Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts
Abstract
:Highlights:
- CeO2-SiO2 displayed low hydrogen yield below 600 °C, with a relevant by-product selectivity.
- Monometallic Pt and Ni sample displayed similar results for ESR between 300 and 600 °C.
- The Pt-Ni catalyst displayed excellent stability at 500 °C, H2O/EtOH = 4 and O2/EtOH = 0.5.
- The Pt-Ni sample was tested to study the effect of contact time on carbon formation.
1. Introduction
2. Catalyst Preparation and Characterization
3. Catalytic Performance Evaluation
4. Catalysts Characterization
5. Catalytic Performances of CeO2-SiO2 Based Samples
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, L.; Huang, L.; Jiao, C.; Huang, Z.; Liang, F.; Liu, S.; Wang, Y.; Zhang, H. Preparation of Rh/Ni bimetallic nanoparticles and their catalytic activities for hydrogen generation from hydrolysis of KBH4. Catalysts 2017, 7, 125. [Google Scholar] [CrossRef]
- Li, G.; Kanezashi, M.; Tsuru, T. Catalytic ammonia decomposition over high-performance Ru/Graphene nanocomposites for efficient COx-free hydrogen production. Catalysts 2017, 7, 23. [Google Scholar] [CrossRef]
- Bär, J.; Antinori, C.; Maier, L.; Deutschmann, O. Spatial concentration profiles for the catalytic partial oxidation of jet fuel surrogates in a Rh/Al2O3 coated monolith. Catalysts 2016, 6, 207. [Google Scholar] [CrossRef]
- Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 2005, 19, 2098–2106. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 2006, 87, 461–472. [Google Scholar] [CrossRef]
- Jo, S.W.; Im, Y.; Do, J.Y.; Park, N.-K.; Lee, T.J.; Lee, S.T.; Cha, M.S.; Jeon, M.K.; Kang, M. Synergies between Ni, Co, and Mn ions in trimetallic Ni1−xCoxMnO4 catalysts for effective hydrogen production from propane steam reforming. Renew. Energy 2017, 113, 248–256. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, S.; Cai, W.-B. Recent Advances on Electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534. [Google Scholar] [CrossRef]
- Nahar, G.; Mote, D.; Dupont, V. Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renew. Sustain. Energy Rev. 2017, 76, 1032–1052. [Google Scholar] [CrossRef]
- Gaudillere, C.; González, J.J.; Chica, A.; Serra, J.M. YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol. Appl. Catal. A Gen. 2017, 538, 165–173. [Google Scholar] [CrossRef]
- Han, S.J.; Song, J.H.; Bang, Y.; Yoo, J.; Park, S.; Kang, K.H.; Song, I.K. Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts. Int. J. Hydrogen Energy 2016, 41, 2554–2563. [Google Scholar] [CrossRef]
- González-Gil, R.; Herrera, C.; Larrubia, M.A.; Mariño, F.; Laborde, M.; Alemany, L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study. Int. J. Hydrogen Energy 2016, 41, 16786–16796. [Google Scholar] [CrossRef]
- Cifuentes, B.; Figueredo, M.; Cobo, M. Response surface methodology and aspen plus integration for the simulation of the catalytic steam reforming of ethanol. Catalysts 2017, 7, 15. [Google Scholar] [CrossRef]
- Marinho, A.L.A.; Rabelo-Neto, R.C.; Noronha, F.B.; Mattos, L.V. Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen. Appl. Catal. A Gen. 2016, 520, 53–64. [Google Scholar] [CrossRef]
- Calles, J.; Carrero, A.; Vizcaíno, A.; Lindo, M. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming. Catalysts 2015, 5, 58–76. [Google Scholar] [CrossRef]
