Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthetic Routes
2.2. Catalyst Characterization
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Nitrogen Adsorption-Desorption (BET)
2.2.3. Temperature-Programmed Reduction (TPR)
2.2.4. Thermo Gravimetric Analysis (TGA)
2.3. Catalytic Activity Test
3. Numerical Analysis
3.1. Activity Test Calculations
3.2. Chemical Equilibrium Analysis
3.3. Mathematical Model
3.3.1. Kinetic Parameters
3.3.2. Governing Equations
Energy Equation
Mass Balance
3.3.3. Initial and Boundary Conditions
4. Results and Discussion
4.1. SEM
4.2. Nitrogen Adsorption-Desorption
4.3. TPR
4.4. Catalytic Reactivity and Equilibrium Analysis Results
4.5. On-Off Catalytic Stability Test
4.6. Carbon Formation
5. Validation of the Numerical Model with the Experimental Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
k | Rate Constant (s−1) |
K | Adsorption Constant (s−1) |
y | Mole Fraction |
n | Mole Number |
R | Kinetic Rate of Adsorption/Production (kg m−3·s−1) |
T | Temperature (K) |
Cp | Specific Heat Capacity (J·kg−1·K−1) |
Q | Heat Source (W·m−3) |
ΔΗ | Enthalpy of Formation/Deformation (J·mol−1) |
ht | Heat Transfer Coefficient (W·m−2·K−1) |
Mm | Molar Mass (kg·mol−1) |
P | Pressure (Pa) |
u | Velocity (m·s−1) |
E | Activation Energy (J·mol−1) |
Ru | Gas Constant (J·mol−1·K−1) |
Normal Vector | |
w | Concentration of Species (mol·m−3) |
j | Mass Flux (kg·s−1·m) |
Subscripts | |
i, j | Species |
in | Inlet |
out | Outlet |
mix | Mixture |
ext | External |
bed | Bed (Reactor) |
Greek Letters | |
ρ | Density (kg·m−3) |
μ | Dynamic Viscosity (Pa·s) |
λ | Thermal Conductivity (W·m−1·K−1) |
References
- Brown, L.F. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int. J. Hydrogen Energy 2001, 26, 381–397. [Google Scholar] [CrossRef]
- Sjardin, M.; Damen, K.J.; Faaij, A.P.C. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector. Energy 2006, 31, 2523–2555. [Google Scholar] [CrossRef]
- Ballard. Available online: http://www.ballard.com/ (accessed on 22 December 2017).
- Rostrup-Nielsen, J. Reaction kinetics and scale-up of catalytic processes. J. Mol. Catal. A: Chem. 2000, 163, 157–162. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R.; Sehested, J.; Nørskov, J.K. Hydrogen and synthesis gas by steam- and CO2 reforming. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2002; Volume 47, pp. 65–139. [Google Scholar]
- Xu, J.; Froment, G.F. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal. 2004, 224, 370–383. [Google Scholar] [CrossRef]
- Sehested, J. Four challenges for nickel steam-reforming catalysts. Catal. Today 2006, 111, 103–110. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Production of synthesis gas. Catal. Today 1993, 18, 305–324. [Google Scholar] [CrossRef]
- Ferreira-Aparicio, P.; Benito, M.J.; Sanz, J.L. New Trends in Reforming Technologies: From Hydrogen Industrial Plants to Multifuel Microreformers. Catal. Rev. 2005, 47, 491–588. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Liu, C.; Chen, P.; Yue, X.; Zhang, S. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J. Taiwan Inst. Chem. Eng. 2016, 65, 233–241. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J. 40 years in catalysis. Catal. Today 2006, 111, 4–11. [Google Scholar]
- Trimm, D.L. Catalysts for the control of coking during steam reforming. Catal. Today 1999, 49, 3–10. [Google Scholar] [CrossRef]
- Twigg, M.V. Catalyst Handbook, 2nd ed.; Wolfe Publishing Ltd.: London, UK, 1989. [Google Scholar]
- Giannakeas, N.; Lea-Langton, A.; Dupont, V.; Twigg, M.V. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor. Appl. Catal. B: Environ. 2012, 126, 249–257. [Google Scholar] [CrossRef]
- Daneshmand-Jahromi, S.; Rahimpour, M.; Meshksar, M.; Hafizi, A. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier. Catalysts 2017, 7, 286. [Google Scholar] [CrossRef]
- S G Adiya, Z.I.; Dupont, V.; Mahmud, T. Chemical equilibrium analysis of hydrogen production from shale gas using sorption enhanced chemical looping steam reforming. Fuel Process. Technol. 2017, 159, 128–144. [Google Scholar] [CrossRef]
