Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts
Abstract
:1. Introduction
2. 2D Nano-Networks
2.1. Preparation from Colloidal Building Blocks
2.2. Template-Assisted Deposition
3. 3D Nano-Networks
3.1. Preparation from Individual 1D Nanostructures
3.2. Template-Assisted Deposition
3.2.1. Nanoporous Anodized Alumina Templates
3.2.2. Ion-Track Etched Polymer Templates
3.3. Nanofiber Networks Prepared by Electrospinning
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Schulenberg, H.; Schwanitz, B.; Linse, N.; Scherer, G.G.; Wokaun, A. 3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells. J. Phys. Chem. C 2011, 115, 14236–14243. [Google Scholar] [CrossRef]
- Rauber, M.; Alber, I.; Müller, S.; Neumann, R.; Picht, O.; Roth, C.; Schökel, A.; Toimil-Molares, M.E.; Ensinger, W. Highly-Ordered Supportless Three-Dimensional Nanowire Networks with Tunable Complexity and Interwire Connectivity for Device Integration. Nano Lett. 2011, 11, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.M.; Kim, J.H.; Jung, J.Y.; Yoon, E.Y.; Kim, W.B. Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochim. Acta 2008, 53, 5804–5811. [Google Scholar] [CrossRef]
- Du, L.; Shao, Y.; Sun, J.; Yin, G.; Liu, J.; Wang, Y. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 2016, 29, 314–322. [Google Scholar] [CrossRef]
- Setzler, B.P.; Zhuang, Z.; Wittkopf, J.A.; Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 2016, 11, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Henning, S.; Herranz, J.H.; Schmidt, T.J.; Eychmüller, A. Nanostructuring Noble Metals as Unsupported Electrocatalysts for Polymer Electrolyte Fuel Cells. Adv. Energy Mater. 2017, 7, 1700548. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.L.; Xu, Y.Y.; Zhang, W.; Wu, T.; Xia, B.Y.; Wang, X. Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Lett. 2017, 2, 2035–2043. [Google Scholar] [CrossRef]
- Antolini, W.; Perez, J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: From the size to the shape of metal nanostructures. J. Mater. Sci. 2011, 46, 4435–4457. [Google Scholar] [CrossRef]
- Koenigsmann, C.; Wong, S.S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161–1176. [Google Scholar] [CrossRef]
- Koenigsmann, C.; Scofield, M.E.; Liu, H.; Wong, S. Designing Enhanced One-Dimensional Electrocatalysts for the Oxygen Reduction Reaction: Probing Size- and Composition-Dependent Electrocatalytic Behavior in Noble Metal Nanowires. J. Phys. Chem. Lett. 2012, 3, 3385–3398. [Google Scholar] [CrossRef]
- Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen Reduction Reactions. Angew. Chem. Int. Ed. 2007, 46, 4060–4063. [Google Scholar] [CrossRef] [PubMed]
- Alia, S.M.; Zhang, G.; Kisailus, D.; Li, D.; Gu, S.; Jensen, K.; Yan, Y. Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions. Adv. Funct. Mater. 2010, 20, 3742–3746. [Google Scholar] [CrossRef]
- Muench, F.; De Carolis, D.M.; Felix, E.-M.; Brötz, J.; Kunz, U.; Kleebe, H.-J.; Ayata, S.; Trautmann, C.; Ensinger, W. Self-Supporting Metal Nanotube Networks Obtained by Highly Conformal Electroless Plating. ChemPlusChem 2015, 80, 1448–1456. [Google Scholar] [CrossRef]
- Ni, C.-J.; Hong, F.C.-N. Electroless nanowelding of silver nanowires at room temperature. RSC Adv. 2014, 4, 40330–40338. [Google Scholar] [CrossRef]
- Romo-Herrera, J.M.; Terrones, M.; Terrones, H.; Dag, S.; Meunier, V. Covalent 2D and 3D Networks from 1D Nanostructures: Designing New Materials. Nano Lett. 2007, 7, 570–576. [Google Scholar] [CrossRef]
- Zhao, X.; Muench, F.; Schaefer, S.; Fasel, C.; Kunz, U.; Ayata, S.; Liu, S.; Kleebe, H.-J.; Ensinger, W. Carbon nanocasting in ion-track etched polycarbonate membranes. Mater. Lett. 2017, 187, 56–59. [Google Scholar] [CrossRef]
