Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances
Abstract
:1. Introduction
2. Mono- and Binuclear Cobalt Complexes
3. Tetranuclear Cubanes Co4O4 or Co4−xMxO4
4. Other Tetranuclear Complexes and Complexes of Higher Nuclearity
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, G.; Lean, J.L. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, D.A. Missing Pieces in the Puzzle of Biological Water Oxidation. ACS Catal. 2018, 8, 9477–9507. [Google Scholar] [CrossRef]
- Shamsipur, M.; Pashabadi, A. Latest advances in PSII features and mechanism of water oxidation. Coord. Chem. Rev. 2018, 374, 153–172. [Google Scholar] [CrossRef]
- Garrido-Barros, P.; Gimbert-Surinach, C.; Matheu, R.; Sala, X.; Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 2017, 46, 6088–6098. [Google Scholar] [CrossRef] [Green Version]
- Najafpour, M.M.; Renger, G.; Holynska, M.; Moghaddam, A.N.; Aro, E.-M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J.J.; Shen, J.-R.; Allakhverdiev, S.I. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem. Rev. 2016, 116, 2886–2936. [Google Scholar] [CrossRef]
- Yano, J.; Yachandra, V. Mn4Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen. Chem. Rev. 2014, 114, 4175–4205. [Google Scholar] [CrossRef]
- Karkas, M.D.; Verho, O.; Johnston, E.V.; Akermark, B. Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chem. Rev. 2014, 114, 11863–12001. [Google Scholar] [CrossRef]
- Miyoshi, A.; Nishioka, S.; Maeda, K. Water Splitting on Rutile TiO2-Based Photocatalysts. Chem. Eur. J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Brennaman, M.K.; Dillon, R.J.; Alibabaei, L.; Gish, M.K.; Dares, C.J.; Ashford, D.L.; House, R.L.; Meyer, G.J.; Papanikolas, J.M.; Meyer, T.J. Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. J. Am. Chem. Soc. 2016, 138, 13085–13102. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K. A Role for Manganese in Oxygen Evolution in Photosynthesis. Acc. Chem. Res. 1980, 13, 249–256. [Google Scholar] [CrossRef]
- Zhang, M.; Bommer, M.; Chatterjee, R.; Hussein, R.; Yano, J.; Dau, H.; Kern, J.; Dobbek, H.; Zouni, A. Structural insights into the light-driven auto-assembly process of the water oxidizing Mn4CaO5-cluster in photosystem II. eLife 2017, 6, e26933. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-R. The Structure of Photosystem II and the Mechanism of Water Oxidation in Photosynthesis. Ann. Rev. Plant Biol. 2015, 66, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Zouni, A.; Witt, H.T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 2001, 409, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.N.; Iverson, T.M.; Maghlaoui, K.; Barber, J.; Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 2004, 303, 1831–1838. [Google Scholar] [CrossRef]
- Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Towards complete cofactor arrangement in the 3.0 angstrom resolution structure of photosystem II. Nature 2005, 438, 1040–1044. [Google Scholar] [CrossRef]
- Umena, Y.; Kawakami, K.; Shen, J.R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 2011, 473, 55–61. [Google Scholar] [CrossRef]
