Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics
2.2. 1H-NMR Spectroscopy
2.3. Infrared and Electronic Spectra
2.4. Magnetic Moment Measurements and Thermal Analysis
2.5. Spectrophotometric Determination of the Stoichiometry of the Prepared Complexes
2.6. Formation Constants and pH Stability Range of the Complexes
2.7. Particle Size of the Prepared Complexes and Their Metal Oxides
2.8. Catalytic Oxidation of Benzyl Alcohol Using Schiff-Base M(II) Complexes and Their Oxides
2.8.1. Effect of Temperature
2.8.2. Effect of the Solvent
2.8.3. Effect of the Catalyst Concentration
2.8.4. Mechanistic Aspects of the Catalytic Oxidation of Benzyl Alcohol
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Schiff-Base Ligands
3.3. Preparation of Nanosized Cu- and Ni-Schiff Base Complexes via a Sonochemical Approach
3.4. Preparation of Nanosized NiO and CuO
3.5. Physical Measurements
3.6. Catalytic Oxidation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides. J. Photochem. Photobiol. B 2016, 162, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, L.H.; El-Khatib, R.M.; Nassr, L.A.; Abu-Dief, A.M.; Lashin, F.E.-D. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe (II) Schiff base amino acid complexes. Spectrochim. Acta Part A 2013, 111, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Sutar, A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008, 252, 1420–1450. [Google Scholar] [CrossRef]
- Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev. 2018, 357, 144–172. [Google Scholar] [CrossRef]
- Türkkan, B.; Sarıboğa, B.; Sarıboğa, N. Synthesis, characterization and antimicrobial activity of 3,5-di-tert-butylsalicylaldehyde-S-methylthiosemicarbazones and their Ni (II) complexes. Transit. Met. Chem. 2011, 36, 679–684. [Google Scholar] [CrossRef]
- Boghaei, D.M.; Mohebi, S. Synthesis, characterization and study of vanadyl tetradentate Schiff base complexes as catalyst in aerobic selective oxidation of olefins. J. Mol. Catal. A Chem. 2002, 179, 41–51. [Google Scholar] [CrossRef]
- Cozzi, P.G. Metal-Salen Schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev. 2004, 33, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Ramesh, R. Synthesis, characterization, catalytic oxidation and biological activity of ruthenium (III) Schiff base complexes derived from 3-acetyl-6-methyl-2H-pyran-2,4-(3H)-dione. Polyhedron 2006, 25, 3095–3103. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Guan, N.; Li, L. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support. Appl. Catal. B 2013, 136, 177–185. [Google Scholar] [CrossRef]
- Chevrot, C.; Henri, T. Electrosynthesis and oxidation of new oligoazomethines containing N-ethylcarbazole groups. Synth. Met. 2001, 118, 157–166. [Google Scholar] [CrossRef]
- Tieke, B. Coordinative supramolecular assembly of electrochromic thin films. Curr. Opin. Colloid Interface Sci. 2011, 16, 499–507. [Google Scholar] [CrossRef]
- Khalaji, A.D. Preparation and characterization of NiO nanoparticles via solid-state thermal decomposition of nickel (II) Schiff base complexes [Ni (salophen)] and [Ni (Me-salophen)]. J. Clust. Sci. 2013, 24, 209–215. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Z.F.; Yue, Z.Y.; Yan, P.F.; Wang, B.; Jia, L.W.; Li, G.M.; Sun, W.B.; Zhang, J.W. A novel deep blue-emitting Zn(II) complex based on carbazole-modified 2-(2-hydroxyphenyl) benzimidazole: Synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties. J. Phys. Chem. C 2008, 112, 15517–15525. [Google Scholar] [CrossRef]
- Ramesh, R. Spectral and catalytic studies of ruthenium (III) Schiff base complexes. Inorg. Chem. Commun. 2004, 7, 274–276. [Google Scholar] [CrossRef]
