A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility
Abstract
:1. Introduction
2. Classic Support Materials for Enzyme Immobilization
2.1. Inorganic Materials
2.1.1. Silica and Inorganic Oxides
2.1.2. Mineral Materials
2.1.3. Carbon-Based Materials
2.2. Organic Materials
2.2.1. Synthetic Polymers
2.2.2. Biopolymers
2.3. Summary of Classic Materials
3. New Support Materials for Enzyme Immobilization
3.1. Inorganic Materials
3.1.1. Magnetic Particles
3.1.2. Mesoporous Materials
3.1.3. Nanoparticles
3.1.4. Ceramic Materials
3.1.5. Carbon Nanotubes
3.1.6. Graphene and Graphene Oxide
3.2. Organic Materials
3.2.1. Electrospun Materials
3.2.2. Polymeric Membranes
3.3. Hybrid and Composite Materials
3.3.1. Organic-Organic Hybrids
3.3.2. Organic-Inorganic Hybrids
3.3.3. Inorganic-Inorganic Hybrids
3.4. Summary of New Materials
4. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cowan, D.A.; Fernandez-Lafuente, R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol. 2011, 49, 326–346. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, R. Biocatalysis—Key to sustainable industrial chemistry. Curr. Opin. Biotechnol. 2010, 21, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzymes immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Marzadori, C.; Miletti, S.; Gessa, C.; Ciurli, S. Immobilization of jack bean urease on hydroxyapatite: Urease immobilization on alkaline soils. Soil Biol. Biochem. 1998, 30, 1485–1490. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lafuente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 49, 1289–1307. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszynska, D. Immobilization as a strategy for improving enzyme properties—Application to oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how? Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 2011, 353, 2216–2238. [Google Scholar] [CrossRef]
- Cao, L. Carrier-Bound Immobilized Enzymes; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Fernandez-Lafuente, R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb. Technol. 2009, 45, 405–418. [Google Scholar] [CrossRef]
- Wong, L.S.; Khan, F.; Micklefield, J. Selective covalent protein immobilization: Strategies and applications. Chem. Rev. 2009, 109, 4025–4053. [Google Scholar] [CrossRef] [PubMed]
- Jesionowski, T. Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium. Colloids Surf. A 2001, 190, 153–165. [Google Scholar] [CrossRef]
- Jesionowski, T.; Krysztafkiewicz, A. Preparation of the hydrophilic/hydrophobic silica particles. Colloids Surf. A 2002, 207, 49–58. [Google Scholar] [CrossRef]
- Zucca, P.; Sanjust, E. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.; Cruz, J.C.; Pfromm, P.H.; Rezac, E.; Czermak, P. Enantioselective transestrification by Candida antarctica lipase B immobilized on fumed silica. J. Biotechnol. 2010, 150, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Falahati, M.; Mamani, L.; Sabuory, A.A.; Shafiee, A.; Foroumadi, A.; Badiei, A.R. Aminopropyl functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for immobilization of superoxide dismutase. Biochim. Biophys. Acta 2011, 1814, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Godjevargova, T.; Nenkova, R.; Konsulov, V. Immobilization of glucose oxidase by acronitrile copolymer coated silica supports. J. Mol. Catal. B 2006, 38, 59–64. [Google Scholar] [CrossRef]
- Zdarta, J.; Sałek, K.; Kołodziejczak-Radzimska, A.; Siwińska-Stefańska, K.; Szwarc-Rzepka, K.; Norman, M.; Klapiszewski, Ł.; Bartczak, P.; Kaczorek, E.; Jesionowski, T. Immobilization of Amano Lipase A onto Stöber silica surface: Process characterization and kinetic studies. Open Chem. 2015, 13, 138–148. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Zdarta, J.; Jesionowski, T. Physicochemical and catalytic properties of acylase I from Aspergillus melleus immobilized on amino- and carbonyl-grafted Stöber silica. Biotechnol. Prog. 2018. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.K.; Saun, N.K.; Gupta, R. Characterization and catalytic properties of free and silica-bound lipase: A comparative study. J. Oleo Sci. 2014, 63, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Hua, Y.; Cui, F.; Jiang, L.; Yu, D.; Huang, H. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J. Colloids Interface Sci. 2014, 417, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Foresti, M.L.; Valle, G.; Bonetto, R.; Ferreira, M.L.; Briand, L.E. FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions. Appl. Surf. Sci. 2010, 256, 1624–1635. [Google Scholar] [CrossRef]
- Vallés, D.; Furtado, S.; Villadóniga, C.; Cantera, A.M.B. Adsorption onto alumina and stabilization of cysteine proteinases from crude extract of solanum granuloso-leprosum fruits. Process Biochem. 2011, 46, 592–598. [Google Scholar] [CrossRef]
- Reshmi, R.; Sanjay, G.; Sugunan, S. Immobilization of α-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis. Catal. Commun. 2007, 8, 393–399. [Google Scholar] [CrossRef]
- Yang, Z.; Si, S.; Zhang, C. Study on the activity and stability of urease immobilized ontonanoporous alumina membranes. Microporous Mesoporous Mater. 2008, 111, 359–366. [Google Scholar] [CrossRef]
- Ghiaci, M.; Aghaei, H.; Soleimanian, S.; Sedaghat, M.E. Enzyme immobilization Part 1. Modified bentonite as a new and efficient support for immobilization of Candida rugose lipase. Appl. Clay Sci. 2009, 43, 289–295. [Google Scholar] [CrossRef]
