Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Materials
3.1. Characterization
3.2. Preparation of Fe3O4 Nanoparticles
3.3. Preparation of Fe3O4@C Nanoparticles
3.4. Preparation of Fe3O4@NC Nanoparticles
3.5. Preparation of the Fe3O4@C/Pd and Fe3O4@NC/Pd Catalyst
3.6. General Procedure for the Suzuki Coupling Reactions
3.7. General Procedure for Catalyst Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q.W. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J. Mater. Chem. 2012, 22, 22750–22755. [Google Scholar] [CrossRef]
- Rao, X.; Liu, C.; Zhang, Y.; Gao, Z.; Jin, Z. Pd/C-catalyzed ligand-free and aerobic Suzuki reaction in water. Chin. J. Catal. 2014, 35, 357–361. [Google Scholar] [CrossRef]
- Byum, S.; Chung, J.; Kwon, J.; Kim, B. Mechanistic Studies of Magnetically Recyclable Pd Fe3O4 Heterodimeric Nanocrystal-Catalyzed Organic Reactions. Chem. Asian J. 2015, 10, 982–988. [Google Scholar]
- Shi, S.C.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. Angew. Chem. 2016, 55, 6959–6963. [Google Scholar] [CrossRef] [PubMed]
- Meconi, G.M.; Vummaletis, S.V.C.; Luqueurrutia, J.A.; Belanzoni, P.; Nolan, S.P.; Jacobsen, H.; Cavallo, L.; Sola, M.; Poater, A. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. Organometallics 2017, 36, 2088–2095. [Google Scholar] [CrossRef]
- Bonis, A.D.; D’Orsi, R.; Funicello, M.; Lupattelli, P.; Santagata, A.; Teghil, R.; Chiummiento, L. First application of homogeneous Pd nanoparticles prepared by pulsed laser ablation in liquid to a Suzuki-type reaction. Catal. Commun. 2017, 100, 164–168. [Google Scholar] [CrossRef]
- Kaboudin, B.; Salemi, H.; Mostafalu, R.; Kazemi, F.; Yokomatsu, T. Pd(II)-β-cyclodextrin complex: Synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water. J. Organomet. Chem. 2016, 818, 195–199. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Mokhtari, J.; Naimi-Jamal, M.R.; Khosravi, A.; Panahi, L. Application of Cu2(BDC)2DABCO Encapsulated Palladium Nanoparticle in Suzuki Coupling. J. Organomet. Chem. 2017, 853, 35–41. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.G.; Zhang, L.; Liu, Y.; Han, J. Poly(o-aminothiophenol)-stabilized Pd nanoparticles as efficient heterogenous catalysts for Suzuki cross-coupling reactions. Rsc. Adv. 2017, 7, 47104–47110. [Google Scholar] [CrossRef]
- Mondal, P.; Bhanja, P.; Khatun, R.; Bhaumik, A.; Das, D.; Islam, S.M. Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium. J. Colloid Interface Sci. 2017, 508, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.B.; Ma, Y.; Bian, F.L. Palladium Supported on Metformin-Functionalized Magnetic Polymer Nanocomposites: A Highly Efficient and Reusable Catalyst for the Suzuki–Miyaura Coupling Reaction. ChemCatChem 2016, 8, 1–24. [Google Scholar] [CrossRef]
- Zhang, G.W.; Liu, R.; Chou, Y.J.; Wang, Y.; Cheng, T.Y.; Liu, G.H. Multistep Organic Transformations over Base-Rhodium/Diamine-Bifunctionalized Mesostructured Silica Nanoparticles. ChemCatChem 2017, 9, 1–8. [Google Scholar]
- Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross-coupling reaction: In water at room temperature. Appl. Organomet. Chem. 2017, 11, 4112–4122. [Google Scholar]