- Bordoloi, A.; Sahoo, S.; Lefebvre, F.; Halligudi, S. Heteropoly acid-based supported ionic liquid-phase catalyst for the selective oxidation of alcohols. J. Catal. 2008, 259, 232–239. [Google Scholar] [CrossRef]
- Maity, P.; Gopinath, C.S.; Bhaduri, S.; Lahiri, G.K. Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chem. 2009, 11, 554–561. [Google Scholar] [CrossRef]
- Mahdavi, V.; Mardani, M. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn (II) 2,2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS). J. Chem. Sci. 2012, 124, 1107–1115. [Google Scholar] [CrossRef]
- Parmeggiani, C.; Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 2012, 14, 547–564. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Adam, M.S.S.; Hamdan, S.K. Some new nano-sized mononuclear Cu (II) Schiff base complexes: Design, characterization, molecular modeling and catalytic potentials in benzyl alcohol oxidation. Catal. Lett. 2016, 146, 1373–1396. [Google Scholar] [CrossRef]
- Putla, S.; Amin, M.H.; Reddy, B.M.; Nafady, A.; Al Farhan, K.A.; Bhargava, S.K. MnOx Nanoparticle-Dispersed CeO2 Nanocubes: A Remarkable Heteronanostructured System with Unusual Structural Characteristics and Superior Catalytic Performance. ACS Appl. Mater. Interfaces 2015, 7, 16525–16535. [Google Scholar] [CrossRef] [PubMed]
- Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal. Sci. Technol. 2015, 5, 2467–2477. [Google Scholar] [CrossRef] [Green Version]
- Bhanage, B.M.; Fujita, S.-I.; Ikushima, Y.; Arai, M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl. Catal. A 2001, 219, 259–266. [Google Scholar] [CrossRef]
- Wachs, I.E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal. Today 2005, 100, 79–94. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Mondal, K.C. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl. Energy 2006, 83, 1024–1032. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 2011, 175, 147–156. [Google Scholar] [CrossRef]
- Zhang, M.; De Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Jampaiah, D.; Ippolito, S.J.; Sabri, Y.M.; Tardio, J.; Selvakannan, P.; Nafady, A.; Reddy, B.M.; Bhargava, S.K. Ceria-zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 2016, 6, 1792–1803. [Google Scholar] [CrossRef]
- Gervasini, A.; Auroux, A. Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol. J. Catal. 1991, 131, 190–198. [Google Scholar] [CrossRef]
- Lavalley, J. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today 1996, 27, 377–401. [Google Scholar] [CrossRef]
- Martin, D.; Duprez, D. Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J. Phys. Chem. 1996, 100, 9429–9438. [Google Scholar] [CrossRef]
- Watanabe, M.; Osada, M.; Inomata, H.; Arai, K.; Kruse, A. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K. Appl. Catal. A 2003, 245, 333–341. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small 2005, 1, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Meyyappan, M. Nanotechnology: Role in emerging nanoelectronics. Solid-State Electron. 2006, 50, 536–544. [Google Scholar] [CrossRef]
- Guo, Y.G.; Hu, J.S.; Wan, L.J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887. [Google Scholar] [CrossRef]
- Somorjai, G.A.; Park, J.Y. Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top. Catal. 2008, 49, 126–135. [Google Scholar] [CrossRef]