- Mbouguen, J.K.; Ngameni, E.; Walcarius, A. Organoclay-enzyme film electrodes. Anal. Chim. Acta 2006, 578, 145–155. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Zhou, C.H.; Zhuang, X.Y.; Tong, D.S.; Yu, W.H. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 2015, 114, 283–296. [Google Scholar] [CrossRef]
- Sanjay, G.; Sugunan, S. Acid activated montmorillonite: An efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J. Porous Mater. 2008, 15, 359–367. [Google Scholar] [CrossRef]
- Sedaghat, M.E.; Ghiaci, M.; Aghaei, H.; Soleimanian-Zad, S. Enzyme immobilization. Part 4. Immobilization of alkaline phosphatase on Na-sepiolite and modified sepiolite. Appl. Clay Sci. 2009, 46, 131–135. [Google Scholar] [CrossRef]
- Zdarta, J.; Budzińska, K.; Kołodziejczak-Radzimska, A.; Klapiszewski, Ł.; Siwińska-Stefańska, K.; Bartczak, P.; Piasecki, A.; Maciejewski, H.; Jesionowski, T. Hydroxyapatite as a support in protease immobilization process. Physicochem. Probl. Miner. Process. 2015, 51, 633–646. [Google Scholar]
- Salman, S.; Soundararajan, S.; Safina, G.; Satoh, I.; Danielsson, B. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta 2008, 77, 490–493. [Google Scholar] [CrossRef]
- Zhou, C.H.; Keeling, J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Chrisnasari, R.; Wuisan, Z.G.; Budhyantoro, A.; Widi, R.K. Glucose oxidase immobilization on TMAH-modified bentonite. Indones. J. Chem. 2015, 15, 22–28. [Google Scholar] [CrossRef]
- Daoud, F.B.O.; Kaddour, S.; Sadoun, T. Adsorption of cellulose Aspergillus niger on a commercial activated carbon: Kinetics and equilibrium studies. Colloids Surf. B Biointerface 2010, 75, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Bhattacharyya, A.; De, P.; Ray, P.; Basu, S. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). J. Hazard. Mater. 2009, 172, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.S.; Das, M.L.M.; Satyanarayana, S. Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. J. Mol. Catal. B Enzym. 2000, 10, 471–476. [Google Scholar] [CrossRef]
- Silva, V.D.M.; De Marco, L.M.; Delvivo, F.M.; Coelho, J.V.; Silvestre, M.P.C. Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates. Acta Sci. Health Sci. 2005, 27, 163–169. [Google Scholar]
- Hanefeld, U.; Gardossi, L.; Magner, E. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 2009, 38, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Maksym, P.; Tarnacka, M.; Dzienia, A.; Matuszek, K.; Chrobok, A.; Kaminski, K.; Paluch, M. Enhanced polymerization rate and conductivity of ionic liquid-based epoxy resin. Macromolecules 2017, 50, 3262–3272. [Google Scholar] [CrossRef]
- Kirk, O.; Christensen, M.W. Lipases from Candida antarctica: Unique biocatalysts from a unique origin. Org. Process Res. Dev. 2002, 6, 446–451. [Google Scholar] [CrossRef]
- Ferrario, V.; Ebert, C.; Knapic, L.; Fattor, D.; Basso, A.; Spizzo, P.; Gardossi, L. Conformational changes of lipases in aqueous media: A comparative computational study and experimental implications. Adv. Synth. Catal. 2011, 353, 2466–2480. [Google Scholar] [CrossRef]
- Basso, A.; Braiuca, P.; Cantone, S.; Ebert, C.; Linda, P.; Spizzo, P.; Caimi, P.; Hanefeld, U.; Degrassi, G.; Gardossi, L. In silico analysis of enzyme surface and glycosylation effect as a tool for efficient covalent immobilisation of CalB and PGA on Sepabeads. Adv. Synth. Catal. 2007, 349, 877–886. [Google Scholar] [CrossRef]
- Cantone, S.; Ferrario, V.; Corici, L.; Ebert, C.; Fattor, D.; Spizzo, P.; Gardossi, L. Efficient immobilisation of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 2013, 42, 6262–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashly, P.C.; Joseph, M.J.; Mohanan, P.V. Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem. 2011, 127, 1808–1813. [Google Scholar] [CrossRef]
- Jimenez Hamann, M.C.; Saville, B.A. Enhancement of tyrosinase stability by immobilization on Nylon 66. Food Bioprod. Process Trans. Inst. Chem. Eng. C 1996, 74, 47–52. [Google Scholar]
- Wang, W.; Zhou, W.; Li, J.; Hao, D.; Su, Z.; Ma, G. Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess Biosys. Eng. 2015, 38, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.F.; Rigo, D.; Mossi, V.; Dallago, R.M.; Henrick, P.; Kuhn, G.D.O.; Rosa, C.D.; Oliveira, D.; Oliveira, J.V.; Treichel, H. Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod. Process. 2013, 91, 54–59. [Google Scholar] [CrossRef]
- Bai, X.; Gu, H.; Chen, W.; Shi, H.; Yang, B.; Huang, X.; Zhang, Q. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application. Appl. Biochem. Biotechnol. 2014, 173, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, J.; Rättö, M.; Paulussen, S. Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag. Technol. Sci. 2005, 18, 243–251. [Google Scholar] [CrossRef]
- Kumari, A.; Kayastha, A.M. Immobilization of soybean (Glycine max) α-amylase onto chitosan and amberlite MB-150 beads: Optimization and characterization. J. Mol. Catal. B Enzym. 2011, 69, 8–14. [Google Scholar] [CrossRef]
- Alsafadi, D.; Paradisi, F. Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferaxvol canii: How to maximize activity and optimize performance of halophilic enzymes. Mol. Biotechnol. 2014, 56, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Elnashar, M.M.M. Biotechnology of Biopolymers; InTech: London, UK, 2011. [Google Scholar]