- Chen, J.; Zhang, J.; Zhu, D.J.; Li, T. Porphyrin-based polymer-supported palladium as an excellent and recyclable catalyst for Suzuki–Miyaura coupling reaction in water. Appl. Organomet. Chem. 2017, 8, 3996–4002. [Google Scholar] [CrossRef]
- Fei, S.X.; Han, B.; Li, L.L.; Mei, P.; Zhu, T.; Yang, M.; Chen, H.S. A study on the catalytic hydrogenation of N-ethylcarbazole on the mesoporous Pd/MoO3 catalyst. Int. J. Hydrogen Energy 2017, 42, 25942–25950. [Google Scholar] [CrossRef]
- Dai, C.Y.; Li, Y.G.; Ning, C.L.; Zhang, W.X.; Wang, X.G. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine. Appl. Catal. A Gen. 2017, 545, 97–103. [Google Scholar] [CrossRef]
- Shi, W.; Yu, J.B.; Jiang, Z.J.; Shao, Q.L.; Su, W.K. Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill. Beilstein J. Org. Chem. 2017, 13, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B Environ. 2016, 180, 53–64. [Google Scholar] [CrossRef]
- Hattori, T.; Tsubone, A.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System. Catalysts 2015, 5, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Q.; Li, Y.-R.; Jeon, H.-J.; Ahn, W.-S.; Chung, Y.M. Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition. Mater. Lett. 2018, 215, 211–213. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Y.Z.; Fang, X.C.; Cheng, Z.M.; Zhou, Z.M. Magnetically Recyclable Core–Shell Structured Pd-Based Catalysts for Semihydrogenation of Phenylacetylene. Ind. Eng. Chem. Res. 2017, 56, 14182–14191. [Google Scholar] [CrossRef]
- Mohammadinezhad, A.; Akhlaghinia, B. Fe3O4@ Boehmite-NH2-CoII NPs: An inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki cross-coupling reactions. Green Chem. 2017, 19, 5625–5641. [Google Scholar] [CrossRef]
- Kumar, B.S.; Amali, A.J.; Pitchumani, K. Cubical Palladium Nanoparticles on C@Fe3O4 for Nitro reduction, Suzuki-Miyaura Coupling and Sequential Reactions. J. Mol. Catal. Chem. 2016, 423, 511–519. [Google Scholar] [CrossRef]
- Sun, C.G.; Sun, K.; Tang, S.K. Extended Stöber method to synthesize core-shell magnetic composite cataly. Mater. Chem. Phys. 2018, 207, 181–185. [Google Scholar] [CrossRef]
- Fang, Q.; Cheng, Q.; Xu, H. Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells. Dalton Trans. 2014, 43, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Bolzan, G.R.; Abarca, G.; Goncalves, W.D.G.; Matos, C.F. Imprinted naked Pt nanoparticles on N-doped carbon supports: A synergistic effect between catalyst and support. M.J.L. Santos J. Dupont Chem. Eur. J. 2017, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Li, J.; Jiang, G.P.; Cano, Z.P.; Ma, Z.; Zhong, C.; Su, D.; Chen, Z.W. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Appl. Catal. B Environ. 2018, 225, 496–503. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, X.F.; Wei, Z.Z.; Mao, S.J.; Deng, J.; Cao, Y.L.; Wang, Y. Efficient synthesis of ultrafine Pd nanoparticles on an activated N-doping carbon for the decomposition of formic acid. Catal. Commun. 2018, 108, 55–58. [Google Scholar] [CrossRef]