- Suga, M.; Akita, F.; Sugahara, M.; Kubo, M.; Nakajima, Y.; Nakane, T.; Yamashita, K.; Umena, Y.; Nakabayashi, M.; Yamane, T.; et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 2017, 543, 131. [Google Scholar] [CrossRef]
- Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.; Cox, N.; Pantazis, D.A. A five-coordinate Mn(IV) intermediate in biological water oxidation: Spectroscopic signature and a pivot mechanism for water binding. Chem. Sci. 2016, 7, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Young, I.D.; Ibrahim, M.; Chatterjee, R.; Gul, S.; Fuller, F.D.; Koroidov, S.; Brewster, A.S.; Tran, R.; Alonso-Mori, R.; Kroll, T.; et al. Structure of photosystem II and substrate binding at room temperature. Nature 2016, 540, 453. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Burnap, R.L. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Yocum, C.F. The calcium and chloride requirements of the O2 evolving complex. Coordi.Chem. Rev. 2008, 252, 296–305. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 2015, 348, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Kanady, J.S.; Tsui, E.Y.; Day, M.W.; Agapie, T. A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II. Science 2011, 333, 733–736. [Google Scholar] [CrossRef]
- Tsui, E.Y.; Tran, R.; Yano, J.; Agapie, T. Redox-inactive metals modulate the reduction potential in heterometallic manganese-oxido clusters. Nat. Chem. 2013, 5, 293–299. [Google Scholar] [CrossRef]
- Chen, C.G.; Kazimir, J.; Cheniae, G.M. Calcium Modulates the Photoassembly of Photosystem-II Mn4-Clusters by Preventing Ligation of Nonfunctional High-Valency States of Manganese. Biochemistry 1995, 34, 13511–13526. [Google Scholar] [CrossRef]
- Buvaylo, E.A.; Nesterova, O.V.; Kokozay, V.N.; Vassilyeva, O.Y.; Skelton, B.W.; Boca, R.; Nesterov, D.S. Discussion of Planarity of Molecular Structures Using Novel Pentanuclear Cu/Ni Complexes as an Example. Cryst. Grow. Des. 2012, 12, 3200–3208. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Puntoriero, F.; Sartorel, A.; Orlandi, M.; La Ganga, G.; Serroni, S.; Bonchio, M.; Scandola, F.; Campagna, S. Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord. Chem. Rev. 2011, 255, 2594–2601. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolletta, F.; Juris, A.; Maestri, M.; Sandrini, D. Quantum Yield of Formation of the Lowest Excited-State of Ru(bpy)32+ and Ru(phen)32+. Inorg. Chim. Acta Lett. 1980, 44, L175–L176. [Google Scholar] [CrossRef]
- Blakemore, J.D.; Crabtree, R.H.; Brudvig, G.W. Molecular Catalysts for Water Oxidation. Chem. Rev. 2015, 115, 12974–13005. [Google Scholar] [CrossRef] [PubMed]
- Karkas, M.D.; Akermark, B. Water oxidation using earth-abundant transition metal catalysts: Opportunities and challenges. Dalton Trans. 2016, 45, 14421–14461. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Spiccia, L. Water oxidation catalysts based on abundant 1st row transition metals. Coord. Chem. Rev. 2013, 257, 2607–2622. [Google Scholar] [CrossRef]