- De Lima, S.M.; da Silva, A.M.; da Costa, L.O.O.; Graham, U.M.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. J. Catal. 2009, 268, 268–281. [Google Scholar] [CrossRef]
- Nabgan, W.; Tuan Abdullah, T.A.; Mat, R.; Nabgan, B.; Gambo, Y.; Triwahyono, S. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int. J. Hydrogen Energy 2016, 41, 22922–22931. [Google Scholar] [CrossRef]
- De Lima, A.E.P.; de Oliveira, D.C. In situ XANES study of cobalt in Co-Ce-Al catalyst applied to steam reforming of ethanol reaction. Catal. Today 2017, 283, 104–109. [Google Scholar] [CrossRef]
- Cifuentes, B.; Hernández, M.; Monsalve, S.; Cobo, M. Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Appl. Catal. A Gen. 2016, 523, 283–293. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Chen, S.; Liu, Y. Co–Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen. Int. J. Hydrogen Energy 2014, 39, 5644–5652. [Google Scholar] [CrossRef]
- Romero-Sarria, F.; Vargas, J.C.; Roger, A.-C.; Kiennemann, A. Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh. Catal. Today 2008, 133, 149–153. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Carrero, A.; Calles, J.A. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. Int. J. Hydrogen Energy 2007, 32, 1450–1461. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Cai, W.; Zhan, E.; Mu, X.; Shen, W. Ethanol steam reforming over Ni and Ni-Cu catalysts. Catal. Today 2009, 146, 31–36. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Castaldo, F.; Ricca, A.; Boettge, D. Ethanol steam reforming over bimetallic coated ceramic foams: Effect of reactor configuration and catalytic support. Int. J. Hydrogen Energy 2015, 40, 12650–12662. [Google Scholar] [CrossRef]
- Moraes, T.S.; Neto, R.C.R.; Ribeiro, M.C.; Mattos, L.V.; Kourtelesis, M.; Ladas, S.; Verykios, X.; Bellot Noronha, F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol. Catal. Today 2015, 242, 35–49. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Lee, C.-L.; Ho, K.-F.; Huang, H.-H.; Yu, S.-W.; Wang, C.-B. Catalytic performance of Pt-promoted cobalt-based catalysts for the steam reforming of ethanol. Int. J. Hydrogen Energy 2014, 39, 5653–5662. [Google Scholar] [CrossRef]
- Kugai, J.; Subramani, V.; Song, C.; Engelhard, M.H.; Chin, Y.-H. Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. J. Catal. 2006, 238, 430–440. [Google Scholar] [CrossRef]
- Pereira, E.B.; Homs, N.; Martí, S.; Fierro, J.L.G.; Ramírez de la Piscina, P. Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes. J. Catal. 2008, 257, 206–214. [Google Scholar] [CrossRef]
- Mondal, T.; Pant, K.K.; Dalai, A.K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int. J. Hydrogen Energy 2015, 40, 2529–2544. [Google Scholar] [CrossRef]
- Osorio-Vargas, P.; Campos, C.H.; Navarro, R.M.; Fierro, J.L.G.; Reyes, P. Rh/Al2O3-La2O3 catalysts promoted with CeO2 for ethanol steam reforming reaction. J. Mol. Catal. A Chem. 2015, 407, 169–181. [Google Scholar] [CrossRef]
- Han, S.J.; Bang, Y.; Yoo, J.; Park, S.; Kang, K.H.; Choi, J.H.; Song, J.H.; Song, I.K. Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni-Al2O3-ZrO2 xerogel catalysts. Int. J. Hydrogen Energy 2014, 39, 10445–10453. [Google Scholar] [CrossRef]
- Konsolakis, M.; Ioakimidis, Z.; Kraia, T.; Marnellos, G. Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe, Co, Ni, Cu) catalysts: Insight into the structure-activity relationship. Catalysts 2016, 6, 39. [Google Scholar] [CrossRef]