- Horchani, H.; Aissa, I.; Ouertani, S.; Zarai, Z.; Gargouri, Y.; Sayari, A. Staphylococcal lipases: Biotechnological applications. J. Mol. Catal. B Enzyme 2012, 76, 125–132. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yamini, D.; Ambika, V.; Sravya Sowdamini, N. Trends in inulinase production—A review. Crit. Rev. Biotechnol. 2009, 29, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Tischer, W.; Wedekind, F. Immobilized enzymes: Methods and applications. Top. Curr. Chem. 1999, 200, 95–126. [Google Scholar]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 26, 1921–1971. [Google Scholar] [CrossRef]
- Peter, M. Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci. 1995, 32, 629–640. [Google Scholar] [CrossRef]
- Shi, L.E.; Tang, Z.X.; Yi, Y.; Chen, J.S.; Xiong, W.Y.; Ying, G.Q. Immobilization of nuclease p1 on chitosan micro-spheres. Chem. Biochem. Eng. Q. 2011, 25, 83–88. [Google Scholar]
- Cahyaningrum, S.E.; Herdyastusi, N.; Maharani, D.K. Immobilization of glucose isomerase in surface-modified chitosan gel beads. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 104–111. [Google Scholar]
- Kim, H.J.; Park, S.; Kim, S.H.; Kim, J.H.; Yu, H.; Kim, H.J.; Yang, Y.H.; Kan, E.; Kim, Y.H.; Lee, S.H. Biocompatible cellulose nanocrystals as supports to immobilize. J. Mol. Catal. B Enzym. 2015, 12, 170–178. [Google Scholar] [CrossRef]
- Tumturk, H.; Karaca, N.; Demirel, G.; Sahin, F. Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase. Int. J. Biol. Macromol. 2007, 40, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Jesionowski, T. Luffa cylindrica sponges as a thermally and chemically stable support for Aspergillus niger lipase. Biotechnol. Prog. 2016, 32, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Norman, M.; Smułek, W.; Moszyński, D.; Kaczorek, E.; Stelling, A.L.; Ehrlich, H.; Jesionowski, T. Spongin-based scaffolds from Hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts 2017, 7, 147. [Google Scholar] [CrossRef]
- Hwang, E.T.; Gu, M.B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61. [Google Scholar] [CrossRef]
- Coradin, T.; Nassif, N.; Livage, J. Silica-alginate composites for microencapsulation. Appl. Microbiol. Biotechnol. 2003, 61, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Betigeri, S.S.; Neau, S.H. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 2002, 51, 3627–3636. [Google Scholar] [CrossRef]
- Kocaturk, S.; Yagar, H. Optimization of polyphenol oxidase immobilization in copper alginate beads. Artif. Cells Blood Substit. Biotechnol. 2010, 38, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Sin Ball, S.G.; Morell, M.K. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 2003, 54, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Delattre, C.; Fenoradosoa, T.A.; Michaud, P. Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Braz. Arch. Biol. Technol. 2011, 54, 1075–1092. [Google Scholar] [CrossRef]
- Porath, J.; Axén, R. Immobilization of enzymes to agar, agarose, and sephadex support. Methods Enzymol. 1976, 44, 19–45. [Google Scholar] [PubMed]
- Prakash, O.; Jaiswal, N. Immobilization of a thermostable α-amylase on agarose and agar matrices and its application in starch stain removal. World Appl. Sci. J. 2011, 13, 572–577. [Google Scholar]
- De Oliveira, S.M.; Moreno-Perez, S.; Romero-Fernandez, M.; Fernandez-Lorente, G.; Rocha-Martin, J.; Guisan, J.M. Immobilization and stabilization of commercial β-1,4-endoxylanase Depol™ 333MDP by multipoint covalent attachment for xylan hydrolysis: Production of prebiotics (xylo-oligosaccharides). Biocatal. Biotransform. 2018, 36, 141–150. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, P.; Singh, A.; Singh, D.; Malviya, T. Polysaccharide-silica hybrids: Design and applications. Polym. Rev. 2016, 56, 113–136. [Google Scholar] [CrossRef]
- Grigoras, A.G. Catalase immobilization—A review. Biochem. Eng. J. 2017, 117, 1–20. [Google Scholar] [CrossRef]
- Cao, M.; Li, Z.; Wang, J.; Ge, W.; Yue, T.; Li, R.; Colvin, V.L.; Yu, W.W. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol. 2012, 27, 47–56. [Google Scholar] [CrossRef]
- Li, X.S.; Zhu, G.T.; Luo, Y.B.; Yuan, B.F.; Feng, Y.Q. Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal. Chem. 2013, 45, 233–247. [Google Scholar] [CrossRef]
- Netto, C.G.C.M.; Toma, H.E.; Andrade, L.H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym. 2013, 85–86, 71–92. [Google Scholar] [CrossRef]
- Mehrasbi, M.R.; Mohammadi, J.; Peyda, M.; Mohammadi, M. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew. Energy 2017, 101, 593–602. [Google Scholar] [CrossRef]
- Aber, S.; Mahmoudikia, E.; Karimi, A.; Mahdizadeh, F. Immobilization of glucose oxidase on Fe3O4 magnetic nanoparticles and its application in the removal of Acid Yellow 12. Water Air Soil Pollut. 2016, 227, 93–104. [Google Scholar] [CrossRef]
- Atacan, K.; Cakiroglu, B.; Ozacar, M. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem. 2016, 212, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Schuth, F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 2003, 42, 3604–3622. [Google Scholar] [CrossRef] [PubMed]
- Matuszek, K.; Chrobok, A.; Latos, P.; Markiton, M.; Szymańska, K.; Jarzębski, A.; Swadźba-Kwaśny, M. Silica-supported chlorometallate(III) ionic liquids as recyclable catalysts for Diels-Alder reaction under solventless conditions. Catal. Sci. Technol. 2016, 6, 8129–8137. [Google Scholar] [CrossRef]
- Hartmann, M. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 2005, 17, 4577–4593. [Google Scholar] [CrossRef]