- Kandjani, A.E.; Sabri, Y.M.; Periasamy, S.R.; Zohora, N.; Amin, M.H.; Nafady, A.; Bhargava, S.K. Controlling core/shell formation of nanocubic p-Cu2O/n-ZnO toward enhanced photocatalytic performance. Langmuir 2015, 31, 10922–10930. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Srivastava, A.; Srivastava, S. Synthetic, structural and antifungal studies of coordination compounds of Ru (III), Rh (III) and Ir (III) with tetradentate Schiff bases. J. Serb. Chem. Soc. 2006, 71, 917–928. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds. In Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Agarwal, S.K. Synthesis and characterization of some mixed ligand complexes of Pd (II), Rh (III) and Pt (IV) with carboxylic hydrazones as primary and dithiooxamide as co-ligand. Asian J. Chem. 2007, 19, 2581–2585. [Google Scholar]
- Vatsa, G.; Pandey, O.; Sengupta, S. Synthesis, spectroscopic and toxicity studies of titanocene chelates of isatin-3-thiosemicarbazones. Bioinorg. Chem. Appl. 2005, 3, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kusanur, R.A.; Ghate, M.; Kulkarni, M.V. Synthesis of spiro[indolo-1,5-benzodiazepines] from 3-acetyl coumarins for use as possible antianxiety agents. J. Chem. Sci. 2004, 116, 265–270. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 71–125. ISBN 978-0-470-61637-6. [Google Scholar]
- Labisbal, E.; Sousa, A.; Castiñeiras, A.; García-Vázquez, J.A.; Romero, J.; West, D.X. Spectral and structural studies of metal complexes of isatin 3-hexamethyleneiminylthiosemicarbazone prepared electrochemically. Polyhedron 2000, 19, 1255–1262. [Google Scholar] [CrossRef]
- Al-Maydama, H.; El-Shekeil, A.; Khalid, M.; Al-Karbouly, A. Thermal degradation behaviour of some polydithiooxamide metal complexes. Ecletica Quím. 2006, 31, 45–52. [Google Scholar] [CrossRef]
- Montazerozohori, M.; Jahromi, S.M.; Naghiha, A. Thermal analyses data and antimicrobial screening of some new nano-structure five coordinated cadmium complexes. J. Ind. Eng. Chem. 2015, 22, 248–257. [Google Scholar] [CrossRef]
- Diefallah, E.-H.M. Kinetic analysis of thermal decomposition reactions: Part VI. Thermal decomposition of manganese (II) acetate tetrahydrate. Thermochim. Acta 1992, 202, 1–16. [Google Scholar] [CrossRef]
- Carmody, W.R. Demonstrating Job’s method with colorimeter or spectrophotometer. J. Chem. Educ. 1964, 41, 615–616. [Google Scholar] [CrossRef]
- Türkel, N. Stability constants of mixed ligand complexes of nickel (II) with adenine and some amino acids. Bioinorg. Chem. Appl. 2015. [Google Scholar] [CrossRef] [PubMed]
- Parrish, W. X-Ray powder diffraction analysis film and Geiger counter techniques. Science 1949, 110, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, P. Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Göttingen. Mathematisch-Physikalische Klasse 1918, 2, 98–100. [Google Scholar]
- Adam, M.S.S. Catalytic potentials of homodioxo-bimetallic dihydrazone complexes of uranium and molybdenum in a homogeneous oxidation of alkenes. Monatsh. Chem. 2015, 146, 1823–1836. [Google Scholar] [CrossRef]
- Monfared, H.H.; Bikas, R.; Mayer, P. Homogeneous green catalysts for olefin oxidation by mono oxovanadium (V) complexes of hydrazone Schiff base ligands. Inorg. Chim. Acta 2010, 363, 2574–2583. [Google Scholar] [CrossRef]
- Ragupathi, C.; Vijaya, J.J.; Kennedy, L.J. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties. Mater. Sci. Eng. B 2014, 184, 18–25. [Google Scholar] [CrossRef]
- Ragupathi, C.; Vijaya, J.J.; Narayanan, S.; Jesudoss, S.; Kennedy, L.J. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods. Ceram. Int. 2015, 41, 2069–2080. [Google Scholar] [CrossRef]
- Noshiranzadeh, N.; Bikas, R.; Ślepokura, K.; Mayeli, M.; Lis, T. Synthesis, characterization and catalytic activity of new Cr (III) complex in oxidation of primary alcohols to aldehydes. Inorg. Chim. Acta 2014, 421, 176–182. [Google Scholar] [CrossRef]
