The Evolution of Catalysis for Alkyd Coatings: Responding to Impending Cobalt Reclassification with Very Active Iron and Manganese Catalysts, Using Polydentate Nitrogen Donor Ligands
Abstract
:1. Introduction
1.1. Radical Curing Chemistry
1.2. Regulatory Changes for Cobalt
- Neodecanoic acid, cobalt salts EC No. 248-373-0. CAS No. 27253-31-2; EC No. 257-798-0; CAS No. 52270-44-7;
- Cobalt, borate Neodecanoate complexes EC No. 270-601-2; CAS No. 68457-13-6;
- Stearic acid, cobalt salts EC No. 237-016-4; CAS No. 13586-84-0. EC No. 213-694-7; CAS No. 1002-88-6;
- Resin and rosin acids, cobalt salts EC No. 273-321-9; CAS No. 68956-82-1;
- Naphthenic acids, cobalt salts EC No. 263-064-0. CAS No. 61789-51-3; EC No. 285-220-7; CAS No. 85049-49-6;
- Cobalt bis(2-ethylhexanoate), CAS No. 136-52-7. This substance has been self-classified from Repr. 2 to Repr. 1B.
1.3. Cobalt Alternative Technologies
1.3.1. Traditional Cobalt-Catalyst Replacement Strategies: Manganese and Iron Soaps
1.3.2. Contemporary Cobalt-Catalyst Replacement Strategies
Manganese-Based Complexes Using Polydentate Nitrogen Donor Ligands
Iron-Based Complexes Using Polydentate Ligands
2. Results and Discussion
2.1. Iron-Based Technology (Fe-Bispidon Catalyst, Supplied as Borchi® OxyCoat)
2.2. Developing Alternative Curing Catalysts for Solvent-Borne Alkyds
2.2.1. Generation 1: [MnIV2(μ-O)3(Me3TACN)2](CH3COO)2
2.2.2. Generation 2: A Broad Study of Me3TACN-Catalyst Analogs
2.2.3. Generation 3: Non-Me3TACN-Catalyst Analogs
2.3. Anti-Skinning Agents in Combination with Fe Catalysts
3. Materials and Methods
3.1. Methods
- 0 = no change;
- 1 = very thin skin, can barely be seen when vial is tipped, breaks with gentle force;
- 2 = thin skin, can be seen when the vial is tipped, breaks with gentle force;
- 3 = medium-thin, can be seen when tipped, breaks with force;
- 4 = hard skin, can be seen without tipping vial, breaks with force;
- 5 = very hard thick skin, can be seen without tipping vial, cannot be broken easily with force.
Alkyd Paint and Catalyst Preparation
3.2. Materials
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brock, T.; Groteklaes, M.; Mischke, P. European Coatings Handbook; Vincentz Network GmbH & Co KG: Hannover, Germany, 2000. [Google Scholar]
- Paul, S. Chapter 8—Types of Coatings. In Surface Coatings Science and Technology; John Wiley & Sons Ltd.: Chichester, UK, 1996; pp. 654–667. [Google Scholar]
- Paints and Coatings Market 2019 Size, Share, Trends, Type, Production Growth, Industry Demand, Global Manufacturers, Equipment, Revenue Analysis and Forecast 2025. Available online: https://www.reuters.com/brandfeatures/venture-capital/article?id=92459 (accessed on 21 August 2019).
- Ganesh, V.A.; Raut, H.K.; Naira, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322. [Google Scholar] [CrossRef]
- McInnis, B.M.; Hurt, J.D.; McDaniel, S.; Kemp, L.K.; Hodges, T.W.; Nobles, D.R. Carbon Capture Coatings: Proof of Concept Results and Call to Action. Coat. World 2019, 24, 82–91. [Google Scholar]
- Li, G.; Meng, H. Recent Advances in Smart Self-Healing Polymers and Composites. In Chapter 8—Self-Healing Coatings; Hughes, A.E., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 211–241. [Google Scholar]
- Challenger, C. An Update on Sustainability in the Coatings Industry. Coat. Technol. 2018, 15, 22–28. [Google Scholar]
- Mash, T. Sustainability in the Coatings Industry. PCI Magazine. Available online: https://www.pcimag.com/articles/100363-sustainability-in-the-coatings-industry (accessed on 1 April 2015).