- Fan, J.; Lei, J.; Wang, L.; Yu, C.; Tu, B.; Zhao, D. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chem. Commun. 2003, 17, 2140–2141. [Google Scholar] [CrossRef]
- Yiu, H.H.P.; Wright, P.A.; Botting, N.P. Enzyme immobilisation using siliceous mesoporous molecular sieves. Microporous Mesoporous Mater. 2001, 44–45, 763–765. [Google Scholar] [CrossRef]
- Schuth, F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 2001, 13, 3184–3195. [Google Scholar] [CrossRef]
- Moritz, M.; Geszke-Moritz, M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications. Mater. Sci. Eng. C 2015, 49, 114–151. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.N.; Wolosiuk, A.; Soler-Illia, G.J.A.A.; Bellino, M.G. Wired enzymes in mesoporous materials: A benchmark for fabricating biofuel cells. Bioelectrochemistry 2015, 106, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Gao, Y.; Liu, Y.; Zhong, N.; Liu, N. Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem. 2012, 212, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Y.; Wu, X.M. Efficient improving the activity and enantioselectivity of Candida rugosa lipase for the resolution of naproxen by enzyme immobilization on MCM-41 mesoporous molecular sieve. Int. J. Bioautom. 2015, 19, 325–334. [Google Scholar]
- Zhuang, H.; Dong, S.; Zhang, T.; Tang, N.; Xu, N.; Sun, B.; Liu, J.; Zhang, M.; Yuan, Y. Study on alkaline protease immobilized on mesoporous materials. Asian J. Chem. 2014, 26, 1139–1144. [Google Scholar]
- Mangrulkar, P.A.; Yadav, R.; Meshram, J.S.; Labhsetwar, N.K.; Rayalu, S.S. Tyrosinase-immobilized MCM-41 for the detection of phenol. Water Air Soil Pollut. 2012, 223, 819–825. [Google Scholar] [CrossRef]
- Wang, Y.; Caruso, F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater. 2005, 17, 953–961. [Google Scholar] [CrossRef]
- Jia, H.; Zhu, G.; Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng. 2003, 84, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 2006, 61, 1017–1026. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valerio, A.; Henriques, R.A.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; de Oliveira, D. Nanomaterials for biocatalyst immobilization—State of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Hu, C.; Wang, N.; Zhang, W.; Zhang, S.; Meng, Y.; Yu, X. Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester. J. Biotechnol. 2015, 194, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, J.; Li, Z.; Zhang, S.; Wu, H.; Jiang, Z.; Yang, C.; Tian, C. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers. ACS Appl. Mater. Interface 2014, 6, 14522–14532. [Google Scholar] [CrossRef] [PubMed]
- Kotal, M.; Srivastava, S.K.; Matiti, T.K. Fabrication of gold nanoparticle assembled polyurethane microsphere template in trypsin immobilization. J. Nanosci. Nanotechnol. 2011, 11, 10149–10157. [Google Scholar] [CrossRef] [PubMed]
- Bolibok, P.; Wiśniewski, M.; Roszek, K.; Terzyk, A.P. Controlling enzymatic activity by immobilization on graphene oxide. Sci. Nat. 2017, 104, 36. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Dong, G.; Xiao, B.; Malassigne, C.; Chen, V. Preparation of titania based biocatalytic nanoparticles and membranes for CO2 conversion. J. Mater. Chem. A 2015, 3, 3332–3342. [Google Scholar] [CrossRef]
- Garmroodi, M.; Mohammadi, M.; Ramazani, A.; Ashjari, M.; Mohammadi, J.; Sabour, B.; Yousefi, M. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int. J. Biol. Macromol. 2016, 86, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Miyazaki, S.; Matsuoka, H.; Morisato, K.; Shintani, Y.; Nakanishi, K. High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. J. Biochem. Biophys. Meth. 2007, 70, 57–62. [Google Scholar] [CrossRef] [PubMed]
- de Cazes, M.; Belleville, P.; Mougel, M.; Kellner, H.; Sanchez-Marcano, J. Characterization of laccase-grafted ceramic membranes for pharmaceuticals degradation. J. Membr. Sci. 2015, 476, 384–393. [Google Scholar] [CrossRef]
- Caldas, E.M.; Novatzky, D.; Deon, M.; de Menezes, E.W.; Hertz, P.F.; Costa, T.M.H.; Arenas, L.T.; Benvenutt, E.V. Pore size effect in the amount of immobilized enzyme for manufacturing carbon ceramic biosensor. Microporous Mesoporous Mater. 2017, 247, 95–102. [Google Scholar] [CrossRef]
- Pazouki, M.; Zamani, F.; Khalili, M. Development of clay foam ceramic as a support for fungi immobilization for biodiesel production. Int. J. Eng. Trans. B Appl. 2014, 27, 1691–1696. [Google Scholar]
- Ebrahimi, M.; Placido, L.; Engel, L.; Shams Ashaghi, K.; Czermak, P. A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 2010, 250, 1105–1108. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Li, W.; Wu, J. Horseradish peroxidase immobilized on the silane-modified ceramics for the catalytic oxidation of simulated oily water. Sep. Purif. Technol. 2012, 89, 206–211. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, V.A.; Paliwal, S.; Balasubramanian, S.; Nepal, D.; Davis, V.; Wild, J.; Ramanculov, E.; Simonian, A. Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf. B Biointerface 2010, 77, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhang, C.; Yu, D.; Huang, H.; Hu, Y. Enzyme immobilized on carbon nanotubes. Prog. Chem. 2015, 27, 1251–1259. [Google Scholar]