- Movsesyan, L.; Schubert, I.; Yeranyan, L.; Trautmann, C.; Toimil-Molares, M.-E. Influence of electrodeposition parameters on the structure and morphology of ZnO nanowire arrays and networks synthesized in etched ion-track membranes. Semicond. Sci. Technol. 2016, 31, 014006. [Google Scholar] [CrossRef]
- Wagner, M.F.P.; Völklein, F.; Reith, H.; Trautmann, C.; Toimil-Molares, M.-E. Fabrication and thermoelectrical characterization of three-dimensional nanowire networks. Phys. Status Solidi A 2016, 213, 610–619. [Google Scholar] [CrossRef]
- Piraux, L.; Antohe, V.-A.; Ferain, E.; Lahem, D. Self-supported three-dimensionally interconnected polypyrrole nanotubes and nanowires for highly sensitive chemiresistive gas sensing. RSC Adv. 2016, 6, 21808–21813. [Google Scholar] [CrossRef]
- Li, G.G.; Wang, H. Dealloyed Nanoporous Gold Catalysts: From Macroscopic Foams to Nanoparticulate Architectures. ChemNanoMat 2018, 4, 897–908. [Google Scholar] [CrossRef]
- Fouilloux, P. The nature of raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions. Appl. Catal. 1983, 8, 1–42. [Google Scholar] [CrossRef]
- Ron, R.; Haleva, E.; Salomon, A. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications. Adv. Mater. 2018, 30, 1706755. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhang, H.; Yu, Y.; Liu, Y.; Tian, Y.; Zhang, B. Synergism of interparticle electrostatic repulsion modulation and heat-induced fusion: A generalized one-step approach to porous network-like noble metals and their alloy nanostructures. J. Mater. Chem. 2012, 22, 349–354. [Google Scholar] [CrossRef]
- Wang, M.-H.; Li, Y.-L.; Xie, Z.-X.; Liu, C.; Yeung, E.S. Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly. Mater. Chem. Phys. 2010, 119, 153–157. [Google Scholar] [CrossRef]
- Ruan, L.; Zhu, E.; Chen, Y.; Lin, Z.; Huang, X.; Duan, X.; Huang, Y. Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability. Angew. Chem. Int. Ed. 2013, 52, 12577–12581. [Google Scholar] [CrossRef] [PubMed]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Zhu, C.; Du, D.; Eychmüller, A.; Lin, Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem. Rev. 2015, 115, 8896–8943. [Google Scholar] [CrossRef]
- Liu, W.; Herrmann, A.-K.; Bigall, N.C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T.J.; Gaponik, N.; Eychmüller, A. Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Acc. Chem. Res. 2015, 48, 154–162. [Google Scholar] [CrossRef]
- Ye, S.; Rathmell, A.R.; Chen, Z.; Stewart, I.E.; Wiley, B.J. Metal Nanowire Networks: The Next Generation of Transparent Conductors. Adv. Mater. 2014, 26, 6670–6687. [Google Scholar] [CrossRef]
- Shi, H.-Y.; Hu, B.; Yu, X.-C.; Zhao, R.-L.; Ren, X.-F.; Liu, S.-L.; Liu, J.-W.; Feng, M.; Xu, A.-W.; Yu, A.-H. Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface. Adv. Funct. Mater. 2010, 20, 958–964. [Google Scholar] [CrossRef]
- Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Polyol Snythesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett. 2003, 3, 955–960. [Google Scholar] [CrossRef]
- Huang, H.; Ruditskiy, A.; Choi, S.-I.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y. One-Pot Synthesis of Penta-twinned Palladium Nanowires and Their Enhanced Electrocatalytic Properties. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212. [Google Scholar] [CrossRef]
- Liu, X.; Wu, N.; Wunsch, B.H.; Barsotti, R.J., Jr.; Stellacci, F. Shape-Controlled Growth of Micrometer-Sized Gold Crystals by a Slow Reduction Method. Small 2006, 2, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Chu, M.; Deng, W.; Tan, Y.; Ma, M.; Su, X.; Xie, Q.; Yao, S. Facile fabrication of network film electrodes with ultrathin nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Biosens. Bioelectron. 2014, 52, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.Y.; Wu, H.B.; Yan, Y.; Lou, X.W.; Wang, X. Ultrathin and Ultralong Singe-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity. J. Am. Chem. Soc. 2013, 135, 9480–9485. [Google Scholar] [CrossRef]