- Yu, S.-W.; Huang, H.-H.; Tang, C.-W.; Wang, C.-B. The effect of accessible oxygen over Co3O4-CeO2 catalysts on the steam reforming of ethanol. Int. J. Hydrogen Energy 2014, 39, 20700–20711. [Google Scholar] [CrossRef]
- Cifuentes, B.; Valero, M.; Conesa, J.; Cobo, M. Hydrogen production by steam reforming of ethanol on Rh-Pt catalysts: Influence of CeO2, ZrO2, and La2O3 as supports. Catalysts 2015, 5, 1872–1896. [Google Scholar] [CrossRef] [Green Version]
- Srisiriwat, N.; Therdthianwong, S.; Therdthianwong, A. Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. Int. J. Hydrogen Energy 2009, 34, 2224–2234. [Google Scholar] [CrossRef]
- Shanmugam, V.; Zapf, R.; Neuberg, S.; Hessel, V.; Kolb, G. Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl. Catal. B Environ. 2017, 203, 859–869. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Meloni, E.; Gallucci, F.; Ricca, A. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica. Catal. Today 2017. [Google Scholar] [CrossRef]
- Viviente, J.L.; Meléndez, J.; Pacheco Tanaka, D.A.; Gallucci, F.; Spallina, V.; Manzolini, G.; Foresti, S.; Palma, V.; Ruocco, C.; Roses, L. Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer. Int. J. Hydrogen Energy 2017, 42, 13970–13987. [Google Scholar] [CrossRef]
- Ruocco, C.; Meloni, E.; Palma, V.; van Sint Annaland, M.; Spallina, V.; Gallucci, F. Pt-Ni based catalyst for ethanol reforming in a fluidized bed membrane reactor. Int. J. Hydrogen Energy 2016, 41, 20122–20136. [Google Scholar] [CrossRef]
- Qin, H.; Qian, X.; Meng, T.; Lin, Y.; Ma, Z. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO oxidation. Catalysts 2015, 5, 606–633. [Google Scholar] [CrossRef]
- Cecilia, J.; Arango-Díaz, A.; Marrero-Jerez, J.; Núñez, P.; Moretti, E.; Storaro, L.; Rodríguez-Castellón, E. Catalytic behaviour of CuO-CeO2 systems prepared by different synthetic methodologies in the CO-PROX reaction under CO2-H2O feed stream. Catalysts 2017, 7, 160. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Lindo, M.; Carrero, A.; Calles, J.A. Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation. Int. J. Hydrogen Energy 2012, 37, 1985–1992. [Google Scholar] [CrossRef]
- Dong, X.; Song, M.; Jin, B.; Zhou, Z.; Yang, X. The synergy effect of Ni-M (M = Mo, Fe, Co, Mn or Cr) bicomponent catalysts on partial methanation coupling with water gas shift under low H2/CO conditions. Catalysts 2017, 7, 51–68. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Siang, J.-Y.; Yang, S.-Y.; Ho, K.-F.; Lee, C.-L.; Yeh, C.-T.; Wang, C.-B. Pathways of ethanol steam reforming over ceria-supported catalysts. Int. J. Hydrogen Energy 2012, 37, 13667–13673. [Google Scholar] [CrossRef]
- Palma, V.; Castaldo, F.; Ciambelli, P.; Iaquaniello, G.; Capitani, G. On the activity of bimetallic catalysts for ethanol steam reforming. Int. J. Hydrogen Energy 2013, 38, 6633–6645. [Google Scholar] [CrossRef]
- Mondal, T.; Pant, K.K.; Dalai, A.K. Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Appl. Catal. A Gen. 2015, 499, 19–31. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Di Bartolomeo, E. Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int. J. Hydrogen Energy 2012, 37, 15992–15999. [Google Scholar] [CrossRef]
- Rico-Pérez, V.; Aneggi, E.; Trovarelli, A. The effect of Sr addition in Cu- and Fe-modified CeO2 and ZrO2 soot combustion catalysts. Catalysts 2017, 7, 28–40. [Google Scholar] [CrossRef]
- Ay, H.; Üner, D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl. Catal. B Environ. 2015, 179, 128–138. [Google Scholar] [CrossRef]