- Han, Q.; Ding, Y. Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans. 2018, 47, 8180–8188. [Google Scholar] [CrossRef]
- Wenger, O.S. Photoactive Complexes with Earth-Abundant Metals. J. Am. Chem. Soc. 2018. [Google Scholar] [CrossRef]
- Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting Water with Cobalt. Angew. Chem. Int. Ed. 2011, 50, 7238–7266. [Google Scholar] [CrossRef]
- Kanan, M.W.; Nocera, D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075. [Google Scholar] [CrossRef]
- Jiao, F.; Frei, H. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dismukes, G.C.; Brimblecombe, R.; Felton, G.A.N.; Pryadun, R.S.; Sheats, J.E.; Spiccia, L.; Swiegers, G.F. Development of Bioinspired Mn4O4-Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Acc. Chem. Res. 2009, 42, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Tan, J.M.; Besson, C.; Geletii, Y.V.; Musaev, D.G.; Kuznetsov, A.E.; Luo, Z.; Hardcastle, K.I.; Hill, C.L. A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals. Science 2010, 328, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Luo, Z.; Geletii, Y.V.; Vickers, J.W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D.G.; et al. Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. J. Am. Chem. Soc. 2011, 133, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Stracke, J.J.; Finke, R.G. Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate Co4(H2O)2(PW9O34)210−: Identification of Heterogeneous CoOx as the Dominant Catalyst. J. Am. Chem. Soc. 2011, 133, 14872–14875. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Liu, Y.; Ding, Y.; Du, X.; Song, F.; Xiang, R.; Ma, B. A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chem. Commun. 2014, 50, 2167–2169. [Google Scholar] [CrossRef] [PubMed]
- Nakazono, T.; Parent, A.R.; Sakai, K. Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem. Commun. 2013, 49, 6325–6327. [Google Scholar] [CrossRef]
- Leung, C.-F.; Ng, S.-M.; Ko, C.-C.; Man, W.-L.; Wu, J.; Chen, L.; Lau, T.-C. A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction. Energ. Environ. Sci. 2012, 5, 7903–7907. [Google Scholar] [CrossRef]
- Hong, D.; Jung, J.; Park, J.; Yamada, Y.; Suenobu, T.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energ. Environ. Sci. 2012, 5, 7606–7616. [Google Scholar] [CrossRef]
- Ishizuka, T.; Watanabe, A.; Kotani, H.; Hong, D.; Satonaka, K.; Wada, T.; Shiota, Y.; Yoshizawa, K.; Ohara, K.; Yamaguchi, K.; et al. Homogeneous Photocatalytic Water Oxidation with a Dinuclear CoIII Pyridylmethylamine Complex. Inorg. Chem. 2016, 55, 1154–1164. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Mijangos, E.; Ott, S.; Thapper, A. Water Oxidation Catalyzed by a Dinuclear Cobalt-Polypyridine Complex. Angew. Chem. Int. Ed. 2014, 53, 14499–14502. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Sahoo, P.; Lu, T.-B. Reinvestigation of Water Oxidation Catalyzed by a Dinuclear Cobalt Polypyridine Complex: Identification of CoOx as a Real Heterogeneous Catalyst. ACS Catal. 2016, 6, 5062–5068. [Google Scholar] [CrossRef]
