Glucose-Mediated Synthesis of Hierarchical Porous ZnGa2O4 Microspheres for Effective Photocatalytic Removal of Aromatic and Arsenic Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Compositions and Morphologies of ZnGa2O4
2.2. Photocatalytic Properties of ZGO Samples
2.2.1. Gas-Phase Photocatalytic Properties
2.2.2. Surface Hydroxyl Group Analysis
2.2.3. Liquid-Phase Photocatalytic Properties for As(III) Removal
2.3. DMPO-ESR and Photoelectrochemical Analyses
2.4. Band Gap Analysis and Tentative Photooxidation Mechanism of ZnGa2O4
3. Experimental Section
3.1. Catalyst Preparation
3.2. Characterizations
3.3. Surface Hydroxyl Groups Measurements
3.4. Photocatalytic Activity Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation for environmental applications— A review. J. Chem. Technol. Biotechnol. 2002, 77, 102–116. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.A.; O’shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B. Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, J.; Liu, P.; Shi, X.; Wang, D. Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and Their Location. Langmuir 2010, 26, 9686–9694. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; Park, K.H. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air appli cation. Chemosphere 2004, 57, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Li, Y.; Hou, J.; Bai, J.; Mao, M.; Zeng, M.; Zhao, X.; Li, N. The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {0 0 1} facets on photocatalysis for the photocatalytic purification of VOCs. Appl. Catal. B. Environ. 2016, 181, 625–634. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Sun, H.; Jian, L.; Pareek, V.K.; Wang, S. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Dai, J.; Tian, Q.; Sun, Q.; Wei, W.; Zhuang, J.; Liu, M.; Cao, Z.; Xie, W.; Fan, M. TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos. Part B. Eng. 2019, 160, 480–487. [Google Scholar] [CrossRef]
- Lin, W.; Xie, X.; Xiao, W.; Yan, W.; Segets, D.; Jing, S. Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst. Chem. Eng. J. 2018, 349, 708–718. [Google Scholar] [CrossRef]
- Fagan, R.; Mccormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef]
- Tian, Q.; Wei, W.; Dai, J.; Sun, Q.; Zhuang, J.; Zheng, Y.; Liu, P.; Fan, M.; Chen, L. Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance. Appl. Catal. B. Environ. 2019, 244, 45–55. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, J.; Xie, L.; Liu, P.; Yuan, R.; Shi, X.; Wang, D. High-efficient degradation of benzene over Pt/TiO2 by adding a small amount of H2 under a mild condition. Catal. Comm. 2011, 12, 621–624. [Google Scholar] [CrossRef]
- Subrahmanyam, C.; Renken, A.; Kiwi-Minsker, L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem. Eng. J. 2007, 134, 78–83. [Google Scholar] [CrossRef]
- Shao, Z.; Zeng, T.; He, Y.; Zhang, D.; Pu, X. A novel magnetically separable CoFe2O4/Cd0. 9Zn0. 1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem. Eng. J. 2019, 359, 485–495. [Google Scholar] [CrossRef]
- Gao, M.; Yang, J.; Sun, T.; Zhang, Z.; Zhang, D.; Huang, H.; Lin, H.; Fang, Y.; Wang, X. Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2. Appl. Catal. B: Environ. 2019, 243, 734–740. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Ding, K.; Hou, Y.; Wang, X.; Fu, X. Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area. Environ. Sci. Technol. 2009, 43, 5947–5951. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Zheng, X.; Shao, Y.; He, M.; Wang, P.; Fu, X.; Li, D. A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity. J. Mater. Chem. A 2014, 2, 15796–15802. [Google Scholar] [CrossRef]
- Chen, X.; Xue, H.; Li, Z.; Wu, L.; Wang, X.; Fu, X. Ternary wide band gap p-block metal semiconductor ZnGa2O4 for photocatalytic benzene degradation. J. Phys. Chem. C 2008, 112, 20393–20397. [Google Scholar] [CrossRef]
- Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y. A Room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angew. Chem. Int. Ed. 2010, 122, 6544–6548. [Google Scholar] [CrossRef]
- Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d(10) configuration. J. Phys. Chem. B 2002, 106, 9048–9053. [Google Scholar] [CrossRef]
- Zheng, T.; Xia, Y.; Jiao, X.; Wang, T.; Chen, D. Enhanced photocatalytic activities of single-crystalline ZnGa2O4 nanoprisms by the coexposed {111} and {110} facets. Nanoscale 2017, 9, 3206–3211. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.S.; Kanhere, D.G.; Ravindra, P. Electronic structure of spinel oxides: Zinc aluminate and zinc gallate. J. Phys. Condens. Matter 1999, 11, 3635. [Google Scholar]
- Bae, S.Y.; Lee, J.; Jung, H.; Park, J.; Ahn, J.P. Helical structure of single-crystalline ZnGa2O4 nanowires. J. Am. Chem. Soc. 2005, 127, 10802–10803. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, D.; Zhou, Y.; Su, H.; Wang, R.; Zhang, C.; Yan, S.; Xiao, M.; Zou, Z. Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane. ACS Appl. Mater. Interfaces 2014, 6, 2356–2361. [Google Scholar] [CrossRef]