- Ocsachoque, M.A.; Eugenio Russman, J.I.; Irigoyen, B.; Gazzoli, D.; González, M.G. Experimental and theoretical study about sulfur deactivation of Ni/CeO2 and Rh/CeO2 catalysts. Mater. Chem. Phys. 2016, 172, 69–76. [Google Scholar] [CrossRef]
- Italiano, C.; Balzarotti, R.; Vita, A.; Latorrata, S.; Fabiano, C.; Pino, L.; Cristiani, C. Preparation of structured catalysts with Ni and Ni-Rh/CeO2 catalytic layers for syngas production by biogas reforming processes. Catal. Today 2016, 273, 3–11. [Google Scholar] [CrossRef]
- Pérez-Hernández, R.; Gutiérrez-Martínez, A.; Palacios, J.; Vega-Hernández, M.; Rodríguez-Lugo, V. Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2-ZrO2 catalysts. Int. J. Hydrogen Energy 2011, 36, 6601–6608. [Google Scholar] [CrossRef]
- Pastor-Pérez, L.; Buitrago-Sierra, R.; Sepúlveda-Escribano, A. CeO2-promoted Ni/activated carbon catalysts for the water-gas shift (WGS) reaction. Int. J. Hydrogen Energy 2014, 39, 17589–17599. [Google Scholar] [CrossRef]
- Liu, Y.; Misono, M. Hydroisomerization of n-Butane over platinum-promoted cesium hydrogen salt of 12-tungstophosphoric acid. Materials 2009, 2, 2319–2336. [Google Scholar] [CrossRef]
- Gould, T.D.; Montemore, M.M.; Lubers, A.M.; Ellis, L.D.; Weimer, A.W.; Falconer, J.L.; Medlin, J.W. Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition. Appl. Catal. A Gen. 2015, 492, 107–116. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, Y.; Kameyama, H.; Basset, J.-M. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol. Int. J. Hydrogen Energy 2014, 39, 7291–7305. [Google Scholar] [CrossRef]
- Mei, Z.; Li, Y.; Fan, M.; Zhao, L.; Zhao, J. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift: The XPS studies. Chem. Eng. J. 2015, 259, 293–302. [Google Scholar] [CrossRef]
- Turchetti, L.; Murmura, M.A.; Monteleone, G.; Giaconia, A.; Lemonidou, A.A.; Angeli, S.D.; Palma, V.; Ruocco, C.; Annesini, M.C. Kinetic assessment of Ni-based catalysts in low-temperature methane/biogas steam reforming. Int. J. Hydrogen Energy 2016, 41, 16865–16877. [Google Scholar] [CrossRef]
- Kundakovic, L.; Flytzani-Stephanopoulos, M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A Gen. 1998, 171, 13–29. [Google Scholar] [CrossRef]
- Vicente, J.; Ereña, J.; Montero, C.; Azkoiti, M.J.; Bilbao, J.; Gayubo, A.G. Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation. Int. J. Hydrogen Energy 2014, 39, 18820–18834. [Google Scholar] [CrossRef]
- Moretti, E.; Storaro, L.; Talon, A.; Chitsazan, S.; Garbarino, G.; Busca, G.; Finocchio, E. Ceria-zirconia based catalysts for ethanol steam reforming. Fuel 2015, 153, 166–175. [Google Scholar] [CrossRef]
- Zhao, L.; Han, T.; Wang, H.; Zhang, L.; Liu, Y. Ni-Co alloy catalyst from LaNi1−xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Appl. Catal. B Environ. 2016, 187, 19–29. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, M.C.; Navarro Yerga, R.M.; Kondarides, D.I.; Verykios, X.E.; Fierro, J.L.G. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on γ-Al2O3. J. Phys. Chem. A 2010, 114, 3873–3882. [Google Scholar] [CrossRef] [PubMed]
- García-Diéguez, M.; Finocchio, E.; Larrubia, M.Á.; Alemany, L.J.; Busca, G. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J. Catal. 2010, 274, 11–20. [Google Scholar] [CrossRef]
