The Role of Pulse Voltage Amplitude on Chemical Processes Induced by Streamer Discharge at Water Surface
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Akiyama, H.; Sakai, S.; Sakugawa, T.; Nakihira, T. Environmental applications of repetitive pulsed power. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, H. Streamer discharges in liquids and their applications. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 646–653. [Google Scholar] [CrossRef]
- Lukes, P.; Locke, B.R. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. J. Phys. D Appl. Phys. 2005, 38, 4074–4081. [Google Scholar] [CrossRef]
- Sato, M.; Tokutake, T.; Ohshima, T.; Sugirato, A.T. Aqueous phenol decomposition by pulsed discharge on the water surface. IEEE Trans. Ind. Appl. 2008, 44, 1397–1402. [Google Scholar] [CrossRef]
- Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.-S. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 2006, 45, 882–905. [Google Scholar] [CrossRef]
- Sahni, M.; Locke, B.R. Degradation of chemical warfare agent simulants using gas-liquid pulsed streamer discharges. J. Hazard. Mater. 2006, 137, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Lukes, P.; Appleton, A.T.; Locke, B.R. Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors. IEEE Trans. Ind. Appl. 2004, 40, 60–67. [Google Scholar] [CrossRef]
- Sun, B.; Sato, M.; Clements, J.S. Optical study of active species produced by a pulsed streamer corona discharges in water. J. Electrostat. 1997, 39, 189–202. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Ma, W.; Xu, Y.; Wang, L.; Guan, Z. Formation of active species by bipolar pulsed discharge in water. IEEE Trans. Plasma Sci. 2012, 40, 2360–2365. [Google Scholar] [CrossRef]
- Li, S.; Hu, S.; Zhang, H. Formation of hydroxyl radicals and hydrogen peroxide by a novel nanosecond pulsed plasma power in water. IEEE Trans. Plasma Sci. 2012, 40, 63–67. [Google Scholar] [CrossRef]
- Namihira, T.; Sakai, S.; Yamaguchi, T.; Yamamoto, K.; Yamada, C.; Kiyan, T.; Sakugawa, T.; Katsuki, S.; Akiyama, H. Electron temperature and electron density of underwater pulsed discharge plasma produced by solid-state pulsed power generator. IEEE Trans. Plasma Sci. 2007, 35, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.A.; Locke, B.R.; Arce, P.; Finney, W.C. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J. Hazard. Mater. 1995, 41, 3–30. [Google Scholar] [CrossRef]
- Ono, R.; Oda, T. OH radical measurement in a pulsed arc discharge plasma observed by a LIF metho. IEEE Trans. Ind. Appl. 2001, 37, 709–714. [Google Scholar] [CrossRef]
- Sano, N.; Yamamoto, D.; Kanki, T. Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge. Ind. Eng. Chem. Res. 2003, 42, 5423–5428. [Google Scholar] [CrossRef]
- Kawano, S.; Wada, K.; Kakuta, T.; Takaki, T.; Satta, N.; Takahashi, K. Influence of pulse width on decolorization efficiency of organic dye by discharge inside bubble in water. J. Phys. Conf. Ser. 2007, 441, 012007. [Google Scholar] [CrossRef]
- Yano, T.; Shimomura, N.; Uchiyama, I.; Fukawa, F.; Teranishi, K.; Akiyama, H. Decolorization of indigo carmine solution using nanosecond pulsed power. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1081–1087. [Google Scholar] [CrossRef]
- Yan, J.H.; Liu, Y.N.; Bo, Z.; Li, X.D.; Cen, K.F. Degradation of gas-liquid glidding arc discharge on acid orange II. J. Hazard. Mater. 2008, 157, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Willberg, D.M.; Lang, P.S.; Hochemer, R.H.; Kratel, A.; Hoffmann, M.R. Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environ. Sci. Technol. 1996, 30, 2526–2534. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.; Lei, L. Degradation of 4-chlorophenol in different gas-liquid electrical discharge reactors. Chem. Eng. J. 2007, 132, 325–333. [Google Scholar] [CrossRef]
- Sugiarto, A.T.; Ito, S.; Oshima, T.; Sato, M.; Skalny, J.D. Oxidative decoloration of dyes by pulsed discharge plasma in water. J. Electrostat. 2003, 58, 135–145. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Gherendi, F.; Mandache, N.B.; Parvulescu, V. Decomposition of methylene blue in water by corona discharges. Plasma Chem. Plasma Process. 2008, 28, 677–688. [Google Scholar] [CrossRef]