- Enamullah, M.; Islam, M.K. Syntheses, spectroscopy, optical properties, and diastereoselectivity of copper(II)-complexes with chiral aminoalcohol based Schiff bases. J. Coord. Chem. 2013, 66, 4107–4118. [Google Scholar] [CrossRef]
- Zueva, E.; Walton, P.H.; McGrady, J.E. Catalytic alcohol oxidation by an unsymmetrical 5-coordinate copper complex: Electronic structure and mechanism. Dalton Trans. 2006, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Banu, K.S.; Chattopadhyay, T.; Banerjee, A.; Bhattacharya, S.; Zangrando, E.; Das, D. Catechol oxidase activity of dinuclear copper (II) complexes of Robson type macrocyclic ligands: Syntheses, X-ray crystal structure, spectroscopic characterization of the adducts and kinetic studies. J. Mol. Catal. A 2009, 310, 34–41. [Google Scholar] [CrossRef]
- Ma, C.Y.; Cheng, J.; Wang, H.L.; Hu, Q.; Tian, H.; He, C.; Hao, Z.P. Characteristics of Au/HMS catalysts for selective oxidation of benzyl alcohol to benzaldehyde. Catal. Today 2010, 158, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, Q.; Cheng, L.; Wu, Z.; Yang, J. DFT studies on the mechanism of veratryl alcohol oxidation catalyzed by Cu-phen complexes. RSC Adv. 2014, 4, 30558–30565. [Google Scholar] [CrossRef]
Complex | Stoichiometry | Kf | pK | ΔG≠ (kJ mol−1) |
---|---|---|---|---|
ahpvCu | 1:1 | 7.15 × 108 | 8.85 | −50.48 |
ahpnbCu | 1:2 | 3.62 × 1010 | 10.55 | −60.20 |
ahpvNi | 1:1 | 9.60 × 109 | 9.98 | −56.91 |
Compound | Conversion (%) | Selectivity (%) |
---|---|---|
a ahpvCu | 95 | 100 |
a ahpnbCu | 94 | 100 |
b npisnphCu | 79 | 100 |
b bsisnphCu | 90 | 100 |
a CuO | 96 | 100 |
c CuO | 69 | 91 |
Compound a | Solvent | Temp. (°C) | Time (h) | Yield (%) | Conversion (%) | Selectivity (%) | |||
---|---|---|---|---|---|---|---|---|---|
BzH b | BzA c | Side Products | R | ||||||
ahpvCu | DMF | 70 | 2 | 33 | 0 | 0 | 67 | 33 | 100 |
Acetone | 7 | 7 | 0 | 86 | 14 | 50 | |||
DMSO | 95 | 0 | 0 | 5 | 95 | 100 | |||
Acetonitrile | 48 | 0 | 0 | 52 | 48 | 100 | |||
ahpnbCu | DMF | 70 | 2 | 44 | 0 | 0 | 56 | 44 | 100 |
Acetone | 25 | 11 | 0 | 64 | 36 | 69 | |||
DMSO | 94 | 0 | 0 | 6 | 94 | 100 | |||
Acetonitrile | 46 | 0 | 0 | 54 | 46 | 100 | |||
ahpvNi | DMF | 70 | 1 | 15 | 0 | 0 | 85 | 15 | 100 |
Acetone | 5 | 4 | 3 | 88 | 12 | 42 | |||
DMSO | 55 | 0 | 0 | 45 | 55 | 100 | |||
Acetonitrile | 28 | 0 | 0 | 72 | 28 | 100 | |||
CuO | DMF | 70 | 2 | 61 | 0 | 0 | 39 | 61 | 100 |
Acetone | 18 | 11 | 4 | 67 | 33 | 54 | |||
DMSO | 98 | 0 | 0 | 2 | 98 | 100 | |||
Acetonitrile | 66 | 0 | 0 | 34 | 66 | 100 | |||
NiO | DMF | 70 | 1 | 52 | 0 | 0 | 48 | 52 | 100 |
Acetone | 45 | 12 | 0 | 43 | 57 | 79 | |||
DMSO | 97 | 0 | 0 | 3 | 97 | 100 | |||
Acetonitrile | 84 | 0 | 0 | 16 | 84 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saeedi, S.I.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Abdel-Fatah, S.M.; Alotaibi, T.M.; Alsalme, A.M.; Nafady, A. Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles. Catalysts 2018, 8, 452. https://doi.org/10.3390/catal8100452
Al-Saeedi SI, Abdel-Rahman LH, Abu-Dief AM, Abdel-Fatah SM, Alotaibi TM, Alsalme AM, Nafady A. Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles. Catalysts. 2018; 8(10):452. https://doi.org/10.3390/catal8100452
Chicago/Turabian StyleAl-Saeedi, Sameerah I., Laila H. Abdel-Rahman, Ahmed M. Abu-Dief, Shimaa M. Abdel-Fatah, Tawfiq M. Alotaibi, Ali M. Alsalme, and Ayman Nafady. 2018. "Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles" Catalysts 8, no. 10: 452. https://doi.org/10.3390/catal8100452
APA StyleAl-Saeedi, S. I., Abdel-Rahman, L. H., Abu-Dief, A. M., Abdel-Fatah, S. M., Alotaibi, T. M., Alsalme, A. M., & Nafady, A. (2018). Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles. Catalysts, 8(10), 452. https://doi.org/10.3390/catal8100452