- Markiton, M.; Boncel, S.; Janas, D.; Chrobok, A. Highly active nanobiocatalyst from lipase noncovalently immobilized on multiwalled carbon nanotubes for Baeyer-Villiger synthesis of lactones. ACS Sustain. Chem. Eng. 2017, 8, 1685–1691. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 2005, 21, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.; Arbain, D.; Islam, A.K.M.S.; Ahmad, M.S.; Ahmad, M.N. Alpha-glucosidase enzyme biosensor for the electrochemical measurement of antidiabetic potential of medicinal plants. Nanoscale Res. Lett. 2016, 95, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Guo, S.; Zhang, J. Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2013, 2, 27–45. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Alvarez, P.J.J.; Chen, W. Reduced graphene oxide enhances horseradish peroxidase stability by serving as radical scavenger and redox mediator. Carbon 2018, 94, 531–538. [Google Scholar] [CrossRef]
- Pavlidis, I.V.; Vorhaben, T.; Tsoufis, T.; Rudolf, P.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Development of effective nanobiocatalytic systems through the im mobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 2012, 115, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Guo, S. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.; Liao, C.; Sun, Y.; Peng, C.; Tzen, J.T.C.; Guo, R.; Liu, J. Immobilization of Clostridium cellulolyticum. J. Agric. Food Chem. 2014, 62, 6771–6776. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Lee, B.; Hwang, S.J.; Lee, J.U.; Cheong, H.; Shin, K.; Hur, N.H. Large scale production of highly conductive reduced graphene oxide sheets by a solvent-free low temperature reduction. Carbon 2014, 69, 327–335. [Google Scholar] [CrossRef]
- Vineh, M.B.; Saboury, A.A.; Poostchi, A.A.; Rashidi, A.M.; Parivar, K. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Int. J. Biol. Macromol. 2018, 106, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Dedania, S.R.; Patel, M.J.; Patel, D.M.; Akhani, R.C. Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of d-psicose 3-epimerase for rare sugar production. Enzyme Microb. Technol. 2017, 107, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Bhushani, J.A.; Anandharamakrishnan, V. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B Enzym. 2009, 56, 189–195. [Google Scholar] [CrossRef]
- Dai, Y.; Yao, J.; Song, Y.; Liu, X.; Wang, S.; Yuan, Y. Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. J. Hazard. Mater. 2016, 317, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Hsiao, B.S.; Chu, B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 2007, 59, 1392–1412. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.E.; Dai, M.; Talbert, J.N.; Nugen, S.R.; Goddard, J.M. Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. J. Mol. Catal. B Enzym. 2014, 110, 16–22. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jeong, L.; Kang, Y.O.; Lee, S.J.; Park, W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Kim, J.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Grate, J.W.; Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Canbolat, M.F.; Savas, H.B.; Gultekin, F. Improved catalytic activity by catalase immobilization using γ-cyclodextrin and electrospun PCL nanofibers. J. Appl. Sci. 2017, 134, 318–326. [Google Scholar] [CrossRef]
- Weiser, D.; Soti, P.L.; Banoczi, G.; Bodai, V.; Kiss, B.; Gellert, A.; Nagy, Z.K.; Koczka, B.; Szilagyi, A.; Marosi, G.; et al. Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts. Tetrahedron 2016, 72, 7335–7342. [Google Scholar] [CrossRef]
- Soti, P.L.; Weiser, D.; Vigh, T.; Nagy, Z.K.; Poppe, L.; Maros, G. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess. Biosyst. Eng. 2016, 39, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Handayani, N.; Loos, K.; Wahyuningrum, D.; Buchari, M.; Zulfikar, M.A. Immobilization of Mucor miehei lipase onto macroporous aminated polyethersulfone membrane for enzymatic reactions. Membranes 2012, 2, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Orregoa, C.E.; Salgadoa, N.; Valenciab, J.S.; Giraldoc, G.I.; Giraldod, O.H.; Cardonae, C.A. Novel chitosan membranes as support for lipases immobilization: Characterization aspects. Carbohydr. Polym. 2010, 79, 9–16. [Google Scholar] [CrossRef]
- Kuo, C.H.; Chen, G.J.; Kuo, T.Y.; Liu, Y.C.; Shieh, C.J. Optimum lipase immobilized on diamine-grafted PVDF membrane and its characterization. Ind. Eng. Chem. Res. 2012, 51, 5141–5147. [Google Scholar] [CrossRef]
- Gupta, S.; Bhattacharya, A.; Murthy, C.N. Tune to immobilize lipases on polymer membranes: Techniques, factors and prospects. Biocatal. Agricultur. Biotechnol. 2013, 2, 171–190. [Google Scholar] [CrossRef]
- Vitola, G.; Mazzei, R.; Fontananova, E.; Porzio, E.; Manco, G.; Gaeta, S.N.; Giorno, L. Polymeric biocatalytic membranes with immobilized thermostable phosphotriesterase. J. Membr. Sci. 2016, 516, 144–151. [Google Scholar] [CrossRef]
- Donato, L.; Algieri, C.; Rizzi, A.; Giorno, L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci. 2014, 454, 346–350. [Google Scholar] [CrossRef]
- Konovalova, V.; Guzikevich, K.; Burban, A.; Kujawski, W.; Jarzynka, K.; Kujawa, J. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. Carbohydr. Polym. 2016, 152, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Meyer, A.S.; Jonsson, G.; Pinelo, M. Fouling-induced enzyme immobilization for membrane reactors. Bioresour. Technol. 2013, 147, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Marpani, F.; Brites, R.; Frederiksen, L.; Meyer, A.S.; Jonsson, G.; Pinelo, M. Directing filtration to optimize enzyme immobilization in reactive membranes. J. Membr. Sci. 2014, 459, 1–11. [Google Scholar] [CrossRef]