- Shahni, M.; Locke, B.R. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Ind. Eng. Chem. Res. 2006, 45, 5819–5825. [Google Scholar] [CrossRef]
- Vautier, M.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of dyes in water: Case study of indigo and indigo carmine. J. Catal. 2001, 201, 46–59. [Google Scholar] [CrossRef]
- Shimizu, K.; Muramatsu, S.; Sonoda, T.; Blajan, M. Water treatment by low voltage discharge in water. Int. J. Plasma Environ. Sci. Technol. 2010, 4, 58–64. [Google Scholar]
- Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Hackam, R.; Akiyama, H. Pulsed streamer discharge characteristics of ozone production. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Hackam, R.; Akiyama, H. Air pollution control by electrical discharges. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 654–683. [Google Scholar] [CrossRef]
- Xue, J.; Chen, L.; Wang, H. Degradation mechanism of Alizarin red in hybrid gas-liquid phase dielectric barrier discharge plasmas: Experimental and theoretical examination. Chem. Eng. J. 2008, 138, 120–127. [Google Scholar] [CrossRef]
- Aoki, N.; Sakugawa, T.; Akiyama, H.; Akiyama, M. Hydrogen peroxide generation by pulsed discharge in bubbling water. IEEJ Trans. Fundam. Mater. 2013, 133, 636–641. [Google Scholar]
- Akishev, Y.; Aponin, G.; Balakirev, A.; Grushin, M.; Petryakov, A.; Karal’nik, V.; Trushkin, N. Stepwise expansion of a surface dielectric barrier discharge as a result of alternation in formation of streamers and leaders. J. Phys. D Appl. Phys. 2013, 46, 135204. [Google Scholar] [CrossRef]
- Miyahara, T.; Oizumi, M.; Nakatani, T.; Sato, T. Effect of voltage polarity on oxidation-reduction potential by plasma in water. AIP Adv. 2014, 4, 047115. [Google Scholar] [CrossRef]
- Beroual, A.; Zahn, M.; Badent, A.; Kist, K.; Schwabe, A.J.; Yamashita, H.; Yamazawa, K.; Danikas, M.; Chadband, W.G.; Torshin, Y. Propagation and structure of streamers in liquid dielectrics. IEEE Electr. Insul. Mag. 2009, 14, 6–17. [Google Scholar] [CrossRef]
- Katsuki, S.; Akiyama, H.; Abou-Ghazala, A.; Schoenbach, K.H. Paraller streamer discharges between wire and plane electrode in water. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 498–506. [Google Scholar] [CrossRef]
- Dalmazio, I.; Urzedo, A.P.F.M.; Alves, T.M.A.; Catharino, R.R.; Eberlin, M.N.; Nascentes, C.C.; Augusti, R. Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidation processes. J. Mass Spectrom. 2007, 42, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Ruo-bing, Z.; Yan, W.; Ning-hui, W.; Jie, L. Plasma induced degradation of indigo carmine by bipolar pulsed dielectric barrier discharge (DBD) in the water-air mixture. J. Environ. Sci. 2004, 16, 808–812. [Google Scholar]
- Selma, M.; Takashima, K. Decolorization of indigo carmine dye by spark discharge in water. Int. J. Plasma Environ. Sci. Technol. 2008, 2, 56–66. [Google Scholar]
- Machmudah, S.; Goto, M. Pulsed Discharge Plasma over a Water Surface Induces Decoloration of Dyes. J. Phys. Conf. Ser. 2013, 441, 012008. [Google Scholar] [CrossRef]
- Fartode, A.P.; Parwate, D.V. UV photocatalytic decolorization study of synthetic waste water containing indigo carmine dye in presence of H2O2. Int. J. Chem. Phys. 2014, 3, 22–31. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruma; Hosano, H.; Sakugawa, T.; Akiyama, H. The Role of Pulse Voltage Amplitude on Chemical Processes Induced by Streamer Discharge at Water Surface. Catalysts 2018, 8, 213. https://doi.org/10.3390/catal8050213
Ruma, Hosano H, Sakugawa T, Akiyama H. The Role of Pulse Voltage Amplitude on Chemical Processes Induced by Streamer Discharge at Water Surface. Catalysts. 2018; 8(5):213. https://doi.org/10.3390/catal8050213
Chicago/Turabian StyleRuma, Hamid Hosano, Takashi Sakugawa, and Hidenori Akiyama. 2018. "The Role of Pulse Voltage Amplitude on Chemical Processes Induced by Streamer Discharge at Water Surface" Catalysts 8, no. 5: 213. https://doi.org/10.3390/catal8050213
APA StyleRuma, Hosano, H., Sakugawa, T., & Akiyama, H. (2018). The Role of Pulse Voltage Amplitude on Chemical Processes Induced by Streamer Discharge at Water Surface. Catalysts, 8(5), 213. https://doi.org/10.3390/catal8050213