- Van Haveren, J.; Oostveen, E.A.; Miccichè, F.; Noordover, B.A.J.; Koning, C.E.; van Benthem, R.A.T.M.; Frissen, A.E.; Weijnen, J.G.J. Resins and additives for powder coatings and alkyd paints, based on renewable sources. J. Coat. Technol. Res. 2007, 4, 177–186. [Google Scholar] [CrossRef]
- Honzíček, J. Curing of Air-Drying Paints: A critical Review. Ind. Eng. Chem. Res. 2019, 58, 12485–12505. [Google Scholar] [CrossRef]
- Tuck, N. Waterborne and Solvent Based Alkyds and their End User Application. In Surface Coating Technology—Volume VI; SITA Technology; Wiley: London, UK, 2000. [Google Scholar]
- Hubert, J.C.; Venderbosch, R.A.M.; Muizebelt, W.J.; Klaassen, R.P.; Zabel, K.H. Singlet Oxygen Drying of Alkyd Resins and Model Compounds. J. Coat. Technol. 1997, 69, 59–64. [Google Scholar] [CrossRef]
- Bieleman, J.H. Driers. Chimia 2002, 56, 184–190. [Google Scholar] [CrossRef]
- Miccichè, F.; van Haveren, J.; Oostveen, E.; Ming, W.; van der Linde, R. Oxidation and oligomerization of ethyl linoleate under influence of the combination of ascorbic acid 6 palmitate/iron-2-ethylhexanoate. Appl. Catal. A 2006, 297, 174–181. [Google Scholar] [CrossRef]
- Cobalt REACH Consortium. Cobalt REACH Consortium (CoRC). Available online: http://cobaltreachconsortium.org/ (accessed on 7 August 2019).
- Reach Metal Consortium. Welcome to the REACH Metal Carboxylates (Driers & Catalysts) Consortium Ltd. (RMC). Retrieved from Reach Metal (Driers and Catalysts) Consortium. Available online: https://www.metal-carboxylates.org/ (accessed on 7 August 2019).
- Powder Metallurgy Review. Proposed Cobalt Reclassification Raises Concerns for Metal Powder Users. Powder Metallurgy Review. Available online: https://www.pm-review.com/proposed-cobalt-reclassification-raises-concerns-metal-powder-users/ (accessed on 18 October 2017).
- Sanderson, H. Cobalt hits 2-year low as DRC ramps up supply. Financial Times, 6 February 2019. [Google Scholar]
- Steinert, A. Effective drying without cobalt. Eur. Coat. J. 2005, 3, 84–88. [Google Scholar]
- Ha, D.; Joo, H.; Ahn, G.; Kim, M.J.; Bing, S.J.; An, S.; Kim, H.; Kang, K.G.; Lim, Y.K.; Jee, Y. Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice. Food Chem. Toxicol. 2012, 50, 2097–2105. [Google Scholar] [CrossRef]
- Srivastava, A.K. Anti-diabetic and toxic effects of vanadium compounds. Mol. Cell. Biochem. 2000, 206, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Soucek, M.D.; Khattab, T.; Wu, J. Review of autoxidation and driers. Prog. Org. Coat. 2012, 73, 435–454. [Google Scholar] [CrossRef]
- Bieleman, J.H. Progress in the Development of Cobalt-free Drier Systems. Macromol. Symp. 2002, 187, 811–821. [Google Scholar] [CrossRef]
- Van Gorkum, R.; Bouwman, E. The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev. 2005, 249, 1709–1728. [Google Scholar] [CrossRef]
- Warzeska, S.T.; Zonneveld, M.; van Gorkum, R.; Muizebelt, W.J.; Bouwman, E.; Reedijk, J. The influence of bipyridine on the drying of alkyd paints. A model study. Prog. Org. Coat. 2002, 44, 243–248. [Google Scholar] [CrossRef]
- van Gorkum, R.; Bouwman, E. Fast Autoxidation of ethyl linoleate catalyzed by [Mn(acac)3] and bipyridine: A possible drying catalyst for alkyd paints. Inorg. Chem. 2004, 43, 2456–2458. [Google Scholar] [CrossRef]
- Oyman, Z.O.; Ming, W.; van der Linde, R.; Gorkum, R.; Bouwman, E. Effect of [Mn(acac)3] and its combination with 2,2′-bipyridine on the autoxidation and oligomerisation of ethyl linoleate. Polymer 2005, 46, 1731–1738. [Google Scholar] [CrossRef]
