Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure of Pd/DNA
2.2. Suzuki–Miyaura Cross-Coupling Reaction
2.3. Catalyst Recycling in Suzuki–Miyaura Reaction
2.4. Treatment of C2 with Hg(0)
2.5. Carbonylative Couplings
3. Experimental
3.1. Preparation of Pd/DNA (C1, C2, C3, C4)
3.2. General Procedure for the Suzuki–Miyaura Reaction
3.3. General Procedure for the Carbonylative Suzuki Coupling Reaction
3.4. General Procedure for Pd/DNA Recycling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Molnar, A. Palladium-Catalyzed Coupling Reactions, Practical Aspects and Future Development; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev. 2011, 111, 1596–1636. [Google Scholar] [CrossRef] [PubMed]
- Takise, R.; Muto, K.; Yamagushi, J. Cross-coupling of aromatic esters and amides. Chem. Soc. Rev. 2017, 46, 5864–5886. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 2011, 40, 4986–5009. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Nolan, S.P.; Szostak, M. Well-Defined Palladium(II)–NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N–C/O–C Cleavage. Acc. Chem. Res. 2018, 51, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, J. Palladium Reagents and Catalysts. In New Perspectives for the 21st Century; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. ACS Catal. 2018, 8, 9131–9139. [Google Scholar] [CrossRef]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457. [Google Scholar] [CrossRef]
- Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem. 1999, 576, 147–168. [Google Scholar] [CrossRef]
- Peng, J.B.; Qi, X.; Wu, X.F. Recent Achievements in Carbonylation Reactions: A Personal Account. Synlett 2017, 28, 175–194. [Google Scholar] [CrossRef]
- Hussain, I.; Capricho, J.; Yawer, M.A. Synthesis of BiarylsviaLigand-Free Suzuki–Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments. Adv. Synth. Catal. 2016, 358, 3320–3349. [Google Scholar] [CrossRef]
- Gniewek, A.; Trzeciak, A.M.; Ziółkowski, J.J.; Kępiński, L.; Wrzyszcz, J.; Tylus, W. Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J. Catal. 2005, 229, 332–343. [Google Scholar] [CrossRef]
- Li, Y.; Boone, E.; El-Sayed, M.A. Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir 2002, 18, 4921–4925. [Google Scholar] [CrossRef]
- Reetz, M.T.; Westermann, E. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. Angew. Chem. Int. Ed. 2000, 39, 165–168. [Google Scholar] [CrossRef]
- Li, Y.; Xiaoyong, M.; Collard, D.M.; El-Sayed, M.A. Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution. Org. Lett. 2000, 15, 2385–2388. [Google Scholar] [CrossRef]
- Khan, M.; Kuniyil, M.; Shaik, M.R.; Khan, M.; Adil, S.F.; Al-Warthan, A.; Alkhathan, H.Z.; Tremel, W.; Tahir, M.N.; Siddigu, M.R.H. Plant Extract Mediated Eco-Friendly Synthesis of Pd@GrapheneNanocatalyst: An Efficient and Reusable Catalyst for the Suzuki–Miyaura Coupling. Catalysts 2017, 7, 20. [Google Scholar] [CrossRef]
- Kozell, V.; Giannoni, T.; Nocchetti, M.; Vivani, R.; Piermatti, O.; Vaccaro, L. Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling. Catalysts 2017, 7, 186. [Google Scholar] [CrossRef]
- Jang, S.; Kim, T.; Park, K.H. Fabrication of Crumpled Ball-Like Nickel DopedPalladium-Iron Oxide Hybrid Nanoparticles with Controlled Morphology as Effective Catalyst for Suzuki–Miyaura Coupling Reaction. Catalysts 2017, 7, 247. [Google Scholar] [CrossRef]