- Kang, H.; Kim, Y.; Cheon, S.; Yi, G.-R.; Cho, J.H. Halide Welding for Silver Nanowire Network Electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.C.; Cai, W.; Cha, J.J.; Mahmood, F.; Connor, S.T.; Christoforo, M.G.; Cui, Y.; McHegee, M.D.; Brongersma, M.L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249. [Google Scholar] [CrossRef]
- Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T.T.; Aso, Y.; Suganuma, K. Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature. Nano Res. 2011, 4, 1215–1222. [Google Scholar] [CrossRef]
- Lee, J.H.; Huynh-Nguyen, B.-C.; Ko, E.; Kim, J.H.; Seong, G.H. Fabrication of flexible, transparent silver nanowire electrodes for amperometric detection of hydrogen peroxide. Sens. Actuators B Chem. 2016, 224, 789–797. [Google Scholar] [CrossRef]
- Manikandan, A.; Lee, L.; Wang, Y.-C.; Chen, C.-W.; Chen, Y.-Z.; Medina, H.; Tseng, J.-Y.; Wang, Z.M.; Chueh, Y.-L. Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 2017, 5, 13320–13328. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, S.; Wilson, A.R.; Ha, Y.-C.; Wiley, B.J. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires. Energy Environ. Sci. 2014, 7, 1461–1467. [Google Scholar] [CrossRef]
- Ge, J.; Wei, P.; Wu, G.; Liu, Y.; Yuan, T.; Li, Z.; Qu, Y.; Wu, Y.; Li, H.; Zhuang, Z.; et al. Ultrathin Palladium Nanomesh for Electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 3435–3438. [Google Scholar] [CrossRef] [PubMed]
- Bakar, N.A.; Shapter, J.G.; Salleh, M.M.; Umar, A.A. Self-Assembly of High Density of Triangular Silver Nanoplate Films Promoted by 3-Aminopropyltrimethoxysilane. Appl. Sci. 2015, 5, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Muench, F.; Popovitz-Biro, R.; Bendikov, T.; Feldman, Y.; Hecker, B.; Oezaslan, M.; Rubinstein, I.; Vaskevich, A. Nucleation-Controlled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications. Adv. Mater. 2018, 1805179. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Latimer, M.L.; Xiao, Z.L.; Panuganti, S.; Welp, U.; Kwok, W.K.; Xu, T. Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes. Nano Lett. 2011, 11, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-C.; Kong, D.; Wang, S.; Wang, H.; Welch, A.J.; Wu, H.; Cui, Y. Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes. J. Am. Chem. Soc. 2014, 136, 10593–10596. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Kong, D.; Ruan, Z.; Hsu, P.-C.; Wang, S.; Yu, Z.; Carney, T.J.; Hu, L.; Fan, S.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, J.; Jeong, U.; Kim, H.; Lee, H. Catalytic, Conductive, and Transparent Platinum Nanofiber Webs for FTO-Free Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 3176–3181. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Sun, T.; Liu, Q.; Suo, Z.; Ren, Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 2014, 5, 3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibbotson, L.A.; Demetriadou, A.; Croxall, S.; Hess, O.; Baumberg, J.J. Optical nano-woodpiles: Large-area metallic photonic crystals and metamaterials. Sci. Rep. 2015, 5, 8313. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.; Manuzzi, D.; de los Monteros, H.V.E.; Jia, W.; Huo, D.; Hou, C.; Lei, Y. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 2012, 31, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chu, Z.; Shi, L.; Peng, J.; Jin, W. Prussian blue nanocubes decorated three-dimensional silver nanowires network for high-performance electrochemical biosensing. Sens. Actuators B Chem. 2015, 221, 1009–1016. [Google Scholar] [CrossRef]
- Xi, W.; Ma, R.; Wang, H.; Gao, Z.; Zhang, W.; Zhao, Y. Ultrathin Ag Nanowire Electrode for Electrochemical Syngas Production from Carbon Dioxide. ACS Sustain. Chem. Eng. 2018, 6, 7687–7694. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Yang, G.; Chen, Q.; Yin, Y.; Jin, M. Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property. Nano Lett. 2016, 16, 5669–5674. [Google Scholar] [CrossRef]