- Lin, J.; Ma, B.; Chen, M.; Ding, Y. Water oxidation catalytic ability of polypyridine complex containing a µ-OH, µ-O2 dicobalt(III) core. Chin. J. Catal. 2018, 39, 463–471. [Google Scholar] [CrossRef]
- McCool, N.S.; Robinson, D.M.; Sheats, J.E.; Dismukes, G.C. A Co4O4 “Cubane” Water Oxidation Catalyst Inspired by Photosynthesis. J. Am. Chem. Soc. 2011, 133, 11446–11449. [Google Scholar] [CrossRef] [PubMed]
- Berardi, S.; La Ganga, G.; Natali, M.; Bazzan, I.; Puntoriero, F.; Sartorel, A.; Scandola, F.; Campagna, S.; Bonchio, M. Photocatalytic Water Oxidation: Tuning Light-Induced Electron Transfer by Molecular Co4O4 Cores. J. Am. Chem. Soc. 2012, 134, 11104–11107. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, F.; Guettinger, R.; More, R.; Luber, S.; Patzke, G.R. Closer to Photosystem II: A Co4O4 Cubane Catalyst with Flexible Ligand Architecture. J. Am. Chem. Soc. 2013, 135, 18734–18737. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.F.; Kaplan, C.; Sheats, J.E.; Robinson, D.M.; McCool, N.S.; Mezle, N.; Dismukes, G.C. What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorg. Chem. 2014, 53, 2113–2121. [Google Scholar] [CrossRef]
- Ullman, A.M.; Liu, Y.; Huynh, M.; Bediako, D.K.; Wang, H.; Anderson, B.L.; Powers, D.C.; Breen, J.J.; Abruna, H.D.; Nocera, D.G. Water Oxidation Catalysis by Co(II) Impurities in CoIII4O4 Cubanes. J. Am. Chem. Soc. 2014, 136, 17681–17688. [Google Scholar] [CrossRef]
- Song, F.Y.; More, R.; Schilling, M.; Smolentsev, G.; Azzaroli, N.; Fox, T.; Luber, S.; Patzke, G.R. {Co4O4} and {CoxNi4−xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. J. Am. Chem. Soc. 2017, 139, 14198–14208. [Google Scholar] [CrossRef]
- Evangelisti, F.; More, R.; Hodel, F.; Luber, S.; Patzke, G.R. 3d-4f {CoII3Ln(OR)4} Cubanes as Bio-lnspired Water Oxidation Catalysts. J. Am. Chem. Soc. 2015, 137, 11076–11084. [Google Scholar] [CrossRef]
- Zhou, X.; Li, F.; Li, H.; Zhang, B.; Yu, F.; Sun, L. Photocatalytic Water Oxidation by Molecular Assemblies Based on Cobalt Catalysts. ChemSusChem 2014, 7, 2453–2456. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Song, J.; Geletii, Y.V.; Vickers, J.W.; Sumliner, J.M.; Musaev, D.G.; Koegerler, P.; Zhuk, P.F.; Bacsa, J.; Zhu, G.; et al. An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. J. Am. Chem. Soc. 2014, 136, 9268–9271. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, H.; Chi, L.; Zhang, L.; Wan, Z.; Ding, Y.; Wang, J. Identification of homogeneous Co4(H2O)4(HPMIDA)2(PMIDA)26− as an effective molecular-light-driven water oxidation catalyst. Appl. Catal. B Environ. 2017, 202, 397–403. [Google Scholar] [CrossRef]
- Lin, J.; Meng, X.; Zheng, M.; Ma, B.; Ding, Y. Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Catal. B Environ. 2019, 241, 351–358. [Google Scholar] [CrossRef]