- Wei, Z.Z.; Li, X.F.; Deng, J.; Wang, J.; Li, H.R.; Wang, Y. Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Mol. Catal. 2018, 448, 100–107. [Google Scholar] [CrossRef]
- Cao, Y.L.; Mao, S.J.; Li, M.M.; Chen, Y.Q.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv. 2013, 3, 5121–5126. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhu, L.P.; Bing, N.C.; Wang, L.J. Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J. Phys. Chem. Solids 2017, 107, 125–130. [Google Scholar] [CrossRef]
- Movahed, S.K.; Dabiri, M.; Bazgir, A. Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Appl. Catal. A Gen. 2014, 488, 265–274. [Google Scholar] [CrossRef]
- Shen, C.; Xu, J.; Yu, W.; Zhang, P. ChemInform Abstract: A Highly Active and Easily Recoverable Chitosan@Copper Catalyst for the C–S Coupling and Its Application in the Synthesis of Zolimidine. Green Chem. 2014, 16, 3007–3012. [Google Scholar] [CrossRef]
- Shen, C.; Shen, H.; Yang, M.; Xia, C.; Zhang, P. Novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki-Heck reactions and its application in the synthesis of Axitinib. Green Chem. 2014, 17, 225–230. [Google Scholar] [CrossRef]
- Shen, H.; Shen, C.; Chen, C.; Wang, A.; Zhang, P. Novel glycosyl pyridyl-triazole@palladium nanoparticles: Efficient and recoverable catalysts for C–C cross-coupling reactions. Catal. Sci. Technol. 2015, 5, 2065–2071. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Andy Hor, T.A.; Liu, X. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chem. Soc. Rev. 2015, 46, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. Inside Cover: Catalyst-Controlled Selectivity in the Synthesis of C2- and C3-Sulfonate Esters from Quinoline N-Oxides and Aryl Sulfonyl Chlorides. ChemCatChem 2016, 8, 2604–2608. [Google Scholar] [CrossRef]
- Hameed, R.M.A. A core–shell structured Ni–Co@Pt/C nanocomposite-modified sensor for the voltammetric determination of pseudoephedrine HCl. New. J. Chem. 2018, 42, 2658–2668. [Google Scholar] [CrossRef]
- Zhu, M.; Diao, G. Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@C Nanocomposites: Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions. J. Phys. Chem. C. 2011, 115, 24743–24749. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC. Adv. 2012, 2, 4498–4506. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250. [Google Scholar] [CrossRef] [PubMed]
- De Koning, P.D.; McAndrew, D.; Moore, R.; Moses, I.B.; Boyles, D.C.; Kissick, K.; Stanchina, C.L.; Cuthbertson, T.; Kamatani, A.; Rahman, L.; et al. Fit-for-Purpose Development of the Enabling Route to Crizotinib (PF-02341066). Org. Process Res. Dev. 2011, 15, 1018–1026. [Google Scholar] [CrossRef]
- Liu, B.; Ren, Y.; Zhang, Z. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chem. 2015, 17, 1610–1617. [Google Scholar] [CrossRef]
- Kumar, B.S.; Amali, A.J.; Pitchumani, K. Mesoporous Microcapsules through d-Glucose Promoted Hydrothermal Self-Assembly of Colloidal Silica: Reusable Catalytic Containers for Palladium Catalyzed Hydrogenation Reactions. Appl. Mater. Interfaces 2015, 7, 22907–22917. [Google Scholar]