- Hafizi, A.; Rahimpour, M.R.; Hassanajili, S. Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier. Appl. Energy 2016, 165, 685–694. [Google Scholar] [CrossRef]
- Zieliński, J. Morphology of coprecipitated nickel/alumina catalysts with low alumina content. Appl. Catal. A, Gen. 1993, 94, 107–115. [Google Scholar] [CrossRef]
- Lamber, R.; Schulzekloff, G. On the Microstructure of the Coprecipitated Ni-Al2O3 Catalysts. J. Catal. 1994, 146, 601–607. [Google Scholar] [CrossRef]
- Znak, L.; Zieliński, J. The effect of potassium on Ni/Al2O3 catalyst in relation to CO/H2 reaction. Appl. Catal. A: Gen. 2012, 413–414, 132–139. [Google Scholar] [CrossRef]
- Borowiecki, T.; Denis, A.; Rawski, M.; Gołębiowski, A.; Stołecki, K.; Dmytrzyk, J.; Kotarba, A. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location. Appl. Surf. Sci. 2014, 300, 191–200. [Google Scholar] [CrossRef]
- Carrero, A.; Calles, J.A.; Vizcaíno, A.J. Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation. Appl. Catal. A Gen. 2007, 327, 82–94. [Google Scholar] [CrossRef]
- Wu, P.; Li, X.; Ji, S.; Lang, B.; Habimana, F.; Li, C. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catal. Today 2009, 146, 82–86. [Google Scholar] [CrossRef]
- Zhang, M.; Ji, S.; Hu, L.; Yin, F.; Li, C.; Liu, H. Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2. Chin. J. Catal. 2006, 27, 777–781. [Google Scholar] [CrossRef]
- Yin, F.; Ji, S.; Wu, P.; Zhao, F.; Li, C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. J. Catal. 2008, 257, 108–116. [Google Scholar] [CrossRef]
- Sharma, P.O.; Abraham, M.A.; Chattopadhyay, S. Development of a novel metal monolith catalyst for natural gas steam reforming. Ind. Eng. Chem. Res. 2007, 46, 9053–9060. [Google Scholar] [CrossRef]
- Liguras, D.K.; Kondarides, D.I.; Verykios, X.E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl. Catal. B: Environ. 2003, 43, 345–354. [Google Scholar] [CrossRef]
- Rostrupnielsen, J.R.; Hansen, J.H.B. CO2-reforming of methane over transition metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- McMinn, T.E.; Moates, F.C.; Richardson, J.T. Catalytic steam reforming of chlorocarbons: Catalyst deactivation. Appl. Catal. B: Environ. 2001, 31, 93–105. [Google Scholar] [CrossRef]
- Halabi, M.H.; De Croon, M.H.J.M.; Van Der Schaaf, J.; Cobden, P.D.; Schouten, J.C. Intrinsic kinetics of low temperature catalytic methane-steam reforming and water-gas shift over Rh/CeαZr1-αO2 catalyst. Appl. Catal. A: Gen. 2010, 389, 80–91. [Google Scholar] [CrossRef]
- Angeli, S.D.; Monteleone, G.; Giaconia, A.; Lemonidou, A.A. State-of-the-art catalysts for CH4 steam reforming at low temperature. Int. J. Hydrogen Energy 2014, 39, 1979–1997. [Google Scholar] [CrossRef]
- Nieva, M.A.; Villaverde, M.M.; Monzón, A.; Garetto, T.F.; Marchi, A.J. Steam-methane reforming at low temperature on nickel-based catalysts. Chem. Eng. J. 2014, 235, 158–166. [Google Scholar] [CrossRef]
- Dal Santo, V.; Gallo, A.; Naldoni, A.; Guidotti, M.; Psaro, R. Bimetallic heterogeneous catalysts for hydrogen production. Catal. Today 2012, 197, 190–205. [Google Scholar] [CrossRef]
- Andersson, M.; Paradis, H.; Yuan, J.; Sundén, B. Review of catalyst materials and catalytic steam reforming reactions in SOFC anodes. Int. J. Energy Research 2011, 35, 1340–1350. [Google Scholar] [CrossRef]
- Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl. Catal. A Gen. 2011, 408, 1–24. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Y.; Demura, M.; Hirano, T. Catalytic stability of Ni3Al powder for methane steam reforming. Appl. Catal. B Environ. 2008, 80, 15–23. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Y.; Yu, Y.; Zhu, X.; Liu, C.J. Carbon formation and steam reforming of methane on silica supported nickel catalysts. Catal. Commun. 2012, 19, 61–65. [Google Scholar] [CrossRef]
- Edwards, J.H.; Maitra, A.M. The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process. Technol. 1995, 42, 269–289. [Google Scholar] [CrossRef]
- Navarro, R.M.; Peña, M.A.; Fierro, J.L.G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef] [PubMed]
- Freni, S.; Calogero, G.; Cavallaro, S. Hydrogen production from methane through catalytic partial oxidation reactions. J. Power Sources 2000, 87, 28–38. [Google Scholar] [CrossRef]