- Shabbir, S.; Lee, S.; Lim, M.; Lee, H.; Ko, H.; Lee, Y.; Rhee, H. Pd nanoparticles on reverse phase silica gel as recyclable catalyst for Suzuki–Miyaura cross coupling reaction and hydrogenation in water. J. Organomet. Chem. 2017, 846, 296–304. [Google Scholar] [CrossRef]
- Xiong, G.; Chen, X.L.; You, L.X.; Ren, B.Y.; Ding, F.; Dragutan, I.; Dragutan, V.; Sun, Y.G. La-Metal-Organic Framework incorporating Fe3O4 nanoparticles, post-synthetically modified with Schiff base and Pd. A highly active, magnetically recoverable, recyclable catalyst for C-C cross-couplings at low Pd loadings. J. Catal. 2018, 361, 116–125. [Google Scholar] [CrossRef]
- Augustyniak, A.W.; Zawartka, W.; Navarro, J.A.R.; Trzeciak, A.M. Palladium nanoparticles supported on a nickel pyrazolate metal organic framework as a catalyst for Suzuki and carbonylative Suzuki couplings. Dalton Trans. 2016, 45, 13525–13531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Klimov, M.E.; Hernandez-Hipolito, P.; Martinez-Garcia, M.; Klimova, T.E. Pd catalysts supported on hydrogen titanate nanotubes for Suzuki–Miyaura cross-coupling reactions. Catal. Today 2018, 305, 58–64. [Google Scholar] [CrossRef]
- Koohgard, M.; Hosseini-Sarvari, M. Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catal. Commun. 2018, 111, 10–15. [Google Scholar] [CrossRef]
- Pentsak, E.O.; Cherepanova, V.A.; Ananikov, V.P. Dynamic Behavior of Metal Nanoparticles in Pd/C and Pt/C Catalytic Systems under Microwave and Conventional Heating. ACS Appl. Mater. Interfaces 2017, 9, 36723–36732. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kong, X.; Jiang, M.; Lei, X. Uniformly dispersed Pd nanoparticles anchored Co(OH)2/Cu(OH)2 hierarchical nanotube array as high active structured catalyst for Suzuki–Miyaura coupling reactions. J. Mater. Sci. 2018, 53, 16263–16275. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Catalytically Active Palladium Nanoparticle-Cored Ferrocenyl-Terminated Dendrimers. Eur. J. Inorg. Chem. 2015, 5595–5600. [Google Scholar] [CrossRef]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Sun, H.; Li, Y.; Zha, Z.; Wang, Z. Highly active and selective synthesis of imines from alcohols and amines or nitroarenes catalyzed by Pd/DNA in water with dehydrogenation. Green Chem. 2012, 14, 3423. [Google Scholar] [CrossRef]
- Camacho, A.S.; Martin-Garcia, I.; Contreras-Celedon, C.L.; Chacon-Garcia, F.A. DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction. Catal. Sci. Technol. 2017, 7, 2262–2273. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ouyang, G.; Zhang, J.; Wang, Z. A DNA-templated catalyst: The preparation of metal-DNA nanohybrids and their application in organic reactions. Chem. Commun. 2010, 46, 7912–7914. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Maeda, H.; Yamada, S.; Hori, Y. DNA-Mediated Palladium Nanoparticles as an Efficient Catalyst for Hydrogenation- and Suzuki–Miyaura Coupling Reactions. ChemCatChem 2012, 4, 1737–1740. [Google Scholar] [CrossRef]
- Handbooks of Monochromatic XPS Spectra. Volume 1—The Elements and Native Oxides; XPS International Inc.: Ames, IA, USA; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2013–2018; Available online: https://xpssimplified.com/elements/palladium.php (accessed on May 2018).