- Liu, Z.Y.; Zhang, C.L.; Luo, L.; Chang, Z.J.; Sun, X.M. One-pot synthesis and catalyst support application of mesoporous N-doped carbonaceous materials. J. Mater. Chem. 2012, 22, 12149–12154. [Google Scholar] [CrossRef]
Entry | Catalyst (mg) | Base | Temp (°C) | Time (h) | Yield b (%) |
---|---|---|---|---|---|
1 | Fe3O4 | K2CO3 | 90 | 1 | - |
2 | Fe3O4@C | K2CO3 | 90 | 1 | - |
3 | Fe3O4@NC | K2CO3 | 90 | 1 | - |
4 | Fe3O4@C/Pd | K2CO3 | 90 | 1 | 84 |
5 | Fe3O4@NC/Pd | K2CO3 | 90 | 1 | 93 |
6 | Fe3O4@NC/Pd | NaOH | 90 | 1 | 94 |
7 | Fe3O4@NC/Pd | Na2CO3 | 90 | 1 | 92 |
8 | Fe3O4@NC/Pd | KOH | 90 | 1 | 96 |
9 | Fe3O4@NC/Pd | Et3N | 90 | 1 | 71 |
10 | Fe3O4@NC/Pd | Cs2CO3 | 90 | 1 | 83 |
11 | Fe3O4@NC/Pd | KOH | rt | 1 | 66 |
12 | Fe3O4@NC/Pd | KOH | 50 | 1 | 75 |
13 | Fe3O4@NC/Pd | KOH | 70 | 1 | 90 |
14 | Fe3O4@NC/Pd | KOH | 100 | 1 | 95 |
15 | Fe3O4@NC/Pd | K2CO3 | 50 | 1 | 70 |
16 | - | KOH | 90 | 1 | - |
17 | Fe3O4@NC/Pd | KOH | 90 | 1 | 95 c |
18 | Fe3O4@NC/Pd | KOH | 90 | 1 | 77 d |
19 | Fe3O4@NC/Pd | KOH | 90 | 0.5 | 96 |
20 | Fe3O4@NC/Pd | KOH | 90 | 0.2 | 90 |
Entry | Ar | X | R | Yield b (%) |
---|---|---|---|---|
1 | 4-CH3O-C6H4 | I | H | 96 (3a) |
2 | 4-NH2-C6H4 | I | H | 96 (3b) |
3 | 4-OH-C6H4 | I | H | 97 (3c) |
4 | 4-CH3-C6H4 | I | H | 96 (3d) |
5 | 4-NO2-C6H4 | I | H | 99 (3e) |
6 | 4-CHO-C6H4 | I | H | 99 (3f) |
7 | 4-COCH3-C6H4 | I | H | 98 (3g) |
8 | 4-Cl-C6H4 | I | H | 97 (3h) |
9 | Ph | I | H | 97 (3i) |
10 | 3-NO2-C6H4 | I | H | 95 (3j) |
11 | 3-COCH3-C6H4 | I | H | 94 (3k) |
12 | 2-NH2-C6H4 | I | H | 88 (3l) |
13 | 2-CH3-C6H4 | I | H | 86 (3m) |
14 | 4-CH3-C6H4 | Br | H | 79 (3d) |
15 | 4-CHO-C6H4 | Br | H | 94 (3f) |
16 | Ph | Br | H | 94 (3i) |
17 | 4-NH2-C6H4 | Cl | H | 53 c (3b) |
18 | 4-CHO-C6H4 | Cl | H | 55 c (3f) |
19 | 4-COCH3-C6H4 | Cl | H | 57 c (3g) |
20 | Ph | Cl | H | 56 (3i) |
21 | 4-CH3O-C6H4 | I | 4-CHO | 98 (3n) |
22 | 4-CH3O-C6H4 | I | 4-OH | 97 (3o) |
23 | 4-CH3O-C6H4 | I | 4-CH3 | 97 (3p) |
24 | 4-CH3O-C6H4 | I | 4-F | 95 (3q) |
25 | 4-CH3O-C6H4 | I | 4-Cl | 95 (3r) |
26 | 4-CH3O-C6H4 | I | 3-NO2 | 89 (3s) |
27 | 2-Py | Br | 4-F | 85 (3t) |
28 | 2-Py | Br | H | 88 (3u) |
29 | 2-Py | Br | 3-NO2 | 81 (3v) |
30 | 2-quinoline | Br | 4-F | 82 (3w) |
31 | 2-quinoline | Br | H | 86 (3x) |
32 | 2-quinoline | Br | 3-NO2 | 80 (3y) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Shen, C.; Qiao, J.; Tong, J.; Jin, J.; Zhang, P. Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts 2018, 8, 443. https://doi.org/10.3390/catal8100443
Zheng K, Shen C, Qiao J, Tong J, Jin J, Zhang P. Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts. 2018; 8(10):443. https://doi.org/10.3390/catal8100443
Chicago/Turabian StyleZheng, Kai, Chao Shen, Jun Qiao, Jianying Tong, Jianzhong Jin, and Pengfei Zhang. 2018. "Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib" Catalysts 8, no. 10: 443. https://doi.org/10.3390/catal8100443
APA StyleZheng, K., Shen, C., Qiao, J., Tong, J., Jin, J., & Zhang, P. (2018). Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts, 8(10), 443. https://doi.org/10.3390/catal8100443