- Bi, Y.; Lu, G. Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxidation. Electrochem. Commun. 2009, 11, 45–49. [Google Scholar] [CrossRef]
- Alia, S.M.; Jensen, K.O.; Pivovar, B.S.; Yan, Y. Platinum-Coated Palladium Nanotubes as Oxygen Reduction Reaction Electrocatalysts. ACS Catal. 2012, 2, 858–863. [Google Scholar] [CrossRef]
- Su, L.; Shrestha, S.; Zhang, Z.; Mustain, W.; Lei, Y. Platinum-copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions. J. Mater. Chem. A 2013, 1, 12293–12301. [Google Scholar] [CrossRef]
- Alia, S.M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y. Palladium and Gold Nanotubes as Oxygen Reduction Reaction and Alcohol Oxidation Reaction Catalysts in Base. ChemSusChem 2014, 7, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kong, W.; Zhang, H.; Song, B.; Wang, Z. Gold-platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction. J. Power Sources 2015, 296, 102–108. [Google Scholar] [CrossRef]
- Zheng, J.; Cullen, D.A.; Forest, R.V.; Wittkopf, J.A.; Zhuang, Z.; Sheng, W.; Chen, J.G.; Yan, Y. Platinum–Ruthenium Nanotubes and Platinum–Ruthenium Coated Copper Nanowires As Efficient Catalysts for Electro-Oxidation of Methanol. ACS Catal. 2015, 5, 1468–1474. [Google Scholar] [CrossRef]
- Schaefer, S.; Muench, F.; Mankel, E.; Fuchs, A.; Brötz, J.; Kunz, U.; Ensinger, W. Double-Walled Ag-Pt Nanotubes Fabricated by Galvanic Replacement and Dealloying: Effect of Composition on the Methanol Oxidation Activity. Nano 2015, 10, 1550085. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, Y. Multiple-Walled Nanotubes Made of Metals. Adv. Mater. 2004, 16, 264–268. [Google Scholar] [CrossRef]
- Muench, F.; Sun, L.; Kottakkat, T.; Antoni, M.; Schaefer, S.; Kunz, U.; Molina-Luna, L.; Duerrschnabel, M.; Kleebe, H.-J.; Ayata, S.; et al. Free-Standing Networks of Core–Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS Appl. Mater. Interfaces 2017, 9, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Muench, F.; Kaserer, S.; Kunz, U.; Svoboda, I.; Brötz, J.; Lauterbach, S.; Kleebe, H.-J.; Roth, C.; Ensinger, W. Electroless synthesis of platinum and platinum–ruthenium nanotubes and their application in methanol oxidation. J. Mater. Chem. 2011, 21, 6286–6291. [Google Scholar] [CrossRef]
- Muench, F.; Neetzel, C.; Kaserer, S.; Brötz, J.; Jaud, J.-C.; Zhao-Karger, Z.; Lauterbach, S.; Kleebe, H.-J.; Roth, C.; Ensinger, W. Fabrication of porous rhodium nanotube catalysts by electroless plating. J. Mater. Chem. 2012, 22, 12784–12791. [Google Scholar] [CrossRef]
- Felix, E.-M.; Muench, F.; Ensinger, W. Green plating of high aspect ratio gold nanotubes and their morphology-dependent performance in enzyme-free peroxide sensing. RSC Adv. 2014, 4, 24504–24510. [Google Scholar] [CrossRef]
- Muench, F.; Rauber, M.; Stegmann, C.; Lauterbach, S.; Kunz, E.; Kleebe, H.-J.; Ensinger, W. Ligand-optimized electroless synthesis of silver nanotubes and their activity in the reduction of 4-nitrophenol. Nanotechnology 2011, 22, 415602. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W., III; Unocic, R.R.; Unocic, K.A.; Veith, G.M.; Zawodzinski, T.A., Jr.; Papandrew, A.B. Vapor Synthesis and Thermal Modification of Supportless Platinum-Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts. ACS Appl. Mater. Interfaces 2015, 7, 10115–10124. [Google Scholar] [CrossRef]
- Bechelany, M.; Chaaya, A.A.; Frances, F.; Akdim, O.; Cot, D.; Demirci, U.B.; Miele, P. Nanowires with controlled porosity for hydrogen production. J. Mater. Chem. A 2013, 1, 2133–2138. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Takai, A.; Nagaura, T.; Inoue, S.; Kuroda, K. Pt Fibers with Stacked Donut-Like Mesospace by Assembling Pt Nanoparticles: Guided Deposition in Physically Confined Self-Assembly of Surfactants. J. Am. Chem. Soc. 2008, 130, 5426–5427. [Google Scholar] [CrossRef]
