Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts
Abstract
:1. Introduction
2. Synthesis of Mesoporous Materials
2.1. Endotemplate or Soft-templating Approach
2.2. Exotemplate, Hard-templating, or Nanocasting
2.3. Template-Free Approach
3. Electrochemical Synthesis of Mesoporous Materials
3.1. Dynamic Hydrogen Bubbling Templating
3.2. Electrodeposition and De-alloying
3.3. Electrodeposition of Composites and Posterior Etching
3.4. Electrodeposition in Structured Electrolytic Baths
3.4.1. Electrodeposition in Lyotropic Liquid Crystals
3.4.2. Electrodeposition in Micelles Systems
3.4.3. Microemulsion-Based Electrodeposition
4. Detailed Analysis of the Microemulsion-Based Electrodeposition Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wu, Z.; Tao, S. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 2016, 4, 16272–16287. [Google Scholar] [CrossRef] [Green Version]
- Suib, S.L. A review of recent developments of mesoporous materials. Chem. Rec. 2017, 17, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Shiju, N.R.; Guliants, V.V. Recent developments in catalysis using nanostructured materials. Appl. Catal. A Gen. 2009, 356, 1–17. [Google Scholar] [CrossRef]
- Serrà, A.; Vallés, E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Appl. Mater. Today 2018, 12, 207–234. [Google Scholar] [CrossRef]
- Wang, L.; Ding, W.; Sun, Y. The preparation and application of mesoporous materials for energy storage. Mater. Res. Bull. 2016, 83, 230–249. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Q.; Yang, C.; Huang, Y. Research process on property and application of metal porous materials. J. Alloy. Compd. 2016, 654, 39–44. [Google Scholar] [CrossRef]
- Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhai, Z.-Y.; Chen, Z.; Zhang, L.-Z.; Zhao, X.-F.; Si, F.-Z.; Li, J.-H. Engineering mesoporous NiO with enriched electrophilic Ni3+ and O− toward efficient oxygen evolution. Catalysts 2018, 8, 310. [Google Scholar] [CrossRef]
- Chiola, V.; Ritsko, J.E.; Vanderpool, C.D. US Patent 3,556,725, May 1971.
- Yang, M.; Guarecuco, R.; Disalvo, F.J. Mesoporous chromium nitride as high performance catalyst support for methanol electrooxidation. Chem. Mater. 2013, 25, 1783–1787. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D.-V.N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl. Catal. A Gen. 2018, 559, 57–74. [Google Scholar] [CrossRef]
- Juarez, T.; Biener, J.; Weissmüller, J.; Hodge, A.M. Nanoporous Metals with Structural Hierarchy: A Review. Adv. Eng. Mater. 2017, 19, 1700389. [Google Scholar] [CrossRef]
- Umegaki, T.; Xu, Q.; Kojima, Y. Porous materials for hydrolytic dehydrogenation of ammonia borane. Materials 2015, 8, 4512–4534. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Gandha, K.; Mohapatra, J.; Hossain, M.K.; Elkins, K.; Poudyal, N.; Rajeshwar, K.; Liu, J.P. Mesoporous iron oxide nanowires: Synthesis, magnetic and photocatalytic properties. RSC Adv. 2016, 6, 90537–90546. [Google Scholar] [CrossRef]
- Wan, K.; Long, G.-F.; Liu, M.-Y.; Du, L.; Liang, Z.-X.; Tsiakaras, P. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. Appl. Catal. B Environ. 2015, 165, 566–571. [Google Scholar] [CrossRef]
- Gu, D.; Jia, C.-J.; Weidenthaler, C.; Bongard, H.-J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered Mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 2015, 137, 11407–11418. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, Y.; Sun, B.; Ao, Z.; Xie, X.; Wei, Y.; Wang, G. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xing, Z.-M.; Kou, Y.; Shi, L.-Y.; Liu, X.-Q.; Jiang, Y.; Sun, L.-B. Fabrication of rhodium nanoparticles with reduced sizes: An exploration of confined spaces. Ind. Eng. Chem. Res. 2018, 57, 3561–3566. [Google Scholar] [CrossRef]
- Serrà, A.; Grau, S.; Gimbert-Suriñach, C.; Sort, J.; Nogués, J.; Vallés, E. Magnetically-actuated mesoporous nanowires for enhanced heterogeneous catalysis. Appl. Catal. B Environ. 2017, 217, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Serrà, A.; Alcobé, X.; Sort, J.; Nogués, J.; Vallés, E. Highly efficient electrochemical and chemical hydrogenation of 4-nitrophenol using recyclable narrow mesoporous magnetic CoPt nanowires. J. Mater. Chem. A 2016, 4, 15676–15687. [Google Scholar] [CrossRef] [Green Version]