- Van Gorkum, R.; Bouwman, E.; Reedijk, J. Drier for Alkyd-Based Coating. Patent EP 1382648 A, 21 January 2004. [Google Scholar]
- Miccichè, F.; Long, G.J.; Shahin, A.M.; Grandjean, F.; Ming, W.; van Haveren, J.; van der Linde, R. The combination of ascorbic acid 6-palmitate and [Fe(III)(μ3-O)]7+ as a catalyst for the oxidation of unsaturated lipids. Inorg. Chim. Acta 2007, 360, 535–545. [Google Scholar] [CrossRef]
- Hage, R.; Wesenhagen, P.V. Unilever, Liquid Hardening. Patent WO2008003652, 10 January 2008. [Google Scholar]
- Santhanam, R. Additives for Curable Liquid Compositions. Patent WO2012092034, 5 July 2012. [Google Scholar]
- Oyman, Z.O.; Ming, W.; Micciche, F.; Oostveen, E.; van Haveren, J.; van der Linde, R. A promising environmentally friendly manganese-based catalyst for alkyd emulsion coatings. Polymer 2004, 45, 7431–7436. [Google Scholar] [CrossRef]
- Oyman, Z.O.; Ming, W.; van der Linde, R.; ter Borg, J.; Schut, A.; Bieleman, J.H. Oxidative drying of alkyd paints catalysed by a dinuclear manganese complex (MnMeTACN). Surf. Coat. Int. Part B 2005, 88, 269–275. [Google Scholar] [CrossRef]
- Meijer, M.D.; van Weelde, E.; van Dijk, J.T.M.; Flapper, J. Drier for Auto-Oxidisable Coating Compositions. Patent EP2794786B, 27 July 2013. [Google Scholar]
- Meijer, M.D.; van Weelde, E.; van Dijk, J.T.M.; Flapper, J. Drier for Auto-Oxidisable Coating Compositions. Patent EP2794787B, 27 July 2013. [Google Scholar]
- Hage, R.; Iburg, J.E.; Kerschner, J.; Koek, J.H.; Lempers, E.L.M.; Martens, R.J.; Racherla, U.S.; Russell, S.W.; Swarthoff, T.; van Vliet, M.R.P.; et al. Efficient manganese catalysts for low-temperature bleaching. Nature 1994, 369, 637–639. [Google Scholar] [CrossRef]
- Hage, R.; Lienke, A. Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching. Angew. Chem. Int. Ed. Engl. 2006, 45, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Meijer, M.D.; Flapper, J. Drier for Auto-Oxidisable Coating Compositions. Patent EP2935435B, 26 June 2014. [Google Scholar]
- Maaijen, K.; Hage, R. Method of Preparing an Oxidatively Curable Coating Formulation. Patent WO2017/134463, 10 August 2017. [Google Scholar]
- de Boer, J.W.; Hage, R.; Maaijen, K. Drier for Alkyd-Based Coating. Patent WO2014/122433, 31 January 2014. [Google Scholar]
- de Boer, J.W.; Hage, R.; Maaijen, K. Oxidative Curable Coating Composition. Patent WO2014/122432, 31 January 2014. [Google Scholar]
- Hage, R.; de Boer, J.W.; Maaijen, K. Oxidative Curable Coating Composition. Patent WO2014/122434, 31 January 2014. [Google Scholar]
- Peralta, R.A.; Neves, A.; Bortoluzzi, A.J.; Casellato, A.; dos Anjos, A.; Greatti, A.; Xavier, F.R.; Szpoganicz, B. First transition-metal complexes containing the ligands 6-amino-6-methylperhydro-1,4-diazepine (AAZ) and a new functionalized derivative: Can AAZ act as a mimic for 1,4,7-triazacyclononane? Inorg. Chem. 2005, 44, 7690–7692. [Google Scholar] [CrossRef]
- Maaijen, K.; Hage, R. Oxidatively Curable Coating Composition. Patent WO2017103620, 22 June 2017. [Google Scholar]
- Kalenda, P.; Holeček, J.; Veselý, D.; Erben, M. Influence of methyl groups on ferrocene on rate of drying of oxidizable paints by using model compounds. Prog. Org. Coat. 2006, 56, 111–113. [Google Scholar] [CrossRef]
- Stava, V.; Erben, M.; Veselý, D.; Kalenda, P. Properties of metallocene complexes during the oxidative crosslinking of air drying coatings. J. Phys. Chem. Solids 2007, 68, 799–802. [Google Scholar] [CrossRef]
- Erben, M.; Veselý, D.; Vinklárek, J.; Honzíček, J. Acyl-substituted ferrocenes as driers for solvent-borne alkyd paints. J. Mol. Catal. A 2012, 353–354, 13–21. [Google Scholar] [CrossRef]