- Muench, F.; Schaefer, S.; Hagelüken, L.; Molina-Luna, L.; Duerrschnabel, M.; Kleebe, H.-J.; Brötz, J.; Vaskevich, A.; Rubinstein, I.; Ensinger, W. Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications. ACS Appl. Mater. Interfaces 2017, 9, 31142–31152. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.-H.; Li, H.-H.; Yu, J.-W.; Gao, M.-R.; Yu, S.-H. Ternary Heterostructured Nanoparticle Tubes: A Dual Catalyst and Its Synergistic Enhancement Effects for O2/H2O2 Reduction. Angew. Chem. Int. Ed. 2010, 49, 9149–9152. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Scholz, R.; Nielsch, K.; Gösele, U. A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 6050–6054. [Google Scholar] [CrossRef] [PubMed]
- Mauger, S.A.; Neyerlin, K.C.; Alia, S.M.; Ngo, C.; Babu, S.K.; Hurst, K.E.; Pylypenko, S.; Lister, S.; Pivovar, B.S. Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts. J. Electrochem. Soc. 2018, 165, F238–F245. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Jung, H.Y.; Dresselhaus, M.S.; Jung, Y.J.; Kong, J. A facile route for 3D aerogels from nanostructured 1D and 2D materials. Sci. Rep. 2012, 2, 849. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Preston, D.J.; Jung, H.Y.; Deng, Z.; Wang, E.N.; Kong, J. Porous Cu Nanowire Aerosponges from One-Step Assembly and their Applications in Heat Dissipation. Adv. Mater. 2016, 28, 1413–1419. [Google Scholar] [CrossRef]
- Gilbert, D.A.; Burks, E.C.; Ushakov, S.V.; Abellan, P.; Arslan, I.; Felter, T.E.; Navrotsky, A.; Liu, K. Tunable Low Density Palladium Nanowire Foams. Chem. Mater. 2017, 29, 9814–9818. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Leung, C.; Gao, F.; Gu, Z. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes. Sensors 2015, 15, 22473–22489. [Google Scholar] [CrossRef] [Green Version]
- Jani, A.M.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progr. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A Membrane-Based Synthetic Approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef] [Green Version]
- Apel, P. Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Bayat, H.; Lin, C.-H.; Cheng, M.-H.; Steuber, M.; Chen, J.-T.; Schönherr, H. Interplay of Template Constraints and Microphase Separation in Polymeric Nano-Objects Replicated from Novel Modulated and Interconnected Nanoporous Anodic Alumina. ACS Appl. Nano Mater. 2018, 1, 200–208. [Google Scholar] [CrossRef]
- Martín, J.; Martín-González, M.; Fernández, J.F.; Caballero-Calero, O. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina. Nat. Commun. 2014, 5, 5130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanpaemel, J.; Abd-Elnaiem, A.M.; De Gendt, S.; Vereecken, P.M. The Formation Mechanism of 3D Porous Anodized Aluminum Oxide Templates from an Aluminum Film with Copper Impurities. J. Phys. Chem. C 2015, 119, 2105–2112. [Google Scholar] [CrossRef]
- Tian, M.; Wang, W.; Wei, Y.; Yang, R. Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni-Sn nanowire networks. J. Power Sources 2012, 211, 46–51. [Google Scholar] [CrossRef]
- Mebed, A.M.; Abd-Elnaiem, A.M.; Al-Hosiny, N.M. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl. Phys. A 2016, 122, 565. [Google Scholar] [CrossRef]
- Guo, F.; Li, Y.; Fan, B.; Liu, Y.; Lu, L.; Lei, Y. Carbon- and Binder-Free Core–Shell Nanowire Arrays for Efficient Ethanol Electro-Oxidation in Alkaline Medium. ACS Appl. Mater. Interfaces 2018, 10, 4705–4714. [Google Scholar] [CrossRef]
- Luan, C.; Shao, Y.; Lu, Q.; Gao, S.; Huang, K.; Wu, H.; Yao, K. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays. ACS Appl. Mater. Interfaces 2018, 10, 17950–17956. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.S.; Seo, M.H.; Choi, S.M.; Cho, J.; Huber, G.W.; Kim, W.B. Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts. Electrochem. Commun. 2010, 12, 32–35. [Google Scholar] [CrossRef]
