Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation
Abstract
:1. Introduction
2. Results and Discussion
2.1. N2-Physisorption
2.2. XRD Analysis
2.3. H2-TPR Analysis
2.4. TEM Analysis
2.5. Raman Analysis
2.6. XPS Analysis
2.7. Catalytic Activity Evaluation
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.2.1. N2-Physisorption
3.2.2. XRD Analysis
3.2.3. H2-TPR Analysis
3.2.4. TEM Analysis
3.2.5. Raman Analysis
3.2.6. X-ray Photoelectron Spectroscopy Analysis
3.3. Catalytic Activity Evaluation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kustov, A.L.; Frey, A.M.; Larsen, K.E.; Johannessen, T.; Nørskov, J.K.; Christensen, C.H. CO methanation over supported bimetallic Ni–Fe catalysts: From computational studies towards catalyst optimization. Appl. Catal. A 2007, 320, 98–104. [Google Scholar] [CrossRef]
- Kopyscinski, J.; Schildhauer, T.J.; Biollaz, S.M.A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel 2010, 89, 1763–1783. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, R.; Zhao, Y. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases. Catal. Today 2010, 158, 470–474. [Google Scholar] [CrossRef]
- Li, H.; Ren, J.; Qin, X.; Qin, Z.; Lin, J.; Li, Z. Ni/SBA-15 catalysts for co methanation: Effects of V, Ce, and Zr promoters. RSC Adv. 2015, 5, 96504–96517. [Google Scholar] [CrossRef]
- Sasaki, T.; Suzuki, T. Sulfide molybdenum catalysts for water–gas shift reaction: Influence of the kind of promoters and supports to generate MoS2. Appl. Catal. A 2014, 484, 79–83. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, B.; Lv, J.; Wang, H.; Li, Z.; Ma, X.; Qin, S.; Sun, Q. Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation. Appl. Catal. A 2013, 466, 224–232. [Google Scholar] [CrossRef]
- Farag, H. Effect of sulfidation temperatures on the bulk structures of various molybdenum precursors. Energy Fuels 2002, 16, 944–950. [Google Scholar] [CrossRef]
- Jalowiecki-Duhamel, L.; Grimblot, J.; Bonnelle, J.P. Effect of Mo loading of MoS2/γ-Al2O3 on diene hydrogenation: Evidence of an “elementary ensemble” site. J. Catal. 1991, 129, 511–518. [Google Scholar] [CrossRef]
- Frank, A.J.; Dick, H.A.; Goral, J.; Nelson, A.J.; Grätzel, M. MoS2-catalyzed methanation of CO with H2S. J. Catal. 1990, 126, 674–676. [Google Scholar] [CrossRef]
- Wang, R.; Smith, K.J. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides. Appl. Catal. A 2009, 361, 18–25. [Google Scholar] [CrossRef]
- Kim, M.Y.; Ha, S.B.; Dong, J.K.; Byun, C.; Park, E.D. CO methanation over supported Mo catalysts in the presence of H2S. Catal. Commun. 2013, 35, 68–71. [Google Scholar] [CrossRef]
- Bergwerff, J.A.; Jansen, M.; Leliveld, B.G.; Visser, T.; Jong, K.P.D.; Weckhuysen, B.M. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates: A Raman microspectroscopy study on the genesis of the active phase. J. Catal. 2006, 243, 292–302. [Google Scholar] [CrossRef]
- Valencia, D.; Klimova, T. Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization. Appl. Catal. B 2013, 129, 137–145. [Google Scholar] [CrossRef]
- Peña, L.; Valencia, D.; Klimova, T. CoMo/SBA-15 catalysts prepared with edta and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Appl. Catal. B 2014, 147, 879–887. [Google Scholar] [CrossRef]
- Rinaldi, N.; Kubota, T.; Okamoto, Y. Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts. Appl. Catal. A 2010, 374, 228–236. [Google Scholar] [CrossRef]
- Rinaldi, N.; Kubota, T.; Okamoto, Y. Effect of citric acid addition on Co−Mo/B2O3/Al2O3 catalysts prepared by a post-treatment method. Ind. Eng. Chem. Res. 2009, 48, 10414–10424. [Google Scholar] [CrossRef]