- Luo, J.; Nordvang, R.T.; Morthensen, S.T.; Zeuner, B.; Meyer, A.S.; Mikkelsen, J.D.; Pinelo, M. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products. Bioresour. Technol. 2014, 166, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Morthensen, S.T.; Luo, J.; Meyer, A.S.; Jørgensen, H.; Pinelo, M. High performance separation of xylose and glucose by enzyme assisted nanofiltration. J. Membr. Sci. 2015, 492, 107–115. [Google Scholar] [CrossRef]
- Liu, W.F.; Wei, L.N. Research progress on carbonic anhydrase immobilization. J. Mol. Catal. 2016, 30, 182–197. [Google Scholar]
- Yang, X.-Y.; Tian, G.; Jiang, N.; Su, B.L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540–5563. [Google Scholar] [CrossRef]
- Xue, H.; Shen, Z.; Li, C. Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline–polyacrylonitrile composite film. Biosens. Bioelectron. 2005, 20, 2330–2334. [Google Scholar] [CrossRef] [PubMed]
- Rajdeo, K.; Harini, T.; Lavanya, K.; Fadnavis, N.W. Immobilization of pectinase on reusable polymer support for clarification of apple juice. Food Bioprod. Process. 2016, 99, 12–19. [Google Scholar] [CrossRef]
- Sui, C.-H.; Wang, Z.-Y.; Wei, Y.-Q.; Wang, C. Immobilization of glucoamylase onto electrospun PAA/PVA microfibrous membrane by active ester method. Chin. J. Process Eng. 2016, 16, 494–499. [Google Scholar]
- Riccardi, C.M.; Kasi, R.M.; Kumar, C.V. Nanoarmoring of enzymes by interlocking in cellulose fibers with poly(acrylic acid). Method. Enzymol. 2017, 590, 475–500. [Google Scholar]
- Badgujar, K.C.; Bhanage, B.M. Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Bioprocess Biosyst. Eng. 2017, 40, 717–757. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, A.G.; Uygun, A.; Bhethanabotla, V.R. Preparation of substituted polyaniline/chitosan composites by in situ electropolymerization and their application to glucose sensing. Carbohydr. Polym. 2010, 81, 712–719. [Google Scholar] [CrossRef]
- Pervez, S.; Aman, A.; Qader, S.A. Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family. Int. J. Biol. Macromol. 2017, 96, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Klapiszewski, Ł.; Wysokowski, M.; Norman, M.; Kołodziejczak-Radzimska, A.; Moszyński, D.; Ehrlich, H.; Maciejewski, H.; Stelling, A.L.; Jesionowski, T. Chitin-lignin material as a novel matrix for enzyme immobilization. Mar. Drugs 2015, 13, 2424–2446. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.C.M.; Feitosa, J.P.A.; Paula, H.C.B. Polysaccharide based copolymers as supramolecular systems in biomedical applications. Curr. Drug. Targets 2015, 16, 1591–1605. [Google Scholar] [CrossRef]
- Kara, F.; Aksoy, E.A.; Calamak, S.; Hasirci, N.; Aksoy, S. Immobilization of heparin on chitosan-grafted polyurethane films to enhance anti-adhesive and antibacterial properties. J. Bioact. Compat. Polym. 2016, 31, 72–90. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, K.C.K.; Schroeder, M.; Yang, P.; Marsh, E.N.G.; Lahann, J.; Chen, Z. Immobilization of enzyme on a polymer surface. Surf. Sci. 2016, 648, 53–59. [Google Scholar] [CrossRef]
- Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and its derivatives as supports for enzyme immobilization. Molecules 2016, 21, 1577. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Breite, D.; Kim, Y.; Schmidt, M.; Thomas, I.; Went, M.; Fischer, K.; Prager, A. Bio-Inspired polymer membrane surface cleaning. Polymers 2017, 9, 97. [Google Scholar] [CrossRef]
- Huang, J.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Yi, Y.; Zhua, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem. 2016, 782, 138–153. [Google Scholar] [CrossRef]
- Fang, L.; Liang, B.; Yang, G.; Hu, Y.; Zhu, Q.; Ye, X. Study of glucose biosensor lifetime improvement in 37 °C serum based on PANI enzyme immobilization and PLGA biodegradable membrane. Biosens. Bioelectron. 2014, 56, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Rahikainen, R.; Unruh, D.; Hytönen, V.P.; Delbruck, C.; Sindelar, R.; Renz, F. Mixture of PLA–PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers. J. Biomed. Mater. Res. A 2017, 105, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, K.C.; Bhanage, B.M. Solvent stability study with thermodynamic analysis and superior biocatalytic activity of Burkholderia cepacia lipase immobilized on biocompatible hybrid matrix of poly(vinyl alcohol) and hypromellose. J. Phys. Chem. B 2014, 118, 14808–14819. [Google Scholar] [CrossRef] [PubMed]
- Matto, M.; Husain, Q. Calcium alginate-starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordicacharantia) peroxidase. J. Mol. Catal. B Enzym. 2009, 57, 164–170. [Google Scholar] [CrossRef]
- Abdulla, R.; Ravindra, P. Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy 2013, 56, 8–13. [Google Scholar] [CrossRef]
- Nupur, N.; Ashish, M.; Mira Das, D. Preparation and biochemical property of penicillin G amidase-loaded alginate and alginate/chitosan hydrogel beads. Recent Pat. Biotechnol. 2016, 10, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, H.; Liang, Y.; Jiang, Z.; Jiang, Y.; Zhang, L. Facile fabrication of organic-inorganic hybrid beads by aminated alginate enabled gelation and biomimetic mineralization. J. Biomater. Sci-Polym. E 2013, 24, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, L.; Li, H. Characteristics of magnetic microspheres and its application in enzyme immobilization. J. Clin. Reh. Tissue Eng. Res. 2008, 12, 8198–8200. [Google Scholar]