- Muench, F.; Felix, E.-M.; Rauber, M.; Schaefer, S.; Antoni, M.; Kunz, U.; Kleebe, H.-J.; Trautmann, C.; Ensinger, W. Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1D nano- and microscale building blocks. Electrochim. Acta 2016, 202, 47–54. [Google Scholar] [CrossRef]
- Muench, F.; Kunz, U.; Wardenga, H.F.; Kleebe, H.-J.; Ensinger, W. Metal Nanotubes and Nanowires with Rhombohedral Cross-Section Electrolessly Deposited in Mica Templates. Langmuir 2014, 30, 10878–10885. [Google Scholar] [CrossRef] [PubMed]
- Muench, F.; Oezaslan, M.; Rauber, M.; Kaserer, S.; Fuchs, A.; Mankel, E.; Brötz, J.; Strasser, P.; Roth, C.; Ensinger, W. Electroless synthesis of nanostructured nickel and nickel–boron tubes and their performance as unsupported ethanol electrooxidation catalysts. J. Power Sources 2013, 222, 243–252. [Google Scholar] [CrossRef]
- Didyk, A.Y.; Dmitriev, S.N.; Vutsadakis, W. Spatial Overlapping of Holes in Nuclear-Track Membranes with Different Angular Distributions. High Energy Chem. 2003, 37, 121–127. [Google Scholar] [CrossRef]
- Wei, X.; Roper, D.K. Tin Sensitization for Electroless Plating Review. J. Electrochem. Soc. 2014, 161, D235–D242. [Google Scholar] [CrossRef]
- Muench, F.; Eils, A.; Toimil-Molares, M.E.; Hossain, U.H.; Radetinac, A.; Stegmann, C.; Kunz, U.; Lauterbach, S.; Kleebe, H.-J.; Ensinger, W. Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surf. Coat. Technol. 2014, 242, 100–108. [Google Scholar] [CrossRef]
- Korolkov, I.V.; Borgekov, D.B.; Mashentseva, A.A.; Güven, O.; Atici, A.B.; Kozlovskiy, A.L.; Zdorovets, M.V. The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chem. Pap. 2017, 71, 2353–2358. [Google Scholar] [CrossRef]
- Schaefer, S.; Felix, E.-M.; Muench, F.; Antoni, M.; Lohaus, C.; Brötz, J.; Kunz, U.; Gärtner, I.; Ensinger, W. NiCo nanotubes plated on Pd seeds as designed magnetically recollectable catalysts with high noble metal utilization. RSC Adv. 2016, 6, 70033–70039. [Google Scholar] [CrossRef]
- Walbert, T.; Antoni, M.; Muench, F.; Späth, T.; Ensinger, W. Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation. ChemElectroChem 2018, 5, 1087–1097. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, X.; Yang, Y.; Li, J.; Zhang, Y.; Qin, D. Enriching Silver Nanocrystals with a Second Noble Metal. Acc. Chem. Res. 2017, 50, 1774–1784. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Hall, A.S.; Surendranath, Y. Tuning of Silver Catalyst Mesostructure Promotes Selective Carbon Dioxide Conversion into Fuels. Angew. Chem. Int. Ed. 2016, 55, 15282–15286. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical application. Chem. Soc. Rev. 2014, 43, 2439–2450. [Google Scholar] [CrossRef]
- Muench, F.; Kunz, U.; Neetzel, C.; Lauterbach, S.; Kleebe, H.-J.; Ensinger, W. 4-(Dimethylamino)pyridine as a Powerful Auxiliary Reagent in the Electroless Synthesis of Gold Nanotubes. Langmuir 2011, 27, 430–435. [Google Scholar] [CrossRef]
- Vlad, A.; Antohe, V.-A.; Martinez-Huerta, J.M.; Ferain, E.; Gohy, J.-F.; Piraux, L. Three-dimensional interconnected Nicore–NiOshell nanowire networks for lithium microbattery architectures. J. Mater. Chem. A 2016, 4, 1603–1607. [Google Scholar] [CrossRef]
- Araujo, E.; Encinas, A.; Velázquez-Galván, Y.; Martínez-Huerta, J.M.; Hamoir, G.; Ferain, E.; Piraux, L. Artificially modified magnetic anisotropy in interconnected nanowire networks. Nanoscale 2015, 7, 1485–1490. [Google Scholar] [CrossRef]
- da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Lemaitre, M.; Piraux, L. Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks. Nanoscale Res. Lett. 2016, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Velázquez-Galván, Y.G.; Martínez-Huerta, J.M.; Encinas, A.; Piraux, L. Interplay between the magnetic and magneto-transport properties of 3D interconnected nanowire networks. J. Appl. Phys. 2016, 120, 043904. [Google Scholar] [CrossRef]