- Zhuang, J.D.; Tian, Q.F.; Lin, S.; Yang, W.B.; Chen, L.H.; Liu, P. Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for As(III) removal. Appl. Catal. B. Environ. 2014, 156, 108–115. [Google Scholar] [CrossRef]
- Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. Hierarchical porous TiO2@C hollow microspheres: One-pot synthesis and enhanced visible-light photocatalysis. J. Mater. Chem. 2012, 22, 7036–7042. [Google Scholar] [CrossRef]
- Yan, S.; Wang, J.; Gao, H.; Wang, N.; He, Y.; Li, Z.; Yong, Z.; Zou, Z. An Ion-Exchange Phase Transformation to ZnGa2O4 Nanocube Towards Efficient Solar Fuel Synthesis. Adv. Funct. Mater. 2013, 23, 758–763. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Tang, L.Q.; Li, Y.Q.; Zhou, Y.; Liu, J.M.; Zou, Z.G. Robust, double-shelled ZnGa2O4 hollow spheres for photocatalytic reduction of CO2 to methane. Dalton Trans. 2017, 46, 10564–10568. [Google Scholar] [CrossRef]
- Titirici, M.M.; Antonietti, M.; Thomas, A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. Chem. Mater. 2006, 18, 3808–3812. [Google Scholar] [CrossRef]
- Yu, J.; Yu, X. Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres. Environ. Sci. Technol. 2008, 42, 4902–4907. [Google Scholar] [CrossRef]
- Zhuang, J.; Tian, Q.; Liu, Q.; Liu, P.; Cui, X.; Li, Y.; Fan, M. New insight into binary TiO2@C nanocomposites: The crucial effect of an interfacial microstructure. Phys. Chem. Chem. Phys. 2017, 19, 9519–9527. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Wei, W.; Dai, J.; Sun, Q.; Zhuang, J.; Liu, P.; Zheng, Y. Furfural-Mediated Synthesis of Mesoporous Ti0.5Sn0.5O2 Solid-Solution Microspheres for Effective Photocatalytic Removal of As(III). J. Phys. Chem. C 2018, 122, 28045–28054. [Google Scholar] [CrossRef]
- Szeifert, J.M.; Fattakhova-Rohlfing, D.; Georgiadou, D.; Kalousek, V.; Rathouský, J.; Kuang, D.; Wenger, S.; Zakeeruddin, S.M.; Grätzel, M.; Bein, T. “Brick and Mortar” strategy for the formation of highly crystalline mesoporous titania films from nanocrystalline building blocks. Chem. Mater. 2009, 21, 1260–1265. [Google Scholar] [CrossRef]
- Einaga, H.; Futamura, S.; Ibusuki, T. Complete oxidation of benzene in gas phase by platinized titania photocatalysts. Environ. Sci. Technol. 2001, 35, 1880–1884. [Google Scholar] [CrossRef] [PubMed]
- Einaga, H.; Futamura, S.; Ibusuki, T. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys. Chem. Chem. Phys. 1999, 1, 4903–4908. [Google Scholar] [CrossRef]
- d’Hennezel, O.; Pichat, P.; Ollis, D.F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: By-products and mechanisms. J. Photochem. Photobiol. A 1998, 118, 197–204. [Google Scholar] [CrossRef]
- Wu, T.; Lin, T.; Zhao, J.; Hidaka, H.; Serpone, N. TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation. Environ. Sci. Technol. 1999, 33, 1379–1387. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Mater. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Li, Z.; Dong, T.; Zhang, Y.; Wu, L.; Li, J.; Wang, X.; Fu, X. Studies on In(OH)ySz Solid Solutions: Syntheses, Characterizations, Electronic Structure, and Visible-Light-Driven Photocatalytic Activities. J. Phys. Chem. C 2007, 111, 4727–4733. [Google Scholar] [CrossRef]
Sample | Crystallite Size (nm) | Band Gap (eV) | SBET (m2/g) | Toluene Conversion (%) | EM (%) | As(III) Removal (%) | Surface Hydroxyl Density (mmol/g) | ||
---|---|---|---|---|---|---|---|---|---|
AHG | BHG | Total | |||||||
ZGO@C | 12 | - | 171.50 | - | - | - | - | - | - |
P-ZGO | 14 | 4.58 | 134.80 | 56.60 | 86.30 | 99.80 | 0.72 | 1.05 | 1.77 |
n-ZGO | 21 | 4.45 | 76.90 | 37.80 | 79.60 | 90.60 | 0.55 | 0.83 | 1.38 |
P25 | 23 | 3.20 | 50.10 | 16.20 | 19.10 | 80.50 | 0.23 | 0.20 | 0.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Ren, S.; Cai, Z.; Chen, C.; Zheng, Y.; Zhuang, J. Glucose-Mediated Synthesis of Hierarchical Porous ZnGa2O4 Microspheres for Effective Photocatalytic Removal of Aromatic and Arsenic Pollutants. Catalysts 2019, 9, 828. https://doi.org/10.3390/catal9100828
Tian Q, Ren S, Cai Z, Chen C, Zheng Y, Zhuang J. Glucose-Mediated Synthesis of Hierarchical Porous ZnGa2O4 Microspheres for Effective Photocatalytic Removal of Aromatic and Arsenic Pollutants. Catalysts. 2019; 9(10):828. https://doi.org/10.3390/catal9100828
Chicago/Turabian StyleTian, Qinfen, Shiming Ren, Zaiwei Cai, Changhao Chen, Yi Zheng, and Jiandong Zhuang. 2019. "Glucose-Mediated Synthesis of Hierarchical Porous ZnGa2O4 Microspheres for Effective Photocatalytic Removal of Aromatic and Arsenic Pollutants" Catalysts 9, no. 10: 828. https://doi.org/10.3390/catal9100828
APA StyleTian, Q., Ren, S., Cai, Z., Chen, C., Zheng, Y., & Zhuang, J. (2019). Glucose-Mediated Synthesis of Hierarchical Porous ZnGa2O4 Microspheres for Effective Photocatalytic Removal of Aromatic and Arsenic Pollutants. Catalysts, 9(10), 828. https://doi.org/10.3390/catal9100828