- Chen, W.-C.; Wang, X.-L.; Qin, C.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. A carbon-free polyoxometalate molecular catalyst with a cobalt-arsenic core for visible light-driven water oxidation. Chem. Commun. 2016, 52, 9514–9517. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.H.; Guo, L.-Y.; Su, H.-F.; Gao, X.; Wu, X.-F.; Wang, W.-G.; Tung, C.-H.; Sun, D. Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst. Inorg. Chem. 2017, 56, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Feng, Y.; Zhou, P.; Liu, Y.; Xu, J.; Xiang, R.; Ding, Y.; Zhao, C.; Fan, L.; Hu, C. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation. ChemSusChem 2015, 8, 2630–2634. [Google Scholar] [CrossRef]
- Natali, M.; Bazzan, I.; Goberna-Ferron, S.; Al-Oweini, R.; Ibrahim, M.; Bassil, B.S.; Dau, H.; Scandola, F.; Galan-Mascaros, J.R.; Kortz, U.; et al. Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: Tracing the catalyst fate during oxygen evolution turnover. Green Chem. 2017, 19, 2416–2426. [Google Scholar] [CrossRef]
- Genoni, A.; La Ganga, G.; Volpe, A.; Puntoriero, F.; Di Valentin, M.; Bonchio, M.; Natali, M.; Sartorel, A. Water oxidation catalysis upon evolution of molecular Co(III) cubanes in aqueous media. Faraday Discuss. 2015, 185, 121–141. [Google Scholar] [CrossRef]
- Costas, M. Selective C-H oxidation catalyzed by metalloporphyrins. Coord. Chem. Rev. 2011, 255, 2912–2932. [Google Scholar] [CrossRef]
- Barona-Castano, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; de Oliveira, K.T. Porphyrins as Catalysts in Scalable Organic Reactions. Molecules 2016, 21, 310. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.Y.; Chrzanowski, M.; Ma, S.Q. Metal-metalloporphyrin frameworks: A resurging class of functional materials. Chem. Soc. Rev. 2014, 43, 5841–5866. [Google Scholar] [CrossRef]
- Wang, D.; Groves, J.T. Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc. Natl. Acad. Sci. USA 2013, 110, 15579–15584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryliakov, K.P.; Talsi, E.P. Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coord. Chem. Rev. 2014, 276, 73–96. [Google Scholar] [CrossRef]
- Olivo, G.; Cusso, O.; Borrell, M.; Costas, M. Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: From free radicals to stereoselective transformations. J. Biol. Inorg. Chem. 2017, 22, 425–452. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.; Sarmah, P.; Saha, B.; Chakravorty, S.; Das, B.K. Catalytic Properties of Cobalt(III)-Oxo Cubanes in the TBHP Oxidation of Benzylic Alcohols. Inorg. Chem. 2009, 48, 6371–6379. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Shannigrahi, S.; Yakovlev, N.L.; Hor, T.S.A. General One-Step Self-Assembly of Isostructural Intermetallic CoII3LnIII Cubane Aggregates. Inorg. Chem. 2012, 51, 12059–12061. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Kunz, V.; Frischmann, P.D.; Wuerthner, F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II. Nat. Chem. 2016, 8, 577–584. [Google Scholar] [CrossRef]
- Lisnard, L.; Mialane, P.; Dolbecq, A.; Marrot, J.; Clemente-Juan, J.M.; Coronado, E.; Keita, B.; de Oliveira, P.; Nadjo, L.; Secheresse, F. Effect of cyanato, azido, carboxylato, and carbonato ligands on the formation of cobalt(II) polyoxometalates: Characterization, magnetic, and electrochemical studies of multinuclear cobalt clusters. Chem. Eur. J. 2007, 13, 3525–3536. [Google Scholar] [CrossRef]
