRef]
- Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of extended PI-systems through C–H activation. Angew. Chem. Int. Ed. Engl. 2015, 54, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J. 2010, 16, 11212–11222. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, F.; Li, X. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 2012, 41, 3651–3678. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, L. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by HH/Het-H bond functionalizations. Acc. Chem. Res. 2014, 47, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Kozhushkov, S.I.; Ackermann, L. Ruthenium-catalyzed direct oxidative alkenylation of arenes through twofold C–H bond functionalization. Chem. Sci. 2013, 4, 886–896. [Google Scholar] [CrossRef]
- Thrimurtulu, N.; Nallagonda, R.; Volla, C.M.R. Cobalt-catalyzed aryl C–H activation and highly regioselective intermolecular annulation of sulfonamides with allenes. Chem. Commun. 2017, 53, 1872–1875. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-catalyzed C–H functionalization reactions: Efficient synthesis of heterocycles. Chem. Rev. 2015, 115, 1622–1651. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.Y.; Farmer, M.E.; Chen, Y.Q.; Yu, J.Q. A simple and versatile amide directing group for C–H functionalizations. Angew. Chem. Int. Ed. Engl. 2016, 55, 10578–10599. [Google Scholar] [CrossRef] [PubMed]
- Guimond, N.; Gorelsky, S.I.; Fagnou, K. Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: Improved reactivity and mechanistic studies. J. Am. Chem. Soc. 2011, 133, 6449–6457. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Liu, P.; Liu, Q.; He, Z.T.; Wu, N.Y.; Tian, P.; Lin, G.Q. Tunable arylative cyclization of 1,6-enynes triggered by rhodium(III)-catalyzed C–H activation. J. Am. Chem. Soc. 2014, 136, 15607–15614. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F. Mild Rh(III)-catalyzed C–H activation and annulation with alkyne mida boronates: Short, efficient synthesis of heterocyclic boronic acid derivatives. J. Am. Chem. Soc. 2012, 134, 19592–19595. [Google Scholar] [CrossRef] [PubMed]
- Desai, L.V.; Hull, K.L.; Sanford, M.S. Palladium-catalyzed oxygenation of unactivated sp3 C–H bonds. J. Am. Chem. Soc. 2004, 126, 9542–9543. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.S.; Wang, G.W. Palladium-catalyzed ortho-alkoxylation of anilides via C–H activation. J. Org. Chem. 2012, 77, 9504–9509. [Google Scholar] [CrossRef] [PubMed]
- Rauf, W.; Brown, J.M. Palladium-catalysed directed C–H activation by anilides and ureas; water participation in a general base mechanism. Org. Biomol. Chem. 2016, 14, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.W.; Yuan, T.T.; Wu, X.L. Direct ortho-acetoxylation of anilides via palladium-catalyzed sp2 C–H bond oxidative activation. J. Org. Chem. 2008, 73, 4717–4720. [Google Scholar] [CrossRef] [PubMed]
- Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T. Highly regioselective palladium-catalyzed annulation reactions of heteroatom-substituted allenes for synthesis of condensed heterocycles. Chem. Pharm. Bull. 2005, 53, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.; France, D.J. Palladium-catalyzed heterocyclization: A carbon-centered approach. Asian J. Org. Chem. 2017, 6, 27–40. [Google Scholar] [CrossRef]
- Ramesh, K.; Satyanarayana, G. A domino palladium-catalyzed cyclization: One-pot synthesis of 4b-alkyl-10-phenyl-4b,5-dihydroindeno[2,1-a]indenes via carbopalladation followed by C–H activation. J. Org. Chem. 2017, 82, 4254–4264. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Zhao, H.; Lu, P.; Wang, Y. Rh-catalyzed annulations of N-methoxybenzamides and ketenimines: Sterically and electronically controlled synthesis of isoquinolinones and isoindolinones. J. Org. Chem. 2017, 82, 3787–3797. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.Q.; Du, C.; Zhu, X.; Li, P.X.; Zhang, J.H.; Niu, J.L.; Song, M.P. Cobalt(II)-catalyzed decarboxylative C–H activation/annulation cascades: Regioselective access to isoquinolones and isoindolinones. Org. Lett. 2016, 18, 3610–3613. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, J.; Haridharan, R.; Cheng, C.H. Rhodium(III)-catalyzed oxidative C–H coupling of N-methoxybenzamides with aryl boronic acids: One-pot synthesis of phenanthridinones. Angew. Chem. Int. Ed. Engl. 2012, 51, 12343–12347. [Google Scholar] [CrossRef] [PubMed]
- Reddy Chidipudi, S.; Khan, I.; Lam, H.W. Functionalization of Csp3-H and Csp2-H bonds: Synthesis of spiroindenes by enolate-directed ruthenium-catalyzed oxidative annulation of alkynes with 2-aryl-1,3-dicarbonyl compounds. Angew. Chem. Int. Ed. Engl. 2012, 51, 12115–12119. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.F.; Han, Z.Y.; He, Y.P.; Yu, J.; Gong, L.Z. Metal-free oxidation/C(sp3)-H functionalization of unactivated alkynes using pyridine-N-oxide as the external oxidant. Angew. Chem. Int. Ed. Engl. 2012, 51, 12307–12310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-S.; Wu, J.-Q.; Liu, X.; Wang, H. Tandem catalysis: Rh(III)-catalyzed C–H allylation/PdII)-catalyzed N-allylation toward the synthesis of vinyl-substituted N-heterocycles. ACS Catal. 2015, 5, 210–214. [Google Scholar] [CrossRef]