- Morales, M.; Segarra, M. Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3-δ perovskite as catalyst precursor for hydrogen production. Appl. Catal. A Gen. 2015, 502, 305–311. [Google Scholar] [CrossRef]
- Peela, N.R.; Kunzru, D. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor. Int. J. Hydrogen Energy 2011, 36, 3384–3396. [Google Scholar] [CrossRef]
- Vicente, J.; Montero, C.; Ereña, J.; Azkoiti, M.J.; Bilbao, J.; Gayubo, A.G. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int. J. Hydrogen Energy 2011, 39, 12586–12596. [Google Scholar] [CrossRef]
- Montero, C.; Ochoa, A.; Castaño, P.; Bilbao, J.; Gayubo, A.G. Monitoring Ni0 and coke evolution during the deactivation of a Ni/La2O3−αAl2O3 catalyst in ethanol steam reforming in a fluidized bed. J. Catal. 2015, 331, 181–192. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Ricca, A. Bimetallic Pt and Ni based foam catalysts for low-temperature ethanol steam reforming intensification. Chem. Eng. Trans. 2015, 43, 559–564. [Google Scholar]
- Muñoz, M.; Moreno, S.; Molina, R. Promoter effect of Ce and Pr on the catalytic stability of the Ni-Co system for the oxidative steam reforming of ethanol. Appl. Catal. A Gen. 2016, 526, 84–94. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Ricca, A. Ceramic foams coated with Pt-Ni/CeO2-ZrO2 for bioethanol steam reforming. Int. J. Hydrogen Energy 2016, 41, 11526–11536. [Google Scholar] [CrossRef]
Sample | SSA (m2∙g−1) | wt % CeO2 | wt % Ni | wt % Pt | dCeO2 (nm) | dNiO (nm) |
---|---|---|---|---|---|---|
Si | 400 | - | - | - | - | - |
CeSi | 254 | 31.1 | - | - | 78 | - |
NiCeSi | 256 | 30.8 | 3.5 | - | 74 | 112 |
PtCeSi | 253 | 30.8 | - | 1.1 | 76 | - |
PtNiCeSi | 255 | 30.3 | 3.4 | 1 | 73 | 85 |
Sample | T (°C) | H2 Uptake (µmol/gcat) |
---|---|---|
CeO2-SiO2 | 300 | 13 |
448 | 94 | |
509 | 191 | |
Ni/CeO2-SiO2 | 237 | 36 |
289 | 103 | |
388 | 551 | |
435 | 734 | |
Pt/CeO2-SiO2 | 149 | 137 |
190 | 287 | |
308 | 35 | |
403 | 50 | |
Pt-Ni/CeO2-SiO2 | 109 | 119 |
179 | 943 | |
334 | 1032 | |
366 | 641 |
Sample | T (°C) | Y (%) | SCH4 (%) | SCO (%) | SCO2 (%) |
---|---|---|---|---|---|
CeO2-SiO2 | 600 | 35.3 | 26.9 | 20.1 | 50.4 |
500 | 22.2 | 12.8 | 44.5 | 26.1 | |
400 | 3.5 | 0 | 21.2 | 29.4 | |
300 | 0 | 0 | 4.6 | 46.9 | |
Ni/CeO2-SiO2 | 600 | 60.2 | 9.9 | 31.2 | 58.9 |
500 | 40.1 | 35.9 | 10.5 | 53.6 | |
400 | 26.1 | 44.1 | 1.9 | 53.2 | |
300 | 3.1 | 28.7 | 10.4 | 6.2 | |
Pt/CeO2-SiO2 | 600 | 62.2 | 8.9 | 33.2 | 57.9 |
500 | 39.1 | 35.1 | 12.6 | 52.3 | |
400 | 24.3 | 42.1 | 3.2 | 51.9 | |
300 | 2.1 | 29.2 | 5.6 | 5.8 | |
Pt-Ni/CeO2-SiO2 | 600 | 65.2 | 6.7 | 30.8 | 62.5 |
500 | 42.1 | 29.1 | 8.8 | 62.1 | |
400 | 26.5 | 44.2 | 1.7 | 54.1 | |
300 | 13.1 | 38.7 | 6.4 | 37.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, V.; Ruocco, C.; Meloni, E.; Ricca, A. Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts. Catalysts 2017, 7, 226. https://doi.org/10.3390/catal7080226
Palma V, Ruocco C, Meloni E, Ricca A. Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts. Catalysts. 2017; 7(8):226. https://doi.org/10.3390/catal7080226
Chicago/Turabian StylePalma, Vincenzo, Concetta Ruocco, Eugenio Meloni, and Antonio Ricca. 2017. "Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts" Catalysts 7, no. 8: 226. https://doi.org/10.3390/catal7080226
APA StylePalma, V., Ruocco, C., Meloni, E., & Ricca, A. (2017). Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts. Catalysts, 7(8), 226. https://doi.org/10.3390/catal7080226