- García-Torres, J.; Serrà, A.; Tierno, P.; Alcobé, X.; Vallés, E. Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation. ACS Appl. Mater. Interfaces 2017, 9, 23859–23868. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, D.H.; Lakshminarayanan, V. Electrochemically grown mesoporous gold film as high surface area material for electro-oxidation of alcohol in alkaline medium. J. Phys. Chem. C 2009, 113, 14922–14926. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Ishikawa, Y.; Nishida, M.; Ii, S. A new electrochemical method to prepare mesoporous titanium(iv) oxide photocatalyst fixed on alumite substrate. J. Phys. Chem. B 2000, 104, 4204–4209. [Google Scholar] [CrossRef]
- Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821–2860. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Li, W.; Shao, Z.; Seeger, S.; Zhao, D.; Chen, X. Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures. J. Am. Chem. Soc. 2014, 136, 15781–15786. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, J. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 2008, 18, 771–775. [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Wu, Z.; Qian, X.; Yang, J.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833. [Google Scholar] [CrossRef] [PubMed]
- Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep. 2017, 72, 1–58. [Google Scholar] [CrossRef]
- Guo, B.; Wang, X.; Fulvio, P.F.; Chi, M.; Mahurin, S.M.; Sun, X.-G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661–4666. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Bhaumik, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci. 2013, 189–190, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, B.; Wang, Z.; Li, Y.; Hossain, M.S.A.; Kim, J.H.; Takei, T.; Henzie, J.; Dag, Ö.; Bando, Y.; et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating. Angew. Chemie. Int. Ed. 2016, 55, 12746–12750. [Google Scholar] [CrossRef] [PubMed]
- Malgras, V.; Ji, Q.; Kamachi, Y.; Mori, T.; Shieh, F.-K.; Wu, K.C.-W.; Ariga, K.; Yamauchi, Y. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 2015, 88, 1171–1200. [Google Scholar] [CrossRef]
- Yan, H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 2012, 48, 3430–3432. [Google Scholar] [CrossRef] [PubMed]
- Gajjela, S.R.; Ananthanarayanan, K.; Yap, C.; Grätzel, M.; Balaya, P. Synthesis of mesoporous titanium dioxide by soft template based approach: Characterization and application in dye-sensitized solar cells. Energy Environ. Sci. 2010, 3, 838–845. [Google Scholar] [CrossRef]
- Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 2004, 16, 5676–5681. [Google Scholar] [CrossRef]
- Xia, Z.; Liao, L.; Zhao, S. Synthesis of mesoporous hydroxyapatite using a modified hard-templating route. Mater. Res. Bull. 2009, 44, 1626–1629. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Liu, X.; Qiao, W.; Long, D.; Ling, L. Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization. Mater. Chem. Phys. 2011, 129, 1035–1041. [Google Scholar] [CrossRef]
- Ding, R.; Lv, L.; Qi, L.; Jia, M.; Wang, H. A facile hard-templating synthesis of mesoporous spinel CoFe2O4 nanostructures as promising electrocatalysts for the H2O2 reduction reaction. RSC Adv. 2014, 4, 1754–1760. [Google Scholar] [CrossRef]
- Petkovich, N.D.; Stein, A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 2013, 42, 3721–3739. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sato, T.; Yamauchi, Y. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space. Angew. Chem. Int. Ed. 2013, 52, 8050–8053. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A.C.; Liu, Z.; Asahina, S.; et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, M.; Feng, S.; Li, X.; Wang, J.; Shen, D.; Li, Y.; Sun, Z.; Elzatahry, A.A.; Lu, H.; Zhao, D. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 2014, 1, 439–445. [Google Scholar] [CrossRef]
- Yu, J.G.; Su, Y.R.; Cheng, B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous Titania. Adv. Funct. Mater. 2007, 17, 1984–1990. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, Y.; Shen, R.; Ru, C.; Hu, Y. Effect of bubble behavior on the morphology of foamed porous copper prepared via electrodeposition. J. Electrochem. Soc. 2013, 160, D441–D445. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.-Z.; Song, Y.-Y.; Xia, X.-H. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem. Mater. 2007, 19, 5758–5764. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.-Y.; Yang, C.; Xia, X.-H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Asnavandi, M.; Suryanto, B.H.R.; Yang, W.; Bo, X.; Zhao, C. Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for pH-Insensitive Hydrogen Evolution Reactions. ACS Sustain. Chem. Eng. 2018, 6, 2866–2871. [Google Scholar] [CrossRef]