- Amirbandeh, M.; Taheri-Kafrani, A. Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: Improved stability and reusability. Int. J. Biol. Macromol. 2016, 93, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Jędrzak, A.; Rębiś, T.; Klapiszewski, Ł.; Zdarta, J.; Milczarek, G.; Jesionowski, T. Carbon paste electrode based on functional GOx/silica-lignin systemto prepare an amperometric glucose biosensor. Sens. Actuators B 2018, 256, 176–185. [Google Scholar] [CrossRef]
- Wan, L.S.; Ke, B.B.; Xu, Z.K. Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme Microb. Technol. 2008, 42, 332–339. [Google Scholar] [CrossRef]
- Barros, A.E.L.; Almeida, A.M.P.; Carvalho, L.B., Jr.; Azevedo, W.M. Polysiloxane/PVA-glutaraldehyde hybrid composite as solid phase or immunodetections by ELISA. Braz. J. Med. Biol. Res. 2002, 35, 459–463. [Google Scholar] [CrossRef]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohyd. Polym. 2013, 98, 1585–1598. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Klapiszewski, Ł.; Jędrzak, A.; Nowicki, M.; Moszyński, D.; Jesionowski, T. Lipase B from Candida antarctica immobilized on a silica-lignin matrix as a stable and reusable biocatalytic system. Catalysts 2017, 7, 14. [Google Scholar] [CrossRef]
- Vatsyayan, P.; Bordoloi, S.; Goswami, P. Large catalase based bioelectrode for biosensor application. Biophys. Chem. 2010, 153, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, Z.; Zhang, W.; Wang, X.; Shi, J. Polymer-inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization. Biochem. Eng. J. 2015, 93, 281–288. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, Q.; Shah, V.; Xu, J.; Wang, T. Enhancement of glucose isomerase activity by immobilizing on silica/chitosan hybrid microspheres. J. Mol. Catal. B Enzym. 2016, 126, 18–23. [Google Scholar] [CrossRef]
- Guo, M.; Yao, S.S.; Gao, X.Y.; Fu, X.P. Preparation and enzymological properties of SiO2-DAS immobilized cellulose. J. Chem. Eng. Chin. 2015, 29, 1407–1414. [Google Scholar]
- Miranda, R.A.; Llorca, J.; Medina, F.; Sueiras, J.E.; Segarra, A.M. Asymmetric epoxidation of chalcone catalyzed by reusable poly-l-leucine immobilized on hydrotalcite. J. Catal. 2011, 282, 65–73. [Google Scholar] [CrossRef]
- Chang, M.Y.; Kao, H.C.; Juang, R.S. Thermal inactivation and reactivity of β-glucosidase immobilized on chitosan–clay composite. Int. J. Biol. Macromol. 2008, 43, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Li, X.; Cai, J.R.; Cui, H.Y.; Zhang, X.A. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization. Anal. Sci. 2014, 30, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.-L.; Zink, J.I.; Stoddart, J.F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Yuce-Dursun, B.; Cigil, A.B.; Dongez, D.; Kahraman, M.V.; Ogan, A.; Demir, S. Preparation and characterization of sol-gel hybrid coating films for covalent immobilization of lipase enzyme. J. Mol. Catal. B Enzym. 2016, 127, 18–25. [Google Scholar] [CrossRef]
- Zniszczoł, A.; Herman, A.P.; Szymańska, K.; Mrowiec-Białoń, J.; Walczak, K.Z.; Jarzębski, A.; Boncel, S. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters. Enzyme Microb. Technol. 2016, 87, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Doan, T.T.N.; Won, K.; Ha, S.H.; Koo, Y.M. Immobilization of lipase within carbon nanotube–silica composites for non-aqueous reaction systems. J. Mol. Catal. B Enzym. 2010, 62, 169–172. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Ren, X.Y.; Liu, Y.M.; Wei, Y.; Qing, L.S.; Liao, X. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays. Mater. Sci. Eng. C 2014, 38, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Liu, X.; Ma, L.; Liu, D.; Zhang, H.; Wang, Z. Spheres-on-sphere silica microspheres as matrix for horseradish peroxidase immobilization and detection of hydrogen peroxide. RSC Adv. 2015, 5, 38665–38672. [Google Scholar] [CrossRef]
- Bian, S.; Wu, H.; Jiang, X.; Long, Y.; Chen, Y. Syntheses and applications of hybrid mesoporous silica membranes. Prog. Chem. 2014, 26, 1352–1360. [Google Scholar]
- Nenkova, R.; Wu, J.; Zhang, Y.; Godjevargova, T. Evaluation of immobilization techniques for the fabrication of nanomaterial-based amperometric glucose biosensors. Anal. Lett. 2015, 48, 1297–1310. [Google Scholar] [CrossRef]
- Zlateski, V.; Fuhrer, R.; Koehle, F.M.; Wharry, S.; Zeltner, M.; Stark, W.J.; Moody, T.S.; Grass, R.N. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets. Bioconj. Chem. 2014, 25, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Srivastava, S.; Kumar, V.; Pandey, S.; Rastogi, P.K.; Nirala, N.R.; Kashyap, S.; Srivastava, S.K.; Singh, V.N.; Ganesan, V.; et al. Enhanced electrochemical biosensing efficiency of silica particles supported on partially reduced graphene oxide for sensitive detection of cholesterol. J. Electroanal. Chem. 2015, 757, 65–72. [Google Scholar] [CrossRef]
- Shoja, Y.; Rafati, A.A.; Ghodsi, J. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum. Enzyme Microb. Technol. 2017, 100, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Fidal, V.T.K.P.; Inguva, S.; Krishnamurthy, S.; Marsili, E.; Mosnier, J.P.; Chandra, T.S. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports. Enzyme Microb. Technol. 2017, 96, 67–74. [Google Scholar]