- Galanmascaros, J.R.; Gomezgarcia, C.J.; Borrasalmenar, J.J.; Coronado, E. High-Nuclearity Magnetic Clusters–Magnetic-Properties of a 9 Cobalt Cluster Encapsulated in a Polyoxometalate, Co9(OH)3(H2O)6(HPO4)2(PW9O34)316−. Adv. Mater. 1994, 6, 221–223. [Google Scholar] [CrossRef]
- Bassil, B.S.; Nellutla, S.; Kortz, U.; Stowe, A.C.; van Tol, J.; Dalal, N.S.; Keita, B.; Nadjo, L. The satellite-shaped Co15 polyoxotungstate, Co6(H2O)30}Co9Cl2(OH)3(H2O)9(SiW8O31)3}5−. Inorg. Chem. 2005, 44, 2659–2665. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Lan, Y.H.; Bassil, B.S.; Xiang, Y.X.; Suchopar, A.; Powell, A.K.; Kortz, U. Hexadecacobalt(II)-Containing Polyoxometalate-Based Single-Molecule Magnet. Angew. Chem. Int. Ed. 2011, 50, 4708–4711. [Google Scholar] [CrossRef] [PubMed]
N | Core | (Pre)catalyst | O2 Evolution, µmol/µM | TON 1 | TOF 2, s−1 | QE 3, % | λ 4, nm | Irradiation Source | pH | NP 5 | Anion 6 | [cat]0, µM | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1a | Co1 | [CoII(L1)] | 13.7/1366 | 854 | 6.4 | 38.6 | >420 | LED, 5.1 mW/cm2 | 9 | + | ClO4 | 1.6 | [46] |
1b | Co1 | [CoII(L1)] | n.d. 7 | 194 | 2.0 | – | – | Chemical oxidation with [Ru(bpy)3]3+ | 9 | n.d. 7 | ClO4 | n.d. | [46] |
2 | Co1 | [CoII(TPPS)] | 12.2/1220 | 122 | 0.17 | n.d. | 400–800 | Xe lamp, 300 W | 11 | – | NO3 | 10 | [47] |
3 | Co1 | [CoII(L2)(H2O)2](ClO4)2 | 0.55/67 | 335 | n.d. | n.d. | 475 | Hg arc lamp, 500 W | 8 | – | Cl | 0.2 | [48] |
4 | Co1 | [CoII(bpy)2(H2O)](ClO4)2 | 0.34/41 | 206 | n.d. | n.d. | 475 | Hg arc lamp, 500 W | 8 | n.d. | Cl | 0.2 | [48] |
5a | Co1 | [CoII(L3)(H2O)](ClO4)2 | 5.4/2700 | 54 | n.d. | 32 | >420 | Xe lamp, 500 W | 8 | + | ClO4 | 50 | [49] |
5b | Co1 | [CoII(L3)(H2O)](ClO4)2 | 0.9/450 | 9 | n.d. | n.d. | >420 | Xe lamp, 500 W | 8 | n.d. | Cl | 50 | [49] |
6a | Co2 | [CoIII2(μ-OH)2(TPA)2](ClO4)4 | 9.3/1855 | 742 | n.d. | 44 | 420 | Xe lamp | 9.3 | – | ClO4 | 2.5 | [50] |
6b | Co2 | [CoIII2(μ-OH)2(TPA)2](ClO4)4 | 5.4/1080 | 2.7 | n.d. | n.d. | 420 | Xe lamp | 9.3 | – | ClO4 | 400 | [50] |
7a | Co2 | [(TPA)CoIII(µ-OH)(µ-O2)CoIII(TPA)](ClO4)3 | 0.1/99 | 58 | 1.4 | n.d. | 470 | LED, 820 µE/s | 8 | –/+ | ClO4 | 5 | [51] |
7b | Co2 | [(TPA)CoIII(µ-OH)(µ-O2)CoIII(TPA)](ClO4)3 + 1 eq. bpy | 0/0 | 0 | 0 | 0 | 470 | LED, 150 mW/cm2 | 8 | n.d. | ClO4 | 5 | [52] |
8a | Co2 | [(L4)CoIII(µ-OH)(µ-O2)CoIII(L4)](ClO4)3 | 35/2333 | 233 | n.d. | n.d. | >420 | LED, 5.0 mW/cm2 | 9 | n.d. | Cl | 10 | [53] |
8b | Co2 | [(L4)CoIII(µ-OH)(µ-O2)CoIII(L4)](ClO4)3 + 5 eq. bpy | 0/0 | 0 | 0 | 0 | >420 | LED, 5.0 mW/cm2 | 9 | n.d. | Cl | 10 | [53] |
9 | Co4 | [CoIII4O4(OAc)4(py)4] | 16/1143 | >40 | 0.02 | n.d. | >395 | Arc lamp, 250W, 2 mW/cm2 | 7 | n.d. | Cl | 330 | [54] |
10 | Co4 | [CoIII4O4(OAc)4(p-py-OCH3)4] | 5.0/2520 | 140 | ~0.04 | 80 | >400 | Halogen lamp | 8 | n.d. | Cl | 18 | [55] |
11a | Co4 | [CoII4(L5)4(OAc)4(H2O)2] | 15.5/1940 | 20 | 1.8 | n.d. | 470 | LED, 26.1 mW/cm2 | 7 | – | Cl | 97 | [56] |
11b | Co4 | [CoII4(L5)4(OAc)4(H2O)2] | 14.4/1800 | 35 | 4.4 | n.d. | 470 | LED, 26.1 mW/cm2 | 8 | – | Cl | 60 | [56] |