- Tominaka, S.; Hayashi, T.; Nakamura, Y.; Osaka, T. Mesoporous PdCo sponge-like nanostructure synthesized by electrodeposition and dealloying for oxygen reduction reaction. J. Mater. Chem. 2010, 20, 7175–7182. [Google Scholar] [CrossRef]
- Cherevko, S.; Kulyk, N.; Chung, C.-H. Pulse-reverse electrodeposition for mesoporous metal films: Combination of hydrogen evolution assisted deposition and electrochemical dealloying. Nanoscale 2012, 4, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Sattayasamitsathit, S.; Gu, Y.; Kaufmann, K.; Minteer, S.; Polsky, R.; Wang, J. Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes. Nanoscale 2013, 5, 7849–7854. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Si, P.; Magner, E. An overview of dealloyed nanoporous gold in bioelectrochemistry. Bioelectrochemistry 2016, 109, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Malgras, V.; Aldalbahi, A.; Yamauchi, Y. Dealloying of mesoporous PtCu alloy film for the synthesis of mesoporous Pt films with high electrocatalytic activity. Chem. Asian J. 2014, 10, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, J.; Xue, T.; Zhao, D.; Li, H. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem. 2008, 18, 905–910. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Xu, M.-W.; Zhao, D.-D.; Xu, C.L.; Li, H.L. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater. 2009, 117, 55–60. [Google Scholar] [CrossRef]
- Xue, T.; Wang, X.; Lee, J.-M. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J. Power Sources 2012, 201, 382–386. [Google Scholar] [CrossRef]
- Wei, Z.; Feng, Z.X.; Ze, L.X.; Er, J.N. Electrodeposition of mesoporous manganese dioxide nanowires arrays from a novel conjunct template method. J. Porous Mater. 2009, 17, 253–257. [Google Scholar] [CrossRef]
- Baba, D.; Kim, J.; Henzie, J.; Li, C.; Jiang, B.; Dag, Ö.; Yamauchi, Y.; Asahi, T. Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles. Chem. Commun. 2018, 73, 10347–10350. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, A.S.; Malgras, V.; Iqbal, M.; Jiang, B.; Li, C.; Bando, Y.; Alshehri, A.; Kim, J.; Yamauchi, Y.; Asahi, T. Electrochemical synthesis of mesoporous Au-Cu alloy films with vertically oriented mesochannels using block copolymer micelles. ACS Appl. Mater. Interfaces 2018, 10, 23783–23791. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bastakoti, B.P.; Malgras, V.; Li, C.; Tang, J.; Kim, J.H.; Yamauchi, Y. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew. Chem. Int. Ed. 2015, 54, 11073–11077. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Yamauchi, Y. Electrochemical deposition of mesoporous Pt-Au alloy films in aqueous surfactant solutions: towards a highly sensitive amperometric glucose sensor. Chem. Eur. J. 2013, 19, 2242–2246. [Google Scholar] [CrossRef] [PubMed]
- Isarain-Chávez, E.; Baró, M.D.; Alcantara, C.; Pané, S.; Sort, J.; Pellicer, E. Micelle-assisted electrodeposition of mesoporous Fe-Pt smooth thin films and their electrocatalytic activity towards the hydrogen evolution reaction. ChemSusChem 2018, 11, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.T.; Din, M.I.; Farooq, U.; Butt, M.T.Z.; Athar, M.; Chaudhary, M.A.; Ahmad, M.N.; Mirza, M.L. Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol. Colloids Surf. A Physicochem. Eng. Asp. 2012, 405, 19–21. [Google Scholar] [CrossRef]
- Ganesh, V.; Lakshminarayanan, V. Microemulsion phase as a medium for electrodeposition of nickel and electron-transfer study of ferrocyanide–ferricyanide redox system. J. Colloid Interface Sci. 2010, 349, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Serrà, A.; Gómez, E.; Calderó, G.; Esquena, J.; Solans, C.; Vallés, E. Microemulsions for obtaining nanostructures by means of electrodeposition method. Electrochem. Commun. 2013, 27, 14–18. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, C.; Jiao, S.; Zeng, W.; Chen, J.; Kuang, Y. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem. Commun. 2006, 8, 1142–1146. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; López-Barbera, J.F.; Nogués, J.; Vallés, E. Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6). ACS Nano 2014, 8, 4630–4639. [Google Scholar] [CrossRef] [PubMed]