- Sun, H.; Jin, X.; Long, N.; Zhang, R. Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support. Int. J. Biol. Macromol. 2017, 95, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, Y.; Wang, Z.; Yang, L.; Zhuo, L.; Tang, B. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite. Biosens. Bioelectron. 2010, 25, 2244–2248. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.H.; Colson, F.X.; Barralet, J.E.; Merle, G. Electrically wired enzyme/TiO2 composite for glucose detection. Mater. Sci. Eng. C 2017, 76, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Bujduveanu, M.R.; Yao, W.; LeGoff, A.; Gorgy, K.; Shan, D.; Diao, G.W.; Ungureanu, E.M.; Cosnier, S. Multiwalled carbon nanotube-CaCO3 nanoparticle composites for the construction of a tyrosinase-based amperometric dopamine biosensor. Electroanalysis 2013, 25, 613–619. [Google Scholar] [CrossRef]
Support Material | Binding Groups | Cross-Linking Agent | Immobilization Type | Immobilized Enzyme | Reference |
---|---|---|---|---|---|
Inorganic Materials | |||||
Sol-gel silica | –OH | – | adsorption | lipase from Aspergillus niger | [20] |
Silica gel | –OH, C=O | glutaraldehyde | covalent binding | commercial lipase | [22] |
γAl2O3 | –OH | – | adsorption | cysteine proteinases from Solanum granuloso-leprosum | [25] |
ZrO2 | –OH | – | adsorption | α-amylase from Bacillus subtilis | [26] |
Montmorillonite | –OH | 3-aminopropyl-triethoxysilane | covalent binding | glucoamylase from Aspergillus niger | [31] |
Hydroxyapatite | –OH | – | adsorption | glucose oxidase from Aspergillus niger | [34] |
Bentonite | –OH, –NH2 | tetramethyl ammonium hydroxide | covalent binding | glucose oxidase from Aspergillus niger | [36] |
Commercial activated carbon | –OH, C=O | – | adsorption | cellulose from Aspergillus niger | [37] |
Activated charcoal | –OH, C=O, COOH | – | adsorption | papain | [38] |
Activated charcoal | –OH, C=O, COOH | – | adsorption | amyloglucosidase | [39] |
Organic materials | |||||
polyaniline | –N–H, C=O | glutaraldehyde | covalent binding | α-amylase | [47] |
polystyrene | C=O, epoxy groups | poly(glycidyl methacrylate) | covalent binding | lipase | [49] |
poly(vinyl alcohol) | –OH, C=O | glutaraldehyde | covalent binding | laccase from Trametes versicolor | [51] |
polypropylene | –OH | plasma activated | covalent binding | Glucose oxidase | [52] |
Cellulose nanocrystals | –OH | – | adsorption | lipase from Candida rugosa | [65] |
Luffa cylindrica sponges | –OH, C=O, COOH | – | adsorption | lipase from Aspergillus niger | [67] |
chitosan | –OH, –NH2 | – | entrapment | lipase from Candida rugosa | [71] |
agarose | –OH | – | entrapment | α-amylase | [76] |
Support Material | Binding Groups | Cross-Linking Agent | Immobilization Type | Immobilized Enzyme | Reference |
---|---|---|---|---|---|
Inorganic Materials | |||||
magnetic nanoparticles | epoxy groups | 3-glycidoxypropyl-trimethoxylsilane | covalent binding | lipase from Candida antarctica | [83] |
–OH | – | adsorption | glucose oxidase from Aspergillus niger | [84] | |
silica SBA-15 | –OH | – | adsorption | alkaline protease | [96] |
mesoporous silica | –OH | – | encapsulation | catalase | [98] |
silica mesoporous nanoparticles | epoxy groups | 3-glycidoxypropyl-trimethoxylsilane | covalent binding | lipase from Rhizomucor miehei | [107] |
TiO2 nanoparticles | –OH | – | adsorption | carbonic anhydrase | [106] |
cordierite | –NH2 | N-β-aminoethyl-γ-aminopropyl-trimethoxysilane | covalent binding | horseradish peroxidase | [113] |
multi-walled carbon nanotubes | –NH2 | 3-aminopropyl-triethoxysilane | covalent binding | α-glucosidase | [120] |
reduced graphene oxide | C=O | glutaraldehyde | covalent binding | horseradish peroxidase | [127] |
Organic materials | |||||
electrospinning fibres of polycaprolactone | C=O | - | adsorption | catalase | [138] |
electrospinning nanofibers of polyvinyl alcohol | –OH | - | encapsulation | lipase from Burkholderia cepacia | [140] |
polyethersulphone membrane | - | - | adsorption | Phosphotriesterase lactonase from Sulfolobus solfataricus | [145] |
NTR7450 membrane | - | - | adsorption | casein glycomacropeptide | [150] |
Hybrid/composite materials | |||||
polyaniline-polyacrylonitrile composite | –N–H | - | encapsulation | glucose oxidase | [154] |
cellulose-poly(acrylic acid) fibres | –OH, COOH | - | covalent binding | horseradish peroxidase | [157] |
chitosan-alginate beads | –NH2, –OH | - | entrapment | amyloglucosidase | [160] |
graphene oxide-Fe3O4 | –OH, C=O | cyanuric chloride | covalent binding | glucoamylase | [177] |
silica-lignin | –OH, C=O | - | adsorption | glucose oxidase form Aspergillus niger | [178] |
polyacrylonitrile-multi-walled carbon nanotubes | –N–H, C=O, –OH | N-Hydroxy-succinimide | covalent binding | catalase | [179] |
silica-graphene oxide particles | –OH, C=O | N-Hydroxy-succinimide | covalent binding | cholesterol oxidase | [199] |
ZnO-SiO2 nanowires | –OH | – | cross-linking | horseradish peroxidase | [202] |
CaCO3-gold nanoparticles | –OH, C=O | – | adsorption | horseradish peroxidase | [203] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8, 92. https://doi.org/10.3390/catal8020092
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts. 2018; 8(2):92. https://doi.org/10.3390/catal8020092
Chicago/Turabian StyleZdarta, Jakub, Anne S. Meyer, Teofil Jesionowski, and Manuel Pinelo. 2018. "A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility" Catalysts 8, no. 2: 92. https://doi.org/10.3390/catal8020092
APA StyleZdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts, 8(2), 92. https://doi.org/10.3390/catal8020092