11c | Co4 | [CoII4(L5)4(OAc)4(H2O)2] | 13.4/1680 | 28 | 7 | n.d. | 470 | LED, 26.1 mW/cm2 | 9 | – | Cl | 60 | [56] |
12 | Co4 | [CoIII4O4(OAc)2(bpy)4](ClO4)2 | n.d. | n.d. | 0.02 | n.d. | >380 | LED | 8 | n.d. | Cl | 0.2 | [57] |
13a | Co4 | [CoIII4O4(OAc)4(py)4], crude sample | 0.3/167 | 0.5 | n.d. | n.d. | >400 | Hg/Xe arc lamp, 1000 W | 7 | n.d. | Cl | 330 | [58] |
13b | Co4 | [CoIII4O4(OAc)4(py)4] after purification | 0.06/31 | 0.09 | 2.3 × 10−4 | n.d. | >400 | Hg/Xe arc lamp, 1000 W | 7 | n.d. | Cl | 330 | [58] |
14a | Co4 | [CoII4(L6)4(OAc)2(H2O)2](ClO4)2 | 9.6/1200 | 96 | 1.2 | n.d. | 470 | LED, 26.1 mW/cm2 | 8.5 | – | Cl | 12.5 | [59] |
14b | Co4 | [CoII4(L6)4(OAc)2(H2O)2](ClO4)2 | 16.0/2000 | 20 | 0.24 | n.d. | 470 | LED, 26.1 mW/cm2 | 8.5 | – | Cl | 100 | [59] |
15 | Co4−xNix | [CoII1.15NiII2.85(L6)4(OAc)2(H2O)2](ClO4)2 | 5.5/690 | 6.9 | 0.1 | n.d. | 470 | LED, 26.1 mW/cm2 | 8.5 | n.d. | Cl | 100 | [59] |
16 | Co3Ho | [CoII3Ho(L5)4(OAc)5(H2O)] | 13.0/1630 | 163 | 5.8 | n.d. | 450 | LED, 26.1 mW/cm2 | 8 | – | Cl | 10 | [60] |
17 | Co3Er | [CoII3Er(L5)4(OAc)5(H2O)] | 16.9/2110 | 211 | 5.7 | n.d. | 450 | LED, 26.1 mW/cm2 | 8 | – | Cl | 10 | [60] |
18 | Co3Tm | [CoII3Tm(L5)4(OAc)5(H2O)] | 7.4/920 | 92 | 5.3 | n.d. | 450 | LED, 26.1 mW/cm2 | 8 | – | Cl | 10 | [60] |
19 | Co3Yb | [CoII3Yb(L5)4(OAc)5(H2O)] | 12.8/1600 | 160 | 6.8 | n.d. | 450 | LED, 26.1 mW/cm2 | 8 | – | Cl | 10 | [60] |
20a | Co4 | {CoIII4O4(OAc)3(py)4}{(L7)Ru(bpy)2} | 0.15/75 | 5 | 7 × 10−3 | n.d. | >400 | Xe lamp, 300 W | 7 | n.d. | Cl | 15 | [61] |
20b | Co4 | [CoIII4O4(OAc)4(py)4] + 1 eq. [Ru(bpy)3]Cl2 | n.d. | 2 | 5 × 10−3 | n.d. | >400 | Xe lamp, 300 W | 7 | n.d. | Cl | 15 | [61] |
21 | Co4 | {CoIII4O4(OAc)2(py)4}2{(L8)Ru(bpy)2}2 | 0.74/360 | 24 | 0.02 | n.d. | >400 | Xe lamp, 300 W | 7 | n.d. | Cl | 15 | [61] |
22a | Co4 | Na10[Co4(H2O)2(VW9O34)2] | n.d./0.15 | 300 | >1600 | – | – | Chemical oxidation with [Ru(bipy)3]3+ | 9 | – | ClO4 | 0.5 | [62] |
22b | Co4 | Na10[Co4(H2O)2(VW9O34)2] | 3.0/1484 | 742 | 4 | 61 | 455 | LED, 135 mW/cm2 | 9 | – | Cl | 2.0 | [62] |
22c | Co4 | Na10[Co4(H2O)2(VW9O34)2] | 1.7/842 | 4210 | n.d. | 48 | 455 | LED, 135 mW/cm2 | 9 | – | Cl | 0.2 | [62] |
23 | Co4 | [Co4(H2O)4(HL9)2(L9)2] | 13.2/1324 | 662 | 0.03 | n.d. | >420 | Xe lamp, 300 W, 26.4 mW/cm2 | 9 | – | ClO4 | 2 | [63] |
24a | Co6 | K12[Co(L9)]6 | 1.1/113 | 1125 | 35.3 | 5.9 | 460 | LED, 33.8 mW/cm2 | 9 | n.d. | Cl | 0.1 | [64] |
24b | Co6 | K12[Co(L9)]6 | 4.4/435 | 4350 | 162.6 | 27.1 | 460 | LED, 33.8 mW/cm2 | 9 | n.d. | ClO4 | 0.1 | [64] |
24c | Co6 | K12[Co(L9)]6 | 11.7/1169 | 167 | 4.4 | 51.5 | 460 | LED, 33.8 mW/cm2 | 9 | n.d. | Cl | 7 | [64] |
25 | Co7 | Na12[{CoII7As6O9(OH)6}(SiW9O34)2] | 2.3/115 | 115.2 | 0.14 | n.d. | >420 | Xe lamp, 300W | 8 | – | Cl | 1 | [65] |
26a | Co7 | [CoII5CoIII2(mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4 | 10.7/1070 | 43 | n.d. | n.d. | 450 | LED | 9 | n.d. | Cl | 25 | [66] |
26b | Co7 | [CoII5CoIII2(mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4 | 22/2200 | 88 | n.d. | n.d. | 450 | LED | 9 | n.d. | ClO4 | 25 | [66] |