- Serrà, A.; Gómez, E.; Vallés, E. One-step electrodeposition from ionic liquid and water as a new method for 2D composite preparation. Electrochem. Commun. 2014, 46, 79–83. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Golosovsky, I.V.; Nogués, J.; Vallés, E. Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co-Pt films for methanol oxidation catalysis in alkaline media. J. Mater. Chem. Coruña 2016, 4, 7805–7814. [Google Scholar] [CrossRef]
- Cheng, T.T.; Gyenge, E.L. Electrodeposition of mesoscopic Pt-Ru on reticulated vitreous carbon from reverse emulsions and microemulsions: application to methanol electro-oxidation. Electrochim. Acta 2006, 51, 3904–3913. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Vallés, E. Electrosynthesis method of CoPt nanoparticles in percolated microemulsions. RSC Adv. 2014, 4, 34281–34287. [Google Scholar] [CrossRef]
- Cock, C.; Renee, W.; O’Neil, B.; Leigh, M.; Manning, J.; Bakker, M.G. Development of oil/water/surfactant microemulsions as templates for micro and nanostructured metal foams. MRS Online Proc. Libr. 2007, 1059. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Calderó, G.; Esquena, J.; Solans, C.; Vallés, E. Conditions that bicontinuous microemulsions must fulfill to be used as template for electrodeposition of nanostructures. J. Electroanal. Chem. 2014, 720–721, 101–106. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Calderó, G.; Esquena, J.; Solans, C.; Vallés, E. Conductive microemulsions for template CoNi electrodeposition. Phys. Chem. Chem. Phys. 2013, 15, 14653–14659. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhou, H.; Xie, D.; Sun, L.; Yin, Y.; Chen, J.; Kuang, Y. Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid Polym. Sci. 2010, 288, 1097–1103. [Google Scholar] [CrossRef]
- Serrà, A.; Montiel, M.; Gómez, E.; Vallés, E. Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation. Nanomaterials 2014, 4, 189–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrà, A.; Gómez, E.; Vallés, E. Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. Int. J. Hydrogen Energy 2015, 40, 8062–8070. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Vallés, E. Novel electrodeposition media to synthesize CoNi-Pt core@shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation. Electrochimica Acta 2015, 174, 630–639. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Montiel, M.; Vallés, E. Effective new method for synthesizing Pt and CoPt3 mesoporous nanorods. New catalysts for ethanol electro-oxidation in alkaline medium. RSC Adv. 2016, 6, 47931–47939. [Google Scholar] [CrossRef]
Microemulsion Type | Experimental Conditions | Advantages | Disadvantages |
---|---|---|---|
W/IL | It requires semi-stirring conditions during the electrodeposition process. It is important to fill the nanochannels of the hard template prior to starting the electrodeposition. | Porogen activity does not depend on the concentration of the aqueous component. The pore size can be controlled by modifying the droplet size. Well-defined mesopores are obtained. | Deposition rates are low. Viscosity is relatively high. Electrodeposition efficiency is low. It is a temperature-dependent procedure. |
IL/W | Non-stirring (silent) conditions are required. No previous immersion of the hard template in the electrochemical media is required. | Porogen activity does not depend on the concentration of the aqueous component. Pore size can be controlled by modifying the droplet size. High deposition rate is observed. It has relatively low viscosity. High electrodeposition efficiency (similar than in aqueous solution) is noted. Wee-defined mesopores are obtained. | It is a temperature-dependent procedure. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrà, A.; Vallés, E. Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts 2018, 8, 395. https://doi.org/10.3390/catal8090395
Serrà A, Vallés E. Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts. 2018; 8(9):395. https://doi.org/10.3390/catal8090395
Chicago/Turabian StyleSerrà, Albert, and Elisa Vallés. 2018. "Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts" Catalysts 8, no. 9: 395. https://doi.org/10.3390/catal8090395
APA StyleSerrà, A., & Vallés, E. (2018). Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts, 8(9), 395. https://doi.org/10.3390/catal8090395