- Dong, S.; Wang, B.; Lui, B. Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens. Bioelectron. 1992, 7, 215–222. [Google Scholar] [CrossRef]
- Hage, R.; de Boer, J.W.; Gaulard, F.; Maaijen, K. Manganese and iron bleaching and oxidation catalysts. Adv. Inorg. Chem. 2013, 65, 85–116. [Google Scholar]
- Appel, R.; Hage, R.; van der Hoeven, P.C.; Lienke, J.; Smith, R.G. Enhancement of Air Bleaching Catalysts. Patent EP1368450, 27 June 2002. [Google Scholar]
- Appel, R.; Hage, R.; Lienke, J. Device Suitable for Analysing Edible Oil Quality. Patent EP1326074, 9 July 2003. [Google Scholar]
- de Boer, J.W.; Wesenhagen, P.V.; Wenker, E.C.M.; Maaijen, K.; Gol, F.; Gibbs, H.; Hage, R. The quest for cobalt-free alkyd paint driers. Eur. J. Inorg. Chem. 2013, 21, 3581–3591. [Google Scholar] [CrossRef]
- Pirš, B.; Bogdan, Z.; Skale, S.; Zabret, J.; Godnjavec, J.; Venturini, P. Iron as an alternative drier for high-solid alkyd coatings. J. Coat. Technol. Res. 2015, 12, 965–974. [Google Scholar] [CrossRef]
- Gezici-Koc, O.; Thomas, C.A.M.M.; Michel, M.E.B.; Erich, S.J.F.; Huinink, H.P.; Flapper, J.; Duivenvoorde, F.L.; van der Ven, L.G.J.; Adan, O.C.G. In-depth study of drying solvent-borne alkyd coatings in the presence of Mn- and Fe-based catalysts as Co alternatives. Mater. Today Commun. 2016, 7, 22–31. [Google Scholar] [CrossRef]
- Pirš, B.; Bogdan, Z.; Skale, S.; Zabret, J.; Godnjavec, J.; Berce, P.; Venturini, P. The influence of Co/Sr and Fe/Sr driers on film formation of high-solid alkyd coatings. Acta Chim. Slov. 2015, 62, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.; Kleuskens, E.C.; van Summeren, R.; Alsters, P.L. Manganese Complex Drier for Coating Compositions. Patent EP2534215B, 18 August 2011. [Google Scholar]
- Jansen, J.; Bergman, F.A.C.; Kleuskens, E.C. Manganese Salt Complex as Drier for Coating Compositions. Patent EP2534216B, 18 August 2011. [Google Scholar]
- Jansen, J.; Bergman, F.A.C.; Kleuskens, E.C.; Hage, R. Manganese Salt Complex as Drier for Coating Compositions. Patent EP2534217B, 18 August 2011. [Google Scholar]
- Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella, M.; Vitols, S.E.; Girerd, J.J. Synthesis, Crystal Structures, Reactivity, and Magnetochemistry of a series of binuclear complexes of Manganese(II), -(III), and -(IV) of Biological Relevance. The crystal structure of [L’MnIV(μ-O)3MnIVL’] (PF6)2. H2O Containing an Unprecedented Short Mn…Mn distance of 2.296 Å. J. Am. Chem. Soc. 1988, 110, 7398–7411. [Google Scholar]
- De Boer, J.W.; Browne, W.R.; Brinksma, J.; Alsters, P.L.; Hage, R.; Feringa, B.L. Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly efficient manganese catalysts. Inorg. Chem. 2007, 46, 6353–6372. [Google Scholar] [CrossRef] [PubMed]
- Koek, J.H.; Kohlen, E.W.M.J.; Russell, S.W.; van der Wolf, L.; ter Steeg, P.F.; Hellemons, J.C. Synthesis and properties of hydrophobic [MnIV2(μ-O)3(L)2]2+ complexes, derived from alkyl substituted 1,4,7-triazacyclononane ligands. Inorg. Chim. Acta 1999, 295, 189–199. [Google Scholar] [CrossRef]
- Koek, J.H.; Russell, S.W.; van der Wolf, L.; Hage, R.; Warnaar, J.B.; Spek, A.L.; Kerschner, J.; DelPizzo, L. Improved synthesis, structures, spectral and electrochemical properties of and properties of [MnIII2(μ-O) (μ-O2CMe) L)2]2+ and [MnIV2(μ-O)3(L)2]2+ complexes. Two homologous series derived from eight N-substituted 1,4,7-triazacyclononanes. J. Chem. Soc. Dalton Trans. 1996, 3, 353–362. [Google Scholar] [CrossRef]
- Oyman, Z.O.; Ming, W.; van der Linde, R. Catalytic activity of a dinuclear manganese complex (MnMeTACN) on the oxidation of ethyllinoleate. Appl. Catal. A 2007, 316, 191–196. [Google Scholar] [CrossRef]