- Mart, M.; Tylus, W.; Trzeciak, A.M. Pd/DNA as a highly active and recyclable catalyst for aminocarbonylation and hydroxycarbonylation in water: The effect of Mo(CO)6 on the reaction course. Mol. Catal. 2019, 462, 28–36. [Google Scholar] [CrossRef]
- Gniewek, A.; Ziółkowski, J.J.; Trzeciak, A.M.; Zawadzki, M.; Grabowska, H.; Wrzyszcz, J. Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki–Miyaura reaction. J. Catal. 2008, 254, 121–130. [Google Scholar] [CrossRef]
- Borkowski, T.; Trzeciak, A.M.; Bukowski, W.; Bukowska, A.; Tylus, W.; Kepiński, L. Palladium(0) nanoparticles formed in situ in the Suzuki–Miyaura reaction: The effect of a palladium(II) precursor. Appl. Catal. A Gen. 2010, 378, 83–89. [Google Scholar] [CrossRef]
- Narayanan, R.; El-Sayed, M.A. Some Aspects of Colloidal Nanoparticle Stability, Catalytic Activity, and Recycling Potential. Top. Catal. 2008, 47, 15–21. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Hackett, M.; Brainard, R.L.; Lavalleye, J.P.P.M.; Sowinski, A.F.; Izumi, A.N.; Moore, S.S.; Brown, D.W.; Sraudt, E.M. Suppression of unwanted heterogeneous platinum(0)-catalyzed reactions by poisoning with mercury(0) in systems involving competing homogeneous reactions of soluble organoplatinum compounds: Thermal decomposition of bis(triethylphosphine)-3,3,4,4-tetramethylplatinacyclopentane. Organometallics 1985, 4, 1819–1830. [Google Scholar] [CrossRef]
- Fernandez, F.; Cordero, B.; Durand, J.; Muller, G.; Malbosc, F.; Kihn, Y.; Teuma, E.; Gomez, M. Palladium catalyzed Suzuki C–C couplings in an ionic liquid: Nanoparticles responsible for the catalytic activity. Dalton Trans. 2007, 47, 5572–5581. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.T.S.; Van Der Sluys, M.C.; Jones, W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings—Homogeneous or Heterogeneous Catalysis, A Critical Review. Adv. Synth. Catal. 2006, 348, 609–679. [Google Scholar] [CrossRef]
- Wirwis, A.; Gil, W.; Pernak, J.; Trzeciak, A.M. The effect of Al2O3 and ionic liquids in palladium catalyzed arylation of cyclohexene. Interaction of Hg(0) with immobilized palladium. J. Mol. Catal. A Chem. 2016, 411, 188–195. [Google Scholar] [CrossRef]
- Wójcik, P.; Mart, M.; Ulunkanli, S.; Trzeciak, A.M. Palladium nanoparticles generated in situ used as catalysts in carbonylative cross-coupling in aqueous medium. RSC Adv. 2016, 6, 36491–36499. [Google Scholar] [CrossRef] [Green Version]
- Cusumano, M.; Di Pietro, M.L.; Giannetto, A.; Messina, M.A.; Romano, F. Catalysis and Inhibition of Ligand Substitution in Palladium(II) Square-Planar Complexes: Effects of DNA. J. Am. Chem. Soc. 2001, 12, 1914–1919. [Google Scholar] [CrossRef]
- Cusumano, M.; Di Pietro, M.L.; Giannetto, A.; Vainiglia, P.A. The Reaction of (Bipyridyl)palladium(II) Complexes with Thiourea—Influence of DNA and Other Polyanions on the Rate of Reaction. Eur. J. Inorg. Chem. 2005, 2, 278–284. [Google Scholar] [CrossRef]