- de la Torre Medina, J.; Gomes, T.D.; Galván, Y.G.; Piraux, L. Large-Scale 3-D Interconnected Ni Nanotube Networks with Controlled Structural and Magnetic Properties. Sci. Rep. 2018, 8, 14555. [Google Scholar] [CrossRef]
- Bauer, J.; Meza, L.R.; Schaedler, T.A.; Schwaiger, R.; Zheng, X.; Valdevit, L. Nanolattices: An Emerging Class of Mechanical Metamaterials. Adv. Mater. 2017, 29, 1701850. [Google Scholar] [CrossRef] [PubMed]
- Boehme, M.; Ensinger, W. From Nanowheat to Nanograss: A Preparation Method to Achieve Free Standing Nanostructures Having a High Length/Diameter Aspect Ratio. Adv. Eng. Mater. 2011, 13, 373–375. [Google Scholar] [CrossRef]
- Yu, S.; Li, N.; Wharton, J.; Martin, C.R. Nano Wheat Fields Prepared by Plasma-Etching Gold Nanowire Containing Membranes. Nano Lett. 2003, 3, 815–818. [Google Scholar] [CrossRef]
- McKeown, C.; Rhen, F.M.F. Pt nanotube network with high activity for methanol oxidation. J. Appl. Electrochem. 2018, 48, 165–173. [Google Scholar] [CrossRef]
- Barako, M.T.; Roy-Panzer, S.; English, T.S.; Kodama, T.; Asheghi, M.; Kenny, T.W.; Goodson, K.E. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays. ACS Appl. Mater. Interfaces 2015, 7, 19251–19259. [Google Scholar] [CrossRef]
- Zhou, Q.; He, J.; Huang, Y.; Chen, Y.; Guo, J.; Nie, B. In situ SERS interrogation of catalytic reaction on three-dimensional gold nanowire carpeted polycarbonate membranes. Anal. Methods 2014, 5, 4625–4632. [Google Scholar] [CrossRef]
- Mollamahalle, Y.B.; Ghorbani, M.; Dolati, A. Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles. Electrochim. Acta 2012, 75, 157–163. [Google Scholar] [CrossRef]
- Mukaibo, H.; Horne, L.P.; Park, D.; Martin, C.R. Controlling the Length of Conical Pores Etched in Ion-Tracked Poly(ethylene terephthalate) Membranes. Small 2009, 5, 2474–2479. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Chen, J.; Zeng, Y. Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode. Nanoscale 2012, 4, 6025–6031. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Batalla, P.; Escarpa, A. Metallic and polymeric nanowires for electrochemical sensing and biosensing. Trends Anal. Chem. 2014, 57, 6–22. [Google Scholar] [CrossRef]
- Rolison, D.R. Catalytic Nanoarchitectures—The Importance of Nothing and the Unimportance of Periodicity. Science 2003, 299, 1698–1701. [Google Scholar] [CrossRef]
- Yoon, H.; Deshpande, D.C.; Ramachandran, V.; Varadan, V.K. Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 2008, 19, 025304. [Google Scholar] [CrossRef]
- Roustaie, F.; Bieker, J.; Cicek, R.; Schlaak, H.F. Novel fabrication method for integration of template grown metallic nanocones with controllable tip diameter and apex angle. Microelectron. Eng. 2017, 180, 81–85. [Google Scholar] [CrossRef]
- Li, F.; Zhu, M.; Liu, C.; Zhou, W.L.; Wiley, J.B. Patterned Metal Nanowire Arrays from Photolithographically-Modified Templates. J. Am. Chem. Soc. 2006, 128, 13342–13343. [Google Scholar] [CrossRef] [PubMed]
- Greiner, A.; Wendorff, J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Cavaliere, S.; Subianto, S.; Savych, I.; Jones, D.J.; Roziére, J. Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 2011, 4, 4761–4785. [Google Scholar] [CrossRef]
- Khalil, A.; Lalia, B.S.; Hashaikeh, R.; Khraisheh, M. Electrospun metallic nanowires: Synthesis, characterization, and applications. J. Appl. Phys. 2013, 114, 171301. [Google Scholar] [CrossRef]
- Wu, H.; Hu, L.; Rowell, M.W.; Kong, D.; Cha, J.J.; McDonough, J.R.; Zhu, J.; Yang, Y.; McGehee, M.D.; Cui, Y. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode. Nano Lett. 2010, 10, 4242–4248. [Google Scholar] [CrossRef]