- Webb, N.J.; Marsden, S.P.; Raw, S.A. Rhodium(III)-catalyzed C–H activation/annulation with vinyl esters as an acetylene equivalent. Org. Lett. 2014, 16, 4718–4721. [Google Scholar] [CrossRef] [PubMed]
- Jeganmohan, M.; Cheng, C.H. Transition metal-catalyzed three-component coupling of allenes and the related allylation reactions. Chem. Commun. 2008, 3101–3117. [Google Scholar] [CrossRef] [PubMed]
- Meguro, M.; Yamamoto, Y. Novel palladium catalyzed formal [3 + 2] cycloaddition via hydrocarbonation reactions of allenes. J. Org. Chem. 1999, 64, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.T.; Ma, S.M. Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon-carbon bonds. Acc. Chem. Res. 2014, 47, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, R.; Dinesh, C.U.; Nandanan, E.; Khan, F.A. Palladium-catalyzed reactions of allenes. Chem. Rev. 2000, 100, 3067–3125. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Wu, S.; Fu, C.; Ma, S. Room-temperature synthesis of trisubstituted allenylsilanes via regioselective C–H functionalization. J. Am. Chem. Soc. 2013, 135, 18284–18287. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Glorius, F. Mild rhodium(III)-catalyzed C–H activation and intermolecular annulation with allenes. Angew. Chem. Int. Ed. Engl. 2012, 51, 7318–7322. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.F.; Wang, Y.Q.; Zhang, L.L.; Song, X.R.; Liu, X.Y.; Liang, Y.M. Palladium-catalyzed C–H activation and intermolecular annulation with allenes. Chem. Eur. J. 2014, 20, 5087–5091. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Wang, L.; Rao, Y. Regioselective annulation of aryl sulfonamides with allenes through cobalt-promoted C–H functionalization. Org. Lett. 2017, 19, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Cobalt-catalyzed C–H activation and regioselective intermolecular annulation with allenes. Org. Chem. Front. 2017, 4, 204–209. [Google Scholar] [CrossRef]
- Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C–H activation and addition on unsaturated substrates: Reactions and mechanistic aspects. Chem. Rev. 2002, 102, 1731–1769. [Google Scholar] [CrossRef] [PubMed]
- Wrigglesworth, J.W.; Cox, B.; Lloyd-Jones, G.C.; Booker-Milburn, K.I. New heteroannulation reactions of N-alkoxybenzamides by Pd(II) catalyzed C–H activation. Org. Lett. 2011, 13, 5326–5329. [Google Scholar] [CrossRef] [PubMed]
- Castellano, S.; Fiji, H.D.; Kinderman, S.S.; Watanabe, M.; Leon, P.; Tamanoi, F.; Kwon, O. Small-molecule inhibitors of protein geranylgeranyltransferase type I. J. Am. Chem. Soc. 2007, 129, 5843–5845. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst (10 mol%) | Oxidant (equiv.) | Temp (°C) | Additive (equiv.) | Solvent | Yield (%) 2 |
---|---|---|---|---|---|---|
1 | Pd(OAc)2 | Ag2CO3 (2) | 100 | - | toluene | 45 |
2 | Pd(TFA)2 | Ag2CO3 (2) | 100 | - | toluene | 43 |
3 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 100 | - | toluene | 65 |
4 | Pd(CH3CN)2Cl2 | Ag2O (2) | 100 | - | toluene | 30 |
5 | Pd(CH3CN)2Cl2 | AgOAc (2) | 100 | - | toluene | 35 |
6 | Pd(CH3CN)2Cl2 | Cu(OAc)2 (2) | 100 | - | toluene | trace |
7 | Pd(CH3CN)2Cl2 | O2 (1 atm) | 100 | - | toluene | trace |
8 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 65 | - | toluene | 10 |
9 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 75 | - | toluene | 35 |
10 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | - | toluene | 73 |
11 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | K2CO3 (2) | toluene | 70 |
12 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | Cs2CO3 (2) | toluene | 63 |
13 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | DIPEA (2) | toluene | 85 |
14 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | DBU (2) | toluene | 15 |
15 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | reflux | DIPEA (2) | THF | none |
16 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | DIPEA (2) | ClCH2CH2Cl | 20 |
17 | Pd(CH3CN)2Cl2 | Ag2CO3 (2) | 85 | DIPEA (2) | DMF | none |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, W.; Wu, Y.; Han, Y.; Li, Y. Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation. Catalysts 2017, 7, 320. https://doi.org/10.3390/catal7110320
Qi W, Wu Y, Han Y, Li Y. Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation. Catalysts. 2017; 7(11):320. https://doi.org/10.3390/catal7110320
Chicago/Turabian StyleQi, Wenke, Yimei Wu, Yongxu Han, and Yi Li. 2017. "Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation" Catalysts 7, no. 11: 320. https://doi.org/10.3390/catal7110320
APA StyleQi, W., Wu, Y., Han, Y., & Li, Y. (2017). Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation. Catalysts, 7(11), 320. https://doi.org/10.3390/catal7110320