- Golombek, A.P.; Hendrich, M.P. Quantitative analysis of dinuclear manganese(II) EPR spectra. J. Magn. Res. 2003, 165, 33–48. [Google Scholar] [CrossRef]
- Kumarathasan, R.; Rajkumar, A.B.; Hunter, N.R.; Gesser, H.D. Autoxidation and yellowing of methyl linolenate. Prog. Lipid Res. 1992, 31, 109–126. [Google Scholar] [CrossRef]
- NIIR Board. Modern Technology of Paints, 2nd ed.; ASIA PACIFIC BUSINESS PRESS Inc.: Delhi, India, 2007; p. 49. [Google Scholar]
- Figge, H.J.; Weber, B. Anti-Skinning Agent for Coating Composition. Patent WO00/11090, 2 March 2000. [Google Scholar]
- Martyak, N.; Alford, D. Antiskinning Compound and Compositions Containing them. Patent WO 2007/024592, 1 March 2007. [Google Scholar]
- Mason, A. Composition Containing an Oxime-Free Anti-Skinning Agent and Methods for Making and Using the Same. Patent WO 2016/100527A1, 23 June 2016. [Google Scholar]
- Asirvatham, E.; Amerson, E.J.; Militch, E.D. Coating Composition Including Alkyl Oximes. U.S. Patent U.S. 2016/0304732A1, 20 October 2016. [Google Scholar]
- Tanase, S.; Hierso, J.C.; Bouwman, E.; Reedijk, J.; ter Borg, J.; Bieleman, J.H.; Schut, A. New insights on the anti-skinning effect of methyl ethyl ketoxime in alkyd paints. New J. Chem. 2003, 27, 854–859. [Google Scholar] [CrossRef]
- Hage, R.; Gol, F.; Gibbs, H.W.; Maaijen, K. Antiskinning Compositions. Patent WO 2012093250, 12 July 2012. [Google Scholar]
- Krizan, M.; Vinklárek, J.; Erben, M.; Cisarova, I.; Honzíček, J. Autoxidation of alkyd resins catalysed by iron(II) bispidine complex: Drying performance and in-depth infrared study. Prog. Org. Coat. 2017, 111, 361–370. [Google Scholar] [CrossRef]
- Weijnen, J.; Bloem, M.; Klomp, D. Drier Composition and Use Thereof. U.S. Patent U.S. 20130274386A1, 17 October 2013. [Google Scholar]
Sample | Concentration (wt% Mn) | Ligand Amount (mg/50 μL EtOH) | Mn-soap Amount (mg/50 μL EtOH) |
---|---|---|---|
Mn + L3 (MW = 248 g/mol) | 0.05 | 11.3 | 25 |
Mn + L1 (MW = 157 g/mol) | 0.05 | 7.2 | 25 |
Mn + L4 (MW = 262 g/mol) | 0.05 | 11.9 | 25 |
Mn + L6 (MW = 311 g/mol) | 0.05 | 14.2 | 25 |
Mn + L7 (MW = 339 g/mol) | 0.05 | 15.5 | 25 |
Mn + Me3TACN (MW = 171 g/mol)) | 0.05 | 8.2 | 25 |
Mn only | 0.05 | - | 25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, N.; Maaijen, K.; Roelofsen, Y.; Hage, R. The Evolution of Catalysis for Alkyd Coatings: Responding to Impending Cobalt Reclassification with Very Active Iron and Manganese Catalysts, Using Polydentate Nitrogen Donor Ligands. Catalysts 2019, 9, 825. https://doi.org/10.3390/catal9100825
Simpson N, Maaijen K, Roelofsen Y, Hage R. The Evolution of Catalysis for Alkyd Coatings: Responding to Impending Cobalt Reclassification with Very Active Iron and Manganese Catalysts, Using Polydentate Nitrogen Donor Ligands. Catalysts. 2019; 9(10):825. https://doi.org/10.3390/catal9100825
Chicago/Turabian StyleSimpson, Neil, Karin Maaijen, Yfranka Roelofsen, and Ronald Hage. 2019. "The Evolution of Catalysis for Alkyd Coatings: Responding to Impending Cobalt Reclassification with Very Active Iron and Manganese Catalysts, Using Polydentate Nitrogen Donor Ligands" Catalysts 9, no. 10: 825. https://doi.org/10.3390/catal9100825
APA StyleSimpson, N., Maaijen, K., Roelofsen, Y., & Hage, R. (2019). The Evolution of Catalysis for Alkyd Coatings: Responding to Impending Cobalt Reclassification with Very Active Iron and Manganese Catalysts, Using Polydentate Nitrogen Donor Ligands. Catalysts, 9(10), 825. https://doi.org/10.3390/catal9100825