Entry | [Pd] | R | Yield 1 b (%) |
---|---|---|---|
1 | Pd/DNA (C1) | 2-OCH3 | 83 |
2 | Pd/DNA (C2) | 2-OCH3 | 77 |
3 | Pd/DNA (C3) | 2-OCH3 | 74 |
4 | Pd/DNA (C4) | 2-OCH3 | 64 |
5 | Pd/DNA (C1) | 2-Me | 73 |
6 c | Pd/DNA (C1) | 2-Me | 58 |
7 | Pd/DNA (C2) | 2-Me | 75 |
8 | Pd/DNA (C3) | 2-Me | 64 |
9 | Pd/DNA (C4) | 2-Me | 59 |
10 | Pd/DNA (C1) | 4-Me | 85 |
11 | Pd/DNA (C2) | 4-Me | 75 |
12 | Pd/DNA (C3) | 4-Me | 70 |
13 | Pd/DNA (C4) | 4-Me | 54 |
Entry | Ar1 | Ar2 | Yield 1 b (%) |
---|---|---|---|
1 | 2-Cl-C6H4 | Ph | 81 |
2 | 3-Cl-C6H4 | Ph | 95 |
3 | 4-Cl-C6H4 | Ph | 92 (91) c |
4 | 4-NO2-C6H4 | Ph | 93 |
5 | 4-CHO-C6H4 | Ph | 95 (90) c |
6 | 2-CH3O-C6H4 | Ph | 77 |
7 | 4-CH3O-C6H4 | Ph | 64 |
8 | 2-CH3-C6H4 | Ph | 79 |
9 | 4-CH3-C6H4 | Ph | 73 |
10 | 2-CN-C6H4 | Ph | 85 (70) c |
11 | 4-CN-C6H4 | Ph | 84 |
12 | 4-COCH3-C6H4 | Ph | 95 |
13 | Ph | Ph | 94 (89) c |
14 | 2-CH3-C6H4 | 4-CH3-1-naph | 64 (52) c |
15 | 2-CH3-C6H4 | 1-naph | 72 |
16 | Ph | 3-BnO-C6H4 | 80 |
17 | Ph | 3-CF3-C6H4 | 83 |
18 | Ph | 4-COCH3-C6H4 | 87 (80) c |
19 | Ph | 1-naph | 87 |
20 | Ph | 4-CH3-1-naph | 84 |
21 | Ph | (CH3)3C-C6H4 | 89 |
22 | 1,3-dimethyl-C6H3 | Ph | 33 (15) d |
23 | Ph | 1,3-dimethyl-C6H3 | trace (trace) d (14) e |
24 | Ph | 1,3-dimethoxy-C6H3 | 0 |
25 | 3-Py | Ph | 42 |
26 | pyrimidine | Ph | 62 |
Entry | Poison Additive | GC Conv. [%] |
---|---|---|
1 | None | 75 |
2 | Hg added at the begining of the reaction | 13 |
3 | Hg added after 30 min | 53 |
Entry | Solvent | Base | Conv. b (%) | Yield 2 b | Yield 3 b | Yield 4 b |
---|---|---|---|---|---|---|
1 | H2O | NEt3 | 88 | 25 | 41 | 22 |
2 | IPA/H2O (1/1) | NaHCO3 | 100 | 34 | 38 | 28 |
3 | Dioxane/H2O (1/1) | NaHCO3 | 100 | 26 | 55 | 19 |
4 c | Dioxane/H2O (1/1) | NaHCO3 | 24 | 0 | 0 | 24 |
5 | Dioxane/H2O (4/1) | K3PO4 | 80 | 29 | 20 | 31 |
6 | Anisole | K2CO3 | 0 | 0 | 0 | 0 |
7 d | Anisole | K2CO3 | 0 | 0 | 0 | 0 |
8 d | Anisole/H2O (9/1) | K2CO3 | 66 | 35 | 31 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mart, M.; Tylus, W.; Trzeciak, A.M. Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling. Catalysts 2018, 8, 552. https://doi.org/10.3390/catal8110552
Mart M, Tylus W, Trzeciak AM. Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling. Catalysts. 2018; 8(11):552. https://doi.org/10.3390/catal8110552
Chicago/Turabian StyleMart, M., W. Tylus, and A. M. Trzeciak. 2018. "Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling" Catalysts 8, no. 11: 552. https://doi.org/10.3390/catal8110552
APA StyleMart, M., Tylus, W., & Trzeciak, A. M. (2018). Pd/DNA as Highly Active and Recyclable Catalyst of Suzuki–Miyaura Coupling. Catalysts, 8(11), 552. https://doi.org/10.3390/catal8110552