- Kim, J.M.; Joh, H.-U.; Jo, S.M.; Ahn, D.J.; Ha, H.Y.; Hong, S.-A.; Kim, S.-K. Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation. Electrochim. Acta 2010, 55, 4827–4835. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, R.; Liu, X.; Lin, D.; Pan, W. Electrospinning of Fe, Co and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties. Chem. Mater. 2007, 19, 3506–3511. [Google Scholar] [CrossRef]
- Cho, Y.-B.; Yu, A.; Lee, C.; Kim, M.H.; Lee, Y. Fundamental Study of Facile and Stable Hydrogen Evolution Reaction at Electrospun Ir and Ru Mixed Oxide Nanofibers. ACS Appl. Mater. Interfaces 2018, 10, 541–549. [Google Scholar] [CrossRef]
- Gries, K.; Vieker, H.; Gölzhäuser, A.; Agarwal, S.; Greiner, A. Preparation of Continuous Gold Nanowires by Electrospinning of High-Concentration Aqueous Dispersions of Gold Nanoparticles. Small 2012, 8, 1436–1441. [Google Scholar] [CrossRef]
- Huang, Y.; Garcia, M.; Habib, S.; Shui, J.; Wagner, F.T.; Zhang, J.; Jorné, J.; Li, J.C.M. Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 16175–16180. [Google Scholar] [CrossRef]
- Yu, A.; Lee, C.; Lee, N.-S.; Kim, M.H.; Lee, Y. Highly Efficient Silver–Cobalt Composite Nanotube Electrocatalysts for Favorable Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 32833–32841. [Google Scholar] [CrossRef]
- Marx, S.; Jose, M.V.; Andersen, J.D.; Russell, A.J. Electrospun gold nanofiber electrodes for biosensors. Biosens. Bioelectron. 2011, 26, 2981–2986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C.; Fong, H. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 14433–14440. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Cai, W.; Lin, Y.; Dai, Z. Silver Porous Nanotube Built Three-Dimensional Films with Structural Tunability Based on the Nanofiber Template-Plasma Etching Strategy. Langmuir 2011, 27, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Shui, J.-I.; Chen, C.; Li, J.C.M. Evolution of Nanoporous Pt-Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction. Adv. Funct. Mater. 2011, 21, 3357–3362. [Google Scholar] [CrossRef]
- Brodt, M.; Han, T.; Dale, N.; Niangar, E.; Wycisk, R.; Pintauro, P. Fabrication, In-Situ Performance, and Durability of Nanofiber Fuel Cell Electrodes. J. Electrochem. Soc. 2015, 162, F84–F91. [Google Scholar] [CrossRef]
- Xiao, Y.; Han, G. High performance platinum nanofibers with interconnecting structure using in dye-sensitized solar cells. Org. Electron. 2016, 37, 239–244. [Google Scholar] [CrossRef]
- He, H.; Li, K.; Dong, J.; Xia, J.; Zhang, Y.; Yang, T.; Zhao, X.; Huang, Q.; Zeng, X. Mesoporous Au nanotube-constructed three-dimensional films with excellent SERS performance based on the nanofiber template-displacement strategy. RSC Adv. 2016, 6, 4429–4433. [Google Scholar] [CrossRef]
- Li, J.C.M.; Shui, J. Platinum Nanowires Produced by Electrospinning. Nano Lett. 2009, 9, 1307–1314. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, F.; Chen, Z.; Liu, Q.; Ji, Y.; Zhang, Y.; Niu, Z.; Mao, J.; Bao, X.; Hu, P.; et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 2016, 8, 14039. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Lu, X.; Gao, P.-X. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts? Catalysts 2017, 7, 253. [Google Scholar] [CrossRef]
- Kim, J.; Li, Z.; Park, I. Direct synthesis and integration of functional nanostructures in microfluidic devices. Lab Chip 2011, 11, 1946–1951. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muench, F. Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts 2018, 8, 597. https://doi.org/10.3390/catal8120597
Muench F. Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts. 2018; 8(12):597. https://doi.org/10.3390/catal8120597
Chicago/Turabian StyleMuench, Falk. 2018. "Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts" Catalysts 8, no. 12: 597. https://doi.org/10.3390/catal8120597
APA StyleMuench, F. (2018). Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts, 8(12), 597. https://doi.org/10.3390/catal8120597