26c | Co7 | [CoII5CoIII2(mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4 | 10.5/1050 | 210 | n.d. | n.d. | 450 | LED | 9 | n.d. | Cl | 5 | [66] |
27a | Co8 | K8Na8[(SiW9O34)2Co8(OH)6(H2O)2(CO3)3] | 16.4/1090 | 545 | 3.1 | 35.8 | >420 | LED, 5.1 mW/cm2 | 9 | – | Cl | 2 | [67] |
27b | Co8 | K8Na8[(SiW9O34)2Co8(OH)6(H2O)2(CO3)3] | 10.8/718 | 1436 | 10 | 28.8 | >420 | LED, 5.1 mW/cm2 | 9 | n.d. | Cl | 0.5 | [67] |
28 | Co9 | K16[Co9(H2O)6(OH)3(PW9O34)3] | 1.0/67 | 10 | 5 × 10−3 | n.d. | >375 | Tungsten lamp, 150 W, 90 mW/cm2 | 8 | n.d. | n.d. | 6.6 | [68] |
29a | Co15 | Na5[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}] | 3.1/207 | 53 | 21 × 10−3 | n.d. | >375 | Tungsten lamp, 150 W, 90 mW/cm2 | 8 | n.d. | n.d. | 3.4 | [68] |
29b | Co15 | Na5[Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}] | 4.1/273 | 28 | 19 × 10−3 | 5.5 | 450 | LED, 7 mW | 8 | n.d | n.d. | 9.8 | [68] |
30 | Co16 | Na22Rb6[{Co4(OH)3PO4}4(PW9O34)4] | 2.0/133 | 37 | 24 × 10−3 | n.d. | >375 | Tungsten lamp, 150 W, 90 mW/cm2 | 8 | n.d. | n.d. | 3.6 | [68] |
31a | Co1 | Co(NO3)2 | 12.2/1219 | 762 | n.d. | n.d. | >420 | LED, 5.1 mW/cm2 | 9 | + | ClO4 | 1.6 | [46] |
31b | Co1 | Co(NO3)2 | 5.2/2600 | 52 | n.d. | n.d. | >420 | Xe lamp, 500 W | 8 | + | ClO4 | 50 | [49] |
31c | Co1 | Co(NO3)2 | 4.6/310 | 4.3 | 1.92 × 10−3 | 11 | 450 | LED, 42 mW | 8 | – | Cl | 72 | [69] |
31d | Co1 | Co(NO3)2 | 11.1/1112 | 139 | n.d. | n.d. | >420 | Xe lamp, 300 W, 26.4 mW/cm2 | 8 | + | ClO4 | 8 | [63] |
31e | Co1 | Co(NO3)2 | 19.5/1952 | 244 | n.d. | n.d. | >420 | Xe lamp, 300 W, 26.4 mW/cm2 | 9 | + | ClO4 | 8 | [63] |
31f | Co1 | Co(NO3)2 | 3/300 | 150 | n.d. | n.d. | >420 | Xe lamp, 300 W, 26.4 mW/cm2 | 8 | + | ClO4 | 2 | [63] |
32a | Co1 | Co(ClO4)2 | 0.4/400 | 570 | 19 | n.d. | 470 | LED, 150 mW/cm2 | 8 | + | ClO4 | 0.7 | [52] |
32b | Co1 | Co(ClO4)2 | 0.25/250 | 500 | 16 | n.d. | 470 | LED, 150 mW/cm2 | 8 | + | ClO4 | 0.5 | [52] |
32c | Co1 | Co(ClO4)2 + 8 eq. bpy | 0/0 | 0 | 0 | n.d. | 470 | LED, 150 mW/cm2 | 8 | + | ClO4 | 0.5 | [52] |
33a | Co1 | Co(OAc)2 | 5.4/680 | 7 | n.d. | n.d. | 470 | LED, 26.1 mW/cm2 | 7 | + | Cl | 250 | [56] |
33b | Co1 | Co(OAc)2 | 9.2/924 | 132 | 3.1 | 36.1 | 460 | LED, 33.8 mW/cm2 | 9 | n.d. | ClO4 | 7 | [64] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterov, D.S.; Nesterova, O.V. Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances. Catalysts 2018, 8, 602. https://doi.org/10.3390/catal8120602
Nesterov DS, Nesterova OV. Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances. Catalysts. 2018; 8(12):602. https://doi.org/10.3390/catal8120602
Chicago/Turabian StyleNesterov, Dmytro S., and Oksana V. Nesterova. 2018. "Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances" Catalysts 8, no. 12: 602. https://doi.org/10.3390/catal8120602
APA StyleNesterov, D. S., & Nesterova, O. V. (2018). Polynuclear Cobalt Complexes as Catalysts for Light-Driven Water Oxidation: A Review of Recent Advances. Catalysts, 8(12), 602. https://doi.org/10.3390/catal8120602