- Wang, B.; Ding, G.; Shang, Y.; Lv, J.; Wang, H.; Wang, E.; Li, Z.; Ma, X.; Qin, S.; Sun, Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ- Al2O3. Appl. Catal. A 2012, 431–432, 144–150. [Google Scholar] [CrossRef]
- Suresh, R.; Ponnuswamy, V.; Mariappan, R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 2013, 273, 457–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Long, X.; Nie, H. Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts. Catal. Commun. 2016, 82, 20–23. [Google Scholar] [CrossRef]
- Chary, K.V.R.; Reddy, K.R.; Kishan, G.; Niemantsverdriet, J.W.; Mestl, G. Structure and catalytic properties of molybdenum oxide catalysts supported on zirconia. J. Catal. 2004, 226, 283–291. [Google Scholar] [CrossRef]
- Scheffer, B.; Molhoek, P.; Moulijn, J.A. Temperature-programmed reduction of NiO WO3/Al2O3 hydrodesulphurization catalysts. Appl. Catal. 1989, 46, 11–30. [Google Scholar] [CrossRef]
- Srinivasan, T.K.K.; Mestl, G. Raman spectroscopy of monolayer-type catalysts: Supported molybdenum oxides. Catal. Rev. 1998, 40, 451–570. [Google Scholar]
- Aberuagba, F.; Kumar, M.; Muralidhar, G.; Sharma, L.D. Characterization of Al2O3-ZrO2 mixed oxide supported Mo hydrotreating catalyst. Pet. Sci. Technol. 2004, 22, 1287–1298. [Google Scholar] [CrossRef]
- Maity, S.K.; Rana, M.S.; Srinivas, B.N.; Bej, S.K.; Dhar, G.M.; Rao, T.S.R.P. Characterization and evaluation of ZrO2 supported hydrotreating catalysts. J. Mol. Catal. A 2000, 153, 121–127. [Google Scholar] [CrossRef]
- Dufresne, P.; Payen, E.; Grimblot, J.; Bonnelle, J.P. Study of nickel-molybdenum-γ-aluminum oxide catalysts by X-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-γ-aluminum oxide catalysts. J. Phys. Chem. 1981, 85, 2344–2351. [Google Scholar] [CrossRef]
- Plazenet, G.; Payen, E.; Lynch, J.; Rebours, B. Study by EXAFS, Raman, and NMR spectroscopies of the genesis of oxidic pecursors of zeolite-supported HDS catalysts. J. Phys. Chem. B 2002, 106, 7013–7028. [Google Scholar] [CrossRef]
Samples | BET Surface Area (m2/g) | Pore Size (nm) | Pore Volume (cm3/g) | St/So 1 |
---|---|---|---|---|
Mo/Al | 190 | 6.1 | 0.3 | 0.08 |
1CAMo/Al | 219 | 6.1 | 0.4 | 0.11 |
1.5CAMo/Al | 228 | 6.2 | 0.4 | 0.12 |
2CAMo/Al | 261 | 6.3 | 0.4 | 0.13 |
Al2O3 | 298 | 6.5 | 0.5 | / |
Mo/Al-(AS) 2 | 158 | 7.0 | 0.3 | / |
1CAMo/Al-(AS) | 162 | 7.0 | 0.3 | / |
1.5CAMo/Al-(AS) | 170 | 6.9 | 0.4 | / |
2CAMo/Al-(AS) | 186 | 7.6 | 0.4 | / |
Catalyst | CO Conversion (%) | Selectivity to Hydrocarbon (%) (CO2 Free) | ||
---|---|---|---|---|
CH4 | C2H6 | C3H8 | ||
Mo/Al | 42 | 96.9 | 3.0 | 0.1 |
1CAMo/Al | 45 | 96.9 | 2.9 | 0.1 |
1.5CAMo/Al | 47 | 96.3 | 3.5 | 0.2 |
2CAMo/Al | 49 | 96.3 | 3.4 | 0.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Wang, B.; Yu, W.; Wang, W.; Li, Z.; Ma, X. Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation. Catalysts 2017, 7, 151. https://doi.org/10.3390/catal7050151
Meng D, Wang B, Yu W, Wang W, Li Z, Ma X. Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation. Catalysts. 2017; 7(5):151. https://doi.org/10.3390/catal7050151
Chicago/Turabian StyleMeng, Dajun, Baowei Wang, Wenxia Yu, Weihan Wang, Zhenhua Li, and Xinbin Ma. 2017. "Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation" Catalysts 7, no. 5: 151. https://doi.org/10.3390/catal7050151
APA StyleMeng, D., Wang, B., Yu, W., Wang, W., Li, Z., & Ma, X. (2017). Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation. Catalysts, 7(5), 151. https://doi.org/10.3390/catal7050151