- Liu, C.J.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529–541. [Google Scholar] [CrossRef]
- Wu, H.; La Parola, V.; Pantaleo, G.; Puleo, F.; Venezia, A.; Liotta, L. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems. Catalysts 2013, 3, 563. [Google Scholar] [CrossRef]
- Farshchi Tabrizi, F.; Mousavi, S.A.H.S.; Atashi, H. Thermodynamic analysis of steam reforming of methane with statistical approaches. Energy Convers. Manag. 2015, 103, 1065–1077. [Google Scholar] [CrossRef]
- Yuan, Q.; Gu, R.; Ding, J.; Lu, J. Heat transfer and energy storage performance of steam methane reforming in a tubular reactor. Appl. Thermal Eng. 2017, 125, 633–643. [Google Scholar] [CrossRef]
- Delgado, K.; Maier, L.; Tischer, S.; Zellner, A.; Stotz, H.; Deutschmann, O. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts. Catalysts 2015, 5, 871–904. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Yuan, J.; Lv, X.; Yue, D.; Sunden, B. Transport phenomena coupled by chemical reactions in methane reforming ducts. Trans. Phenomena 2009, 11, 39–50. [Google Scholar]
- Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Chang, J.-S.; Park, S.-E.; Joe, Y.-I. Highly active and stable Ni/Ce–ZrO2 catalyst for H2 production from methane. J. Mol. Catal. A: Chem. 2002, 181, 137–142. [Google Scholar] [CrossRef]
- Ye, J.; Li, Z.; Duan, H.; Liu, Y. Lanthanum modified Ni/γ-Al2O3 catalysts for partial oxidation of methane. J. Rare Earths 2006, 24, 302–308. [Google Scholar] [CrossRef]
- Yablonskii, G.S.V.; Bykov, V.I.; Elokhin, V.I.; Gorban, A.N. Kinetic Models of Catalytic Reactions; Elsevier: Amsterdam, The Netherlands, 1991; Volume 32. [Google Scholar]
- Matsumura, Y.; Nakamori, T. Steam reforming of methane over nickel catalysts at low reaction temperature. Appl. Catal. A Gen. 2004, 258, 107–114. [Google Scholar] [CrossRef]
- Wei, J.; Iglesia, E. Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 2004, 225, 116–127. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J. Catal. 1984, 85, 31–43. [Google Scholar] [CrossRef]
- Bengaard, H.S.; Nørskov, J.K.; Sehested, J.; Clausen, B.S.; Nielsen, L.P.; Molenbroek, A.M.; Rostrup-Nielsen, J.R. Steam reforming and graphite formation on Ni catalysts. J. Catal. 2002, 209, 365–384. [Google Scholar] [CrossRef]
- Sidjabat, O.; Trimm, D.L. Nickel–magnesia catalysts for the steam reforming of light hydrocarbons. Top. Catal. 2000, 11–12, 279–282. [Google Scholar] [CrossRef]
- Trimm, D.L. The formation and removal of coke from nickel catalyst. Catal. Rev. 1977, 16, 155–189. [Google Scholar] [CrossRef]
- Trimm, D.L. Coke formation and minimisation during steam reforming reactions. Catal. Today 1997, 37, 233–238. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Carbon deposition in steam reforming and methanation. Catal. Rev. 1982, 24, 67–112. [Google Scholar] [CrossRef]
- Sasaki, K.; Teraoka, Y. Equilibria in Fuel Cell Gases: I. Equilibrium Compositions and Reforming Conditions. J. Electrochem. Soc. 2003, 150, A878–A884. [Google Scholar] [CrossRef]
Surface Area (m2/g) | 10%Ni |
---|---|
As-synthesized | 122 |
Reacted at 500 °C | 93.3 |
Reacted at 700 °C | 86.1 |
Carbon Selectivity | |||||
---|---|---|---|---|---|
500 °C | 550 °C | 600 °C | 650 °C | 700 °C | |
S/C = 2 | 1.8%, 59.0 mg | 2.0%, 63.0 mg | 1.3%, 40.9 mg | 1.8%, 57.3 mg | 1.7%, 53.0 mg |
S/C = 3 | 1.2%, 38.8 mg | 0.7%, 21.7 mg | 1.0%, 32.0 mg | 0.7%, 21.7 mg | 1.2%, 37.9 mg |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khzouz, M.; Gkanas, E.I. Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production. Catalysts 2018, 8, 5. https://doi.org/10.3390/catal8010005
Khzouz M, Gkanas EI. Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production. Catalysts. 2018; 8(1):5. https://doi.org/10.3390/catal8010005
Chicago/Turabian StyleKhzouz, Martin, and Evangelos I. Gkanas. 2018. "Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production" Catalysts 8, no. 1: 5. https://doi.org/10.3390/catal8010005
APA StyleKhzouz, M., & Gkanas, E. I. (2018). Experimental and Numerical Study of Low Temperature Methane Steam Reforming for Hydrogen Production. Catalysts, 8(1), 5. https://doi